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Abstract—Fast charging stations are critical infrastructures to 

enable high penetration of plug-in electric vehicles (PEVs) into 

future distribution networks. They need to be carefully planned to 

ensure meeting charging demand as well as economic benefits. 

Accurate estimation of PEV charging demand is the prerequisite 

of such planning, but a non-trivial task. This paper addresses the 

sizing (number of chargers and waiting spaces) problem of fast 

charging stations and presents an optimal planning solution based 

on an explicit temporal-SoC characterization of PEV fast charging 

demand. The characteristics of PEV charging demand are derived 

through the vehicle travel behavior analysis using available 

statistics. The PEV dynamics in charging stations is modelled with 

a Markov chain and queuing theory. As a result, the optimal 

number of chargers and waiting spaces in fast charging stations 

can be jointly determined so as to maximize the expected operator 

profits, considering profit of charging service, penalty of waiting 

and rejection, as well as maintenance cost of idle facilities. The 

proposed solution is validated through a case study with 

mathematical justifications and numerical results from simulation. 

Index Terms—Plug-in electric vehicle (PEV), state of charge 

(SoC), Monte Carlo simulation, Markov model, queuing theory, 

charging station planning. 

NOMENCLATURE 

PEV related parameters 

cE  
Energy consumption per kilometer of PEV 

battery 

bC  Maximum battery capacity 

nchS  PEV normal charging state 

fchS  PEV fast charging state 

dS  PEV driving state 
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pS  PEV parking state 

nP  Typical charging power of normal charging 

fP  Typical charging power of fast charging 

mdt  Departure time in the morning of C-PEV 

mat  Arrival time in the morning of C-PEV 

edt  Departure time in the evening of C-PEV 

eat  Arrival time in the evening of C-PEV 

dt  Departure time of O-PEV 

at  Arrival time of O-PEV 

dN  
Valid samples that Monte-Carlo simulation 

generates 

( )SoC t  SoC in the current time slot 

( 1)SoC t   SoC in the next time slot 

v  PEV average driving speed 

P  Markov model of PEV 

it  i th time slot 

i

nchS  
Probability of normal charging in the i th 

time slot 

i

fchS  
Probability of fast charging in the i th time 

slot 
i

dS  Probability of driving in the i th time slot 

i

pS  Probability of parking in the i th time slot 

V  Expected total PEV charging demand 

Charging stations related parameters 

n  Total number of PEVs 

  PEV arrival rate in the fast charging station 
  Service rate of PEV chargers 

s  Number of PEV chargers 

w  Number of PEV waiting spaces 

N  
Maximum number of PEVs that the charging 

station can serve 
  Service capacity of the charging station 

0P  Probability that the charging station is empty 

kP  
Probability that there are k PEVs in the 

charging station 

NP  
Probability of a PEV charging request being 

rejected 

e  Arrival rate of accepted PEVs 

R  Number of rejected PEV charging requests 

L  Number of queued PEV charging requests 
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B  Number of busy chargers 

sI  Number of idle chargers 

wI  Number of idle waiting spaces 

E  
Expected profit in a unit time slot of the 

charging station 

 , 1,2,3,4,5ic i  Cost factors 

maxs  Maximum allowed number of PEV chargers 

maxw  Maximum allowed number of waiting spaces 

subC  
Capacity of the substation that the charging 

station connects to 

bP  Other power load of the substation 

Vs  
Maximum number of PEV chargers without 

violating the bus voltage constraints 

determined by  power flow calculation 

  Confidence interval of the generated samples 

errr  
Estimated relative error of the generated 

samples 

  Standard deviation of the estimated mean 

X  
Estimated mean value of the generated 

samples 

iX  Generated samples 
0

errr  Relative error of the generated samples 

MN  Pre-defined maximum number of iterations 
sN  Number of simulation iterations 

iL  
PEV state probability results after sN  

iterations 

  Convergence factor 

I. INTRODUCTION 

he growing concerns of fossil fuel consumption and 

greenhouse gas emission have prompted the rapid 

development of plug-in electric vehicles (PEVs) in recent years. 

It is anticipated that PEVs will be a fairly large segment of 

vehicles in USA [1] and China [2]. Currently a PEV can be 

charged either in a normal charging mode at its destination (e.g., 

home or workplace), or in a fast charging mode at fast charging 

stations when needed (typical charging duration of 30 minutes 

or less) [3]. Due to the limited driving range compared with 

internal combustion engine (ICE) vehicles, PEVs need to be 

timely charged during the trip at fast charging stations. 

Appropriate planning of PEV fast charging stations is of 

paramount importance to enable large-scale PEV deployment 

and the investment of charging stations will continuingly grow 

to meet the increasing PEV charging demand. It was reported 

that China aims to build 12,000 centralized charging/battery 

swap stations and 4.8 million scattered charging piles across the 

country by 2020 to service 5 million PEVs [2]. 

The investigation of PEV fast charging station planning has 

received much research attention in recent years. The existing 

work has mainly addressed such a planning problem from two 

aspects: sitting (i.e., location), and sizing (i.e., capacity) of 

charging stations. The former (e.g., [4-10]) determines the 

optimal placement of fast charging stations aiming to ensure the 

economic and security operation of electrical distribution 

networks whilst meeting the transportation network constraints. 

The studies [11-14] have addressed the optimal sizing problem 

of PEV fast charging stations from the total power capacity 

perspective. In particular, the authors in [11] exploit the optimal 

planning of PEV fast charging stations in a highway 

transportation network based on a capacitated-flow refueling 

location model and a mixed-integer linear programming model. 

An integrated planning framework is presented in [12] to 

minimize the overall PEV charging infrastructure cost in urban 

areas by using the Voronoi diagram and particle swarm 

optimization. In [13], a stochastic planning model is developed 

for PEV charging stations equipped with single output multiple 

cables charging spots to minimize the equivalent annual cost 

considering the coordinated charging strategy. The authors in 

[14] present a mixed integer non-linear optimization approach 

for optimal placement and sizing of fast charging stations, 

considering the station construction cost, PEV energy loss, 

power grid loss as well as the locations of electric substations 

and urban roads. 

However, the optimal configuration of fast charging stations 

(i.e., the number of chargers and waiting spaces) and service 

performance assessment (e.g., queued and rejected PEV 

charging requests) have not been explicitly investigated in the 

literature. The solutions in [3, 15-17] adopt queuing theory to 

determine the optimal number of charging facilities in order to 

meet the PEV charging demand as well as promote the service 

quality of charging stations. However, it should be noted that 

these solutions simply assume that the PEV charging demand is 

known as a priori, or follows a simple pattern of PEV charging 

requests (e.g., a fixed PEV arrival rate). This may make the 

solutions problematic in practice as the arrival pattern of PEV 

charging requests can vary due to dynamic travel behaviors and 

state of charge (SoC) conditions. In addition, the maintenance 

cost of idle charging facilities also needs to be fully considered 

during the cost-benefit analysis of fast charging stations. 

Therefore, the accurate modeling and estimation of PEV fast 

charging demand are needed to determine the optimal capacity 

and configuration of fast charging stations. However, the 

stochastic and diverse PEV travel patterns make the explicit 

mathematical formulation of PEV charging demand a 

non-trivial task [18], which has been exploited in recent years 

[19-24]. However, the aforementioned solutions have mainly 

focused on the normal charging mode (i.e., charged at home or 

workplace), and hence cannot be directly adopted in fast 

charging station planning. Also, these solutions only consider 

simplified PEV travel behaviors (e.g., the starting time of travel 

and the daily driving distance) without the explicit formulation 

of temporal travel patterns and SoC dynamics. 

To this end, this paper addresses the challenges of optimal 

sizing of PEV fast charging stations based on the explicit 

characterization of PEV fast charging demand by using Markov 

modeling techniques. The number of chargers and waiting 

spaces in fast charging stations are jointly optimized to 

T 
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maximize the expected station profit, considering the service 

profit, queuing and rejection cost, as well as maintenance cost of 

idle facilities. The main technical contributions are summarized 

as follows: (1) a temporal-SoC analysis of PEV travel behaviors 

is adopted based on Monte-Carlo simulation and Markov model 

techniques to obtain the estimation of PEV fast charging 

demand; and (2) the PEV charging dynamics is formulated 

using the M/M/s/N queuing model and the station configuration 

(i.e., the number of chargers and waiting spaces) is jointly 

optimized through a comprehensive benefit-cost analysis 

considering the service quality and operational constraints of 

power distribution networks. The proposed approach is 

implemented and extensively assessed through the numerical 

analysis of a case study.  

The rest of the paper is organized as follows: Section II 

presents the temporal-SoC analysis of PEV charging demand; 

Section III formulates the optimal sizing problem of fast 

charging stations using a queuing model; the proposed solution 

is further implemented through a case study in Section IV; 

finally, the conclusive remarks are given in Section V. 

II. TEMPORAL-SOC ANALYSIS OF PEV CHARGING DEMAND 

This section presents the temporal-SoC analysis of PEV 

travel behaviors and fast charging demand through the 

determination of PEV travel behaviors and state transitions.  

The overall process of Markovian demand characterization is 

illustrated in Fig. 1 and discussed in the following subsections. 

A. Preliminaries 

It is reported that in the UK, 61% of vehicles are privately 

owned primarily for commuting between home and the working 

place, which have two trips in the morning and evening, 

respectively (i.e., C-PEV); others are owned by companies and 

used primarily for business purposes or owned by those retired 

from work or who are unemployed, which have multiple trips 

over a day (i.e., O-PEV). For the sake of simplicity, only the 

first departure and the last arrival of O-PEVs are considered in 

this work [25]. The typical energy consumption per 

kilometer
cE of PEV battery is 0.159 kWh/km and the maximum 

battery capacity bC (kWh) follows the normal distribution 

2( , )N    ( 28.5   and 14.7  ) with the maximum and 

minimum value of max=72.0 and min=10.0, respectively [26], 

as given in (1). 
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At any given time slot, PEVs can operate at one of the 

following four states: normal charging state ( nchS ), fast 

charging state ( fchS ), driving state ( dS ) and parking state (
pS ). 

It is assumed that the operational PEV state remains unchanged 

within a time slot (30 minutes per time slot, i.e., there are in total 

48 time slots in a day). The typical charging power, nP of 3.3kW 

(220V/15A) and fP of 50kW (400V/125A) are adopted with 

constant charging rate for normal and fast charging modes, 

respectively [16]. PEVs are immediately charged in a normal 

mode upon the arrivals at home. In this work, it is considered 

that SoC exceeding 0.8 (over charging) and less than 0.2 (over 

discharging) should be avoided during the PEV travel and 

charging process in order to protect the battery lifetime [27]. 
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Fig.1: The temporal-SoC analysis of PEV charging demand 

PEV travel patterns are considered as same as those of ICE 

vehicles. Thus, various available travel data statistics [29-31], 

e.g., National Household Travel Survey (NHTS), can be 

adopted to characterize PEV temporal travel patterns. By the 

use of data normalization, maximum likelihood estimation, as 

well as curve-fitting techniques, the departure and arrival time 

in the morning and evening of C-PEV ( mdt , mat , edt and eat ), and 

the departure and arrival time of O-PEV ( dt and at ) follow the 

normal distribution (1), as  shown in Table I. 
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Table I: PEV temporal travel patterns 

 mdt  
mat  

edt  
eat  

dt  
at  

Mean   

(h : min) 
6:52 8:00 16:52 17:29 13:51 17:29 

Standard deviation  (h) 1.3 3.4 2.3 3.25 5.2 3.25 

B. Monte Carlo simulation of PEV behaviors 

The Monte Carlo simulation technique is used to generate the 

purpose of usage and the battery capacity of individual PEV 

samples based on the probability distribution and the constraints 

aforementioned. The Monte Carlo process does not terminate 

until
dN  valid random travel time samples are generated, in the 

case that the generated capacity
bC does not meet the maximum 

(max) and minimum (min) constraints. 

Consequently, the proposed temporal-SoC analysis firstly 

considers the current simulation time slot to preliminarily 

determine the temporal travel purpose of individual PEV 

samples (i.e. Scenario 1-6 for C-PEV and Scenario 1-4 for 

O-PEV), then the PEV travel behavior is further examined 

based on the current SoC according to the assumptions of this 

work (i.e. Case 1 or 2), as shown in Table II and Fig. 2. 

Moreover, different temporal scenarios over a day for C-PEV 

and OPEV are shown in Fig. 3. 

Once the travel behavior of individual PEV samples in a time 

slot is determined by the algorithm, the initial SoC of the next 

time slot ( 1)SoC t  can be updated according to the current 

PEV state and generated PEV parameters using (2) - (5). This 

process is repeated for all time slots over a day. 
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P
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Here, once the simulation time reaches 24:00 (i.e., the end of 

a day), then it is updated to be 0:00 of a new day with the same 

SoC, implying that the proposed modeling approach can 

continuously simulate the PEV travel behaviors for all
dN days, 

and SoC only need to be initialized once for individual PEV 

samples before the simulation (the initial SoC is set to 0.5). Such 

steps are carried out for each PEV sample in each time slot until 

the termination condition is met. More details of the adopted 

temporal-SoC analysis of PEV travel behaviors can be found in 

in our previous work [32]. 
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Fig. 2: The flowchart of PEV state modeling 

Table II: Temporal PEV travelling scenarios 

 Scenario 1 2 3 4 5 6 
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Parking or 

normal charging 
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Case 1 2 1 2 
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As same as  
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SoC 0.2  0.2  0.8  0.8  
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C-PEV

O-PEV

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Scenario 1 Scenario 2 Scenario 3 Scenario 4

tea tmd tma ted

0:00

tea tmd

24:00

ta td ta td

[previous day]

[previous day]

[next day]

[next day]

Fig. 3: The illustration of different temporal scenarios for C-PEVs and O-PEVs 

C. Markov model of PEVs 

Based on the Markov model theory, the Markov transition 

probability matrix for all possible state transitions is given as: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

p p p p

p p p p
P

p p p p

p p p p

 
 
 
 
 
 

                          (6) 

where
ijp denotes the transition probability from state i to 

state j . Total 48 time slots (assuming 30 minutes per slot) per 

day imply that each element of this Markov transition 

probability matrix is a 1 48 vector. 

The Markov transition probability matrix P can be obtained 

based on the approach presented in Fig. 1. Through the travel 

pattern modeling of all PEV samples, the PEV state in each time 

slot for individual PEV samples can be explicitly derived. 

According to the definition of the Markov transition probability 

matrix, the total number of each PEV state appearances in each 

time slot in the simulation is added up, in which the appearance 

count of its next PEV state for each PEV state is also calculated. 

Thus, for every PEV state in every time slot, the Markov 

transition probability matrix of PEVs over a day can be derived 

statistically, as shown in Fig. 4. 

It is noted that some transitions may not occur between 

certain PEV states, which are excluded during the calculation of 

Markov matrix P . Thus, the transition probabilities among 

different PEV states in any given time slot can be explicitly 

determined. 

D. Probability distribution of PEV states 

Given the PEV state distribution at 0t as ( 0

nchS
0

fchS 0

dS
0

pS ), the 

PEV state distribution in the next time slot ( 1

nchS
1

fchS 1

dS
1

pS ) can 

be derived based on the Markov model via (7): 
1 1 1 1 0 0 0 0( , , , ) ( , , , )nch fch d p nch fch d pS S S S S S S S P                 (7) 

Through iterating the aforementioned process for all time 

slots ( 0 48~t t ), the PEV states for all time slots over a day can 

be derived. Given the initial (i.e., 0t =0:00) state distribution of 

(0.3309, 0.0084, 0.0391, 0.6218), Fig. 5 presents the average 

probabilities of PEV states over a day obtained from the 

aforementioned Monte-Carlo simulation. 
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(c)                                                        (d) 

Fig. 4: The Markov transition probability matrix of PEVs (a): from normal 

charging state; (b): from fast charging state; (c): form driving state; (d): from 

parking state 
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Fig. 5: The probability of different PEV states over a day 

Through the PEV probabilities in each time slot, if we know 

the total number of PEVs n in a certain geographical area, the 

expected PEV charging demand V at time slot 
it  can be 

obtained according to (8), where the first and last terms 

represent the expected normal charging and fast charging 

demand, respectively. 

i it t

n nch f fchV P n S P n S                          (8) 

It should be noted that through the proposed Markov model 

of temporal PEV states, once the initial state distribution is 
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given, the PEV states in all time slots over a day can be derived 

based on (8). Such analytical approach is generic and scalable, 

and hence can be adopted in different cases, e.g., different PEV 

populations and operational patterns. 

III. OPTIMAL SIZING OF FAST CHARGING STATIONS 

In this work, queuing theory is adopted to characterize the 

stochastic charging patterns of PEVs based on their arrivals at 

fast charging stations. Once the locations of the fast charging 

stations in the transportation system are given, the vehicle traffic 

flow can be determined, and hence the arrival pattern of PEV 

charging requests can be calculated. 

Here, the PEV arrivals follow a Poisson process with an 

arrival rate  , and the PEV charging duration follows an 

exponential distribution with an average duration 1/   (i.e., 30 

minutes). Based on the derived expected PEV fast charging 

demand (Section II), the arrival rate in individual time slots can 

be obtained. Let s  be the number of PEV chargers, w  be the 

number of waiting spaces, and N s w   be the maximum 

number of PEVs that a charging station can serve, an M/M/s/N 

model [14] is adopted to model the PEV fast charging stations. 

Its Markov chain is illustrated in Fig. 6 (b). 

In such M/M/s/N model, all PEV chargers work 

independently, and in the case that all chargers are busy upon a 

PEV arrival, the PEV is queued at one of the waiting spaces and 

served in a first-come-first-served (FCFS) manner once a 

charger is available; if all the waiting spaces are occupied, the 

charging request is rejected and the rejected PEV leaves. 

#s

PEV waiting queue (FCFS)

#1

#2

PEV arrival

M/M/s/N model

s:  the number of PEV chargers

w: the number of waiting spaces

PEV charger

PEV departure

Schedulerservice rate
arrival rate

 
(a) 

1 2 s-1 s

λ λ λ 

μ 2μ sμ(s-1)μ3μ

λ λ 

···0 N-1 N

λ 

sμsμsμ

λ λ 

···s+1

sμ

λ 

 
(b) 

Fig. 6: The illustration of (a) The M/M/s/N model and (b) Markov chain of PEV 

fast charging station 

Based on the Markov chain shown in Fig 6 (b), the balance 

state of this system can be expressed by a set of differential 

equations as given in (9): 

1 0

1 1

1 1

1
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       (9) 

where 
0P  represents the probability that the charging station is 

empty, 
kP  denotes the probability that there are k  PEVs in the 

charging station, and 
0

1
N

k

k

P


 . 

The service capacity of the charging station is defined as (10): 

s





                                      (10) 

Therefore, the equilibrium state of 
0P  and 

kP  can be derived 

using (11) and (12) based on the recurrence relations in (9): 
1
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                          (12) 

The probability of a PEV charging request being rejected is 

given as
NP , and hence the rate of accepted PEVs to be charged 

can be expressed as 

(1 )e NP                                 (13) 

The number of rejected PEV charging requests, R , queued 

requests, L , and busy chargers B , are expressed as:  

NR P                                     (14) 

1

( )
N

k

k s

L k s P
 

                            (15) 

(1 )NB s P                              (16) 

The maintenance cost of idle facilities is also considered in 

this work, and the number of idle chargers and waiting spaces 

can be expressed as follows, respectively: 

sI s B                                     (17) 

wI w L 
                                  (18) 

Finally, the expected profit of the PEV fast charging station in 

a unit time slot E  can be expressed as:  

1 2 3 4 5( )s wE c B c L c R c I c I                  (19) 

where  , 1,2,3,4,5ic i  denote the cost factors. 

Based on the aforementioned formulation, the optimal 

planning of charging station capacity aims to maximize the 

profit through determining the appropriate number of 

chargers s and waiting spaces w , subject to the constraints as 

follows: 
48

1

max

max

max ( )

1
. .

0

t

E t

s s
s t

w w



 


 


                                  (20) 

where maxs is the maximum allowed number of PEV chargers 

due to electric power system constraints, and maxw is the 

maximum allowed number of waiting spaces due to the space 
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limitation of a charging station. 

The maximum allowed number of PEV chargers 
maxs  can be 

obtained by (21): 

max min ,sub b

V

f

C P
s s

P

  
  

  

                        (21) 

where sub b

f

C P

P


 indicates the maximum number of chargers 

without exceeding the total allowed capacity regulated by the 

substation transformer; and 
Vs  represents the maximum 

number of chargers without violating the constraint of bus 

voltage deviation (e.g., 5%). 

IV. CASE STUDY 

This section carries out a set of case studies to implement and 

justify the effectiveness of the proposed solution. The IEEE 

53-bus test distribution feeder is adopted in this case study and 

the network parameters (e.g., transformer capacity and voltage 

fluctuation) are available in [37]. The available transportation 

statistics of Beijing, China are adopted for PEV charging 

demand characterization, as given in Table III [33]. 

Consequently, the PEV charging demand can be estimated 

based on the temporal-SoC analysis. 

Table III: Transportation statistics of Beijing used in the experiment 

PEV type M1 N1 

Market share ms  1Mms =87.2% 1Nms =12.8% 

Proportion of PEV 

usage  

C-PEV O-PEV 

Cr =82.7% 
Or =17.3% 

Travel times Mean Standard deviation 

mdt of C-PEVs 
md =7:34 

md =2.37 

mat of C-PEVs 
ma =8:20 

ma =1.86 

edt of C-PEVs 
ed =17:14 

ed =1.80 

eat of C-PEVs 
ea =18:03 

ea =2.34 

A. Convergence analysis 

In this work, 
dN  valid samples are generated to represent the 

diverse PEV travel patterns. Based on the termination criteria of 

Monte Carlo simulation [34], if the confidence interval   is 

twice of the standard deviation of the estimated mean, i.e., 

2  , the estimated relative error
errr of the generated 

samples with the confidence level of 95.45% is expressed as: 
22

errr
X


                                  (22) 

where   and X  are the estimations for the standard deviation 

and the mean value of the generated samples, as shown in (23) 

and (24): 

2 2 2

1

1 1

1

N

i

i

X X
N N




 
    

                     (23) 

1

1 N

i

i

X X
N




                                 (24) 

The Monte Carlo simulation terminates once the pre-defined 

relative error 0

errr is met, indicating that the generated travel time 

samples are converged within the error range of 0

errr with the 

confidence level of 95.45%. 

Here,  
dN  is set to be 20 000, and the relative errors of the 

generated travel time samples from Monte Carlo simulation 

for
mdt ,

mat ,
edt ,

eat and
dt  are 0.0051, 0.0061, 0.0033, 0.0034 

and 0.0093, respectively. It is observed that all generated travel 

time samples can be converged within 0

errr =0.01 with 95.45% 

confidence interval. This indicates that these generated samples 

can be considered independent, and hence can statistically 

represent the PEV travel pattern characteristics. 

The calculation of characterizing PEV travel behaviors 

terminates under either of the two following conditions: 

(i) The pre-defined maximum number of iterations MN is met; 

(ii) The mismatch of the PEV state probability results 

between any two sequential iterations is sufficiently small, as 

given in (25) [18]: 

1

1 1max
1

s sN N

i i

i i

s s

L L

N N




  


 
                       (25) 

where sN represents the number of simulation iterations, 
iL is 

used to record the PEV state probabilities after sN iterations, 

and  is the convergence factor. Here,  is set to be 0.0001 

and MN is initially set to be 10000. 

Condition (ii) ensures that all of the results obtained from the 

Monte Carlo simulation can be converged within  . Fig. 7 

provides the average probabilities of four PEV states after sN  

iterations in 48 time slots over a day (each curve corresponds to 

a time slot). It is shown in the simulation that condition (ii) is 

met when sN  reaches about 1,800. This indicates that MN can 

be set to 2,000, such that the simulation convergence is 

guaranteed with significantly reduced computational 

complexity. To clearly demonstrate the convergence 

performance of the algorithm with the given parameters, the 

result of PEV state probabilities for the time slot
37t  (i.e., 

19:00-19:30) is provided as an example inside the subfigures 

with the maximum iterations MN =10,000. 

Finally, the computational complexity of the proposed 

temporal-SoC analysis is assessed. It takes 445.276 seconds 

(about 7.5 minutes) using MATLAB (ver. R2014a) on a laptop 

computer with a 2.50GHz Intel(R) Core(TM) i7-6500U CPU 

and a 4.00 GB RAM. 
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(d) 

Fig. 7: Average PEV state probabilities with different number of iterations (a): 

normal charging state; (b): fast charging state; (c): driving state; (d): parking 

state 

B. Optimal sizing of a fast charging station 

Now the performance of the proposed solution is assessed 

through numerical analysis for two different scenarios: peak and 

time-varying PEV arrival rate. The simulation parameters 

of 1 5($)c , 2 1($)c , 3 2($)c , 4 0.5($)c , 5 0.05($)c , and 

max max20, 20s w   are adopted as suggested in [20]. The PEV 

traffic flow is assumed to be n =100 per time slot and the PEV 

charging performance (i.e. probabilities of rejected charging 

requests, waiting PEVs and charged PEVs) as well as the 

charging station profit are evaluated. 

1) Peak arrival rate scenario: 

The sizing of a charging station is firstly examined for the 

scenario with highest arrival intensity of PEV charging requests, 

i.e. peak arrival rate. It can be obtained from previous results (in 

Fig. 4) that the largest probability of PEV charging requests is 

0.1028, and hence the maximum arrival rate under the peak 

charging time is 10.28  per slot for the evaluated scenario 

with 100 PEVs in the traffic flow. Fig.  8 (a) presents the result 

of charging station profit against a different number of chargers 

and waiting spaces in the peak arrival rate scenario. Through 

solving (20), the optimal number of PEV chargers and waiting 

spaces of 14 and 10 respectively can be identified with the 

maximum profit of $48.36. Fig. 8 (b) presents the assessment 

result of charging performance in terms of the probability for a 

PEV to be rejected, charged and queued upon an arrival at a 

charging station with 14 chargers and 10 waiting spaces. It can 

be observed that nearly none of the arrival PEV charging 

requests are rejected since the capacity is planned based on the 

peak arrival rate. However, such capacity planning strategy can 

result in underutilization of charging facilities due to idle 

chargers and waiting spaces. This is confirmed by the result in 

Fig. 8 (c) showing the charging station profit over a day with the 

total profit of $716.86. The deficit of charging station is 

observed within the period of 11:00 pm to 7:00 am due to the 

maintenance cost of idle facilities. 
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(b) 

Fig. 8: Performance assessment in the peak arrival rate scenario (a) charging 

station profit in the peak arrival rate time slot vs. the number of chargers and 

waiting spaces; (b) the probabilities of rejected, charged, queued PEV upon 

arrival and station profit over a day (s=14, w=10) 
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2) Time-varying arrival rates scenario: 

Here, the optimal charging station sizing considering 

time-varying rate of PEV charging requests is studied. As the 

arrival rate for individual time slots can be obtained from the 

charging demand model, the profit for any time slot (in total 48 

time slots) can be calculated, and hence the optimal number of 

chargers and waiting spaces with the maximum profit over a day 

can be identified as 11 chargers and 7 waiting spaces with the 

total profit of $859.43. Fig. 9 (a) provides the numerical result 

of accumulated profit of the charging station against the number 

of chargers and waiting spaces over a day. The charging 

performance under such planned capacity (i.e. s=11 and w=7) as 

well as the profit over a day are presented in Fig. 9 (b) and (c), 

respectively. Compared with the peak arrival rate scenario, such 

planning solution can effectively make the appropriate trade-off 

between the charging performance and the charging station 

profit. 
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(b) 

Fig. 9: Performance assessment in the time-varying arrival rates scenario (a) 

accumulated profit for different chargers and waiting spaces over a day; (b) the 

probability of rejected, charged, queued PEV upon arrival and the station profit 

over a day (s=11, w=7) 

Finally, Fig. 10 presents the charging service performance 

assessment and charging station profit against different arrival 

rates of PEV charging requests. It is observed that the charging 

performance degrades along with the increase of arrival rate and 

the profit decreases when the arrival rate exceeds the charging 

station service capacity due to the significant rejected charging 

requests. This further highlights the importance of accurate 

characterization and estimation of PEV charging demand for 

appropriate sizing of fast charging stations. 
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Fig. 10: The probabilities of service performance and the station profit vs. 

different PEV arrival rates 

V.  CONCLUSIONS AND FUTURE WORK 

This paper presents a novel approach to optimally plan the 

sizing (number of chargers and waiting spaces) of PEV fast 

charging stations based on the explicit formulation of PEV fast 

charging demand. The demand is firstly derived through the 

temporal-SoC analysis based on the available statistics. The 

arrival pattern of charging requests to the charging station can 

be formulated based on a Markov chain and queuing theory. 

The optimal number of chargers and waiting spaces in the fast 

charging stations are jointly optimized by considering the 

cost-benefit performance from both operator and PEV user 

perspectives. The proposed solution is evaluated through a set 

of case studies for peak rate and time-varying arrival rate 

scenarios through simulations. The numerical results confirm 

the effectiveness of the proposed solution.   

In the future, the proposed solution can be further improved 

through incorporating realistic distribution network case studies 

using a massive number of field statistics, e.g., PEV travel 

patterns and battery parameters. This work can be also  

extended to the exploitation of temporal-spatial planning 

approach to simultaneously optimize the capacity and 

placement of charging stations considering the presence of 

distributed generators [35-36] and coupling constraints of 

power distribution and transportation networks. Finally, further 

research effort is needed to investigate the scheduling strategies 

of PEV charging behaviors considering the vehicle to grid (V2G) 

interactions as well as the dynamic pricing schemes. 
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