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An innovative system for detecting and extracting vehicles in traffic surveillance scenes is presented. This
system involves locating moving objects present in complex road scenes by implementing an advanced
background subtraction methodology. The innovation concerns a histogram-based filtering procedure,
which collects scatter background information carried in a series of frames, at pixel level, generating reli-
able instances of the actual background. The proposed algorithm reconstructs a background instance on
demand under any traffic conditions. The background reconstruction algorithm demonstrated a rather
robust performance in various operating conditions including unstable lighting, different view-angles
and congestion.
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1. Introduction

The escalating increase of contemporary urban and national
road networks over the last three decades emerged the need of
efficient monitoring and management of road traffic. The surface
transportation system of United States for instance, consists of
approximately 3.7 million miles of roads, estimated to increase
by 30% over the next decade. Environmental pressures as well as
socioeconomic problems are associated with this increase due to
prolonged congestions and slowing down of the average highway
speed. To deal with this problem, one option is to increase network
capacity and the other one is to increase efficiency by investing in
Intelligent Transportation Systems (ITS) technology (Gutchess, Tra-
jkovic, Kohen-Solal, Lyons, & Jain, 2001).

Conventional technology for traffic measurements, such as
inductive loops, sonar or microwave detectors, suffer from serious
drawbacks: they are expensive to install, they demand traffic dis-
ruption during installation or maintenance, they are not portable
and they are unable to detect slow or stationary vehicles. On the
contrary, video based systems are easy to install, can be a part of
ramp meters and may use the existing traffic surveillance infra-
structure. Furthermore, they can be easily upgraded and they offer
the flexibility to redesign the system and its functionality by sim-
ply changing the system algorithms. Those systems allow vehicle
counting, classification, measurement of vehicle’s speed and the
identification of traffic incidents (such as accidents or heavy
congestion).
ll rights reserved.
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There is a wide variety of systems based on video and image
processing employing different methodologies to detect vehicles
and objects. A review of such image processing methodologies,
presented in Kastrinaki, Zervakis, and Kalaitzakis (2003), com-
prises thresholding, multi-resolution processing, edge detection,
background subtraction and inter-frame differencing. Thresholding
is the simplest process of the above and it was part of the very first
automatic surveillance systems in the decades of 1970s and 1980s
when such systems were loop detector simulators (Mahmassani,
Haas, Zhou, & Peterman, 2001). Those systems had low accuracy
and they are not used nowadays. Multi-resolution processing lies
on scale space theory (Lindeberg, 1996), that uses coarse and fine
level color pixel information to cluster the image and to separate
objects from the background. However, it is not accurate enough
for traffic problems since it breaks parts of the image (i.e. road
lines, glares and shadows) and merges them with parts of vehicles
having the same chromatic range. Another main drawback is that
the system cannot effectively deal with image perspective, there-
fore, vehicles standing away from the camera are under-seg-
mented and vehicles standing near the camera are over-
segmented. Moreover, it cannot distinguish vehicles in congestion.
Edge-based methodologies have the main advantage that the ex-
tracted features are scale and lighting invariant (Koller, Weber, &
Makik, 1994), but it is quite difficult to derive vehicle shapes espe-
cially in congested scenes that vehicles stop frequently. The inter-
frame differencing methodology is accurate enough to detect parts
of moving objects by comparing two consecutive frames. However,
it can identify only differences in the background and, as a result, it
detects only parts of a vehicle covering the background in the pre-
vious frame. Despite some enhancing techniques (Cucchiaraa &
Piccardi, 1999) this methodology cannot satisfactory deal with
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realistic traffic circumstances where vehicles might remain still for
a long time. Finally, background subtraction detects the actual
background and extracts objects that do not belong to it. The con-
cept of this method is described below.

In a typical background model a prototype of the image back-
ground (an initialization of the background) is considered first
and then each pixel of the prototype is compared with the actual
image color map. If the color difference exceeds a predefined
threshold it is assumed that this pixel belongs to the foreground.
Consequently, raw foreground information is derived. This infor-
mation is grouped to compact pixel sets (blobs). In case of outdoor
scenes, when the background is not completely static, lighting fluc-
tuations, shadows or slight movements (i.e. leaves and branches
waving) can degrade the effectiveness of the foreground extrac-
tion. To overcome this, a number of algorithms have modeled the
aforementioned nuisances. More specifically, mixture models use
statistical filters to eliminate continuous slight movements on
the background by grouping time evolving pixel characteristics in
clusters or color prototypes and characterizing as background the
more populated one (Kim, Chalidabhongse, Harwood, & Davis,
2005; Stauffer & Grimson, 1999; Zivkovic & Van der Hijden,
2006), while parametric models such as the ones proposed by Hari-
taoglu, Harwood, and Davis (2000), Horprasert, Harwood, and Da-
vis (1999), Pless (2005) simulate the background by taking into
account color characteristics. In the work (Horprasert et al.,
1999) each pixel is classified in one of four classes namely: ‘Fore-
ground’, ‘Shaded background’, ‘Highlighted background’ and ‘Back-
ground’. Thus, the system can ‘recognize’ background
discontinuities due to lightings and shadows and consequently
register them as background.

This methodology has the great advantage of separating objects
by using background information even in images that comprise
shadows or glares (Senior, Tian, Brown, Pankanti, & Bolle, 2001).
The main drawback of the background subtraction algorithm is
the complexity to define the background. A common practice is
to initialize the algorithm by employing an ‘empty scene’. Another
important issue in this methodology is the difficulty to maintain
the background instance through time in outdoor captures.

The creation of a reliable initial instance is a critical issue for the
quality of the overall process. A general solution for this problem
does not exist, and the common practice is to average a sequence
of frames presenting a scene without moving objects, which in fact
is too difficult to acquire in a crowded highway. Despite the impor-
tance of this issue, there has only been limited research published
focusing on the reconstruction of a starting background instance.
(Colombari, Cristani, Murino, & Fusiello, 2005; Gutchess et al.,
2001), for instance, are significantly complicated to implement.
On top of that, they are based on several restrictive assumptions.
The latter work in particular refers to an inpainting technique,
(Criminisi, Perez, & Toyama, 2004) where background parts are
reconstructed exploiting color and texture information.

In outdoor captures, the background prototype often fails to re-
flect the actual background due to lighting condition changes, sha-
dow casting with respect to the sun position and background
alterations with permanent effect. Moreover, the insertion of new
objects in the road scene can induce permanent or temporary
changes of the background (e.g. a vehicle that has been pulled over
for a long time or an object in the road deck). Common practice in
such cases is to use adaptive update models, such as those of Toy-
ama, Krumm, Brumitt, and Meyers (1999), Gupte, Masoud, Martin,
and Papanikolopoulos (2002), Wren, Azarbayejani, Darrell, and
Pentland, (1997), that keep the background template recursively
updated, so that, the background template is adapted in forthcom-
ing image changes. Nevertheless, in most cases, after some time
the noise pollution of the background results into the degradation
of the overall process quality.
In this study we present an innovative algorithm, the back-
ground reconstruction algorithm, as part of a system for locating
and tracking vehicles through traffic video captures. The purpose
of the present work is to overcome the two main weaknesses of
the background subtraction algorithm, namely initialization and
background update and to build a robust methodology, capable
of detecting vehicles under realistic traffic circumstances.

The background reconstruction algorithm is a heuristic that
provides a periodically updated background and enhances the effi-
ciency of the well known background subtraction methodology in
case of outdoor captures. Indeed, it is a key process for a typical
background subtraction algorithm, because it supports the weak-
est part of it, which is the initialization step. This methodology
guarantees a fresh instance of the actual background periodically,
which is achieved by collecting scatter color information through
a series of sequential images and assembling them to reconstruct
the actual background. This process is applied to each pixel sepa-
rately and the result is a color map of the actual image background.

Our algorithm is presented as a part of an integrated surveil-
lance system that can be set up in existing traffic surveillance
infrastructure. This system locates, counts and tracks vehicles in
a variety of lighting conditions such as cloudiness and glares.
Moreover, it adapts quickly to any changes of the background, as
transition between different lighting conditions (i.e. from cloudi-
ness to direct sunlight and vice versa), various traffic conditions
including stop-and-go traffic flow as well as permanent changes
to the background (for instance, when a vehicle has pulled over).
This overcomes the weaknesses of previous systems described
above.

A typical surveillance system consists of a traffic camera net-
work, which processes captured traffic video on-site and transmits
the extracted parameters in real time. In this study we focus on the
algorithmic part of such a system.

The innovation of this study lies on the ability of the proposed
algorithm to reconstruct the actual background color map without
the need of any human intervention even in harsh traffic condi-
tions, such as stop-and-go traffic flow, stopped vehicles (i.e. acci-
dent) and rain or snow. In our approach a new background
prototype is constructed every 1 or 2 min, restricting the problem
of background pollution to the interval between two consecutive
updates. Each newly recreated background instance is assumed
to be steady within the update period. Thus, the background in-
stance is used as a prototype in order to separate the foreground
from the image for each image frame within the update period.

This paper is structured as follows: In Section 2 a description of
the system together with its specifications and the testing arrange-
ment are given. Section 3 presents the Vehicle Detection Unit.
Emphasis is given to the background reconstruction algorithm
which is analyzed in detail. In Section 4 the Tracking Unit is pre-
sented. In Section 5 we present our experiments, which aim to sup-
port the basic assumptions of this work and to evaluate the
developed background reconstruction algorithm. Finally, in Section
6 we summarize our results and we present our conclusions.
2. System conception

The innovative algorithm of background reconstruction is part
of a contemporary and realistic surveillance system. The integrated
system locates, tracks and extracts traffic parameters in real time.
Furthermore, the system can utilize any existing traffic surveil-
lance infrastructure without further modification or tuning (except
for the camera calibration that calculates image metrics).

A typical road traffic surveillance infrastructure consists of a
camera network that has the ability to transmit images in real time
to a central operational center. The processing of the images can be
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carried out on-site saving valuable network bandwidth as it trans-
mits only the outcome of the calculations. Else, the whole process
can be performed either in real time video streaming from an oper-
ational center or in already stored video material.

In such network installation, the cameras must be sited approx-
imately 10–15 m or more above road level to minimize the effect
of occlusion. The system must be adaptive to a series of perturba-
tions that may affect the clarity of the captured video, such as
vibrations of the camera and slow changes in the background
due to lighting conditions, (Mimbela & Klein, 2000).

In order to simulate the algorithmic part of an integrated road
traffic surveillance system, we used the following arrangement:
A commercial CSS DV camcorder was installed about 10 m above
road level and was sited above the central lane of the road, facing
the traffic at an angle of 65o. The characteristics of this camera are
as follows:

� 48 mm focal length equivalent to 35 mm camera, which defines
a 27� vertical and 40� horizontal angle of view;
� 25 fps of 720 � 576 pixels in PAL video format.

Some predefined spots, on each test scene, were chosen in order
to calibrate the camera according to DLT (direct linear transforma-
tion), a method originally reported in Abdel-Aziz and Karara
(1971). The calibration of the camera defines the relationship be-
tween the ‘real-world’ and the pixel matrix of the digital image.

The architecture of the proposed system is described in Fig. 1.
The system consists of two units namely the Vehicle Detection Unit
and the Tracking Unit, the latter being indicated in gray color. Fig. 1
shows that first, a series of frames (raw traffic capture) enters the
Vehicle Detection Unit (presuming that an initial background tem-
plate has been created). Subsequently, the stream of frames feeds
the background reconstruction algorithm in order to create the
next background template that replaces the current after a prede-
fined number of frames. While a new background template is cre-
ated, the background in use is maintained using the simple
Fig. 1. Flow diagram
adaptive filter that is applied in pixel level and proposed by Toy-
ama et al. (1999):

Bt ¼ ð1� aÞBt�1 þ aIt ð1Þ

where Bt is the color vector of the background model in the t frame,
I is the actual color vector of the same pixel in the frame t and a is
the coefficient that declares the rate of adaptation with values in
the range 0–1.

In the main flow of the detection unit, the raw foreground infor-
mation is derived by a background subtraction procedure, Fig. 1.
The result of this step is a set of partly connected pixels, which
must be further processed in order to form compact objects (clus-
tering/convex hull, Fig. 1). If those pixels lie along the ‘‘Entrance
Zone” (Fig. 2) a region growing algorithm (Davies, 2005) merges
all those pixels that potentially belong to a common vehicle do-
main. Else, if the pixels from the background subtraction procedure
lie within the Main Area, then they are further processed to form
blobs (connected pixels that form a shape) using a convex hull pro-
cedure (Section 3.3). The detected blobs from this process are
merged to form objects. Merging occurs to blobs that lie partly or
totally within the frontiers of a recognized vehicle shape from
the previous frame t � 1, whose position has been appropriately
corrected for frame t (vehicle matching – diagram of Fig. 1). Candi-
date vehicles are recognized by a cognitive clustering procedure
(classifier – diagram of Fig. 1). This cognitive clustering process
has the following concept: candidate object is considered to be a
vehicle only if its location is consistent with its prior calculated tra-
jectory and detected object dimensions remain unchanged through
frames. A vehicle that does not match the previous frame, or seems
to have an irregular trajectory must be rejected (i.e. a backward
vehicle movement that cannot be explained by its trajectory).

Occlusion can be handled by simple rules of merging and split-
ting vehicle domains regarding their trajectory. Each detected
vehicle belongs to one of the following classes: ‘vehicle’, ‘large
vehicle’ or ‘non-vehicle object’. ‘non-vehicle’ objects are not further
tracked and are ignored by the system. Finally, if a previously de-
of the algorithm.



Fig. 2. The calculations take place in the pixels included in the active image area to
save calculation time and increase efficiency. The active image area is divided to
Main Area and to the entrance and exit zones.
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tected vehicle touches the exit zone it is totally omitted from any
further processing.

Regarding the Tracking Unit, the vehicles are identified through
sequential frames (vehicle matching, Fig. 1) by maximizing the
overlapping surface of the shape corresponding to frame t and that
of t � 1 (Criminisi et al., 2004). An array of the detected locations
for each vehicle per frame is derived, which is then used to derive
the vehicles trajectory. However, the calculated trajectories are ex-
pected to be distorted due to image noise. For this reason, a set of
2D-motion Kalman filter equations is applied to the extracted tra-
jectories to make them smooth and coherent. The results from the
tracking procedure feed the next step of the detection unit by pro-
viding the necessary information for the clustering and classifica-
tion procedures.

3. Vehicle detection

The system is based on the well known algorithm of back-
ground subtraction, as mentioned in previous paragraphs. Typi-
cally a background subtraction algorithm is carried out in three
steps:

� Initialization of the background.
� Foreground extraction.
� Background maintenance.

The most popular algorithms for background extraction found in
the literature and used for comparison purposes in the current work
are the Mixture Of Gaussians Model (MOG, Stauffer & Grimson,
1999, (Zivkovic & Van der Hijden, 2006) and the Codebook model
(Kim et al., 2005). The MOG methodology models each pixel history
as a cluster of Gaussian type distributions and uses an on-line
approximation to update its parameters. According to this, the
background is found as the expected value of the distribution corre-
sponding to the most populated cluster (Stauffer & Grimson, 1999).
This methodology is greatly improved on grounds of performance
by considering recursive equations to adaptively update the param-
eters of the Gaussian model (Zivkovic & Van der Hijden, 2006).
According to the Codebook model (Kim et al., 2005), sample back-
ground values at each pixel are quantized into codebooks that rep-
resent a compressed form of background model for a long image
sequence. The codebook is enriched in new codewords in the pres-
ence of a new color that cannot be assigned to the existing groups.
Our approach is different from previously published works, in
terms of the background handling during the initialization and
maintenance step. The proposed method focuses on the calculation
and reconstruction of the background template, based on pixel-le-
vel information obtained scatterly from a series of consecutive im-
age frames. On one hand, this mechanism allows the background
subtraction process to periodically obtain an updated background
instance regardless the probable presence of foreground objects,
and on the other hand, it guarantees the initialization of the back-
ground subtraction algorithm by providing an initial background
instance under any circumstances. Hence, our approach unifies
the first and last step of a typical background subtraction proce-
dure. The following subsections present in detail the main algorith-
mic procedures proposed in this article for vehicle detection.

3.1. Background reconstruction

We propose a probabilistic algorithm to reconstruct the back-
ground of a traffic scene by eliminating the moving object informa-
tion. According to this, the background color information of
crowded scenes is dynamically retrieved by assessing color varia-
tion per pixel through a series of frames. The overall idea is based
on the notion that a specific location is occupied by moving objects
for a time period shorter than that for which it remains unoccupied.

The implementation of the algorithm has been done applying
the L�u�v� color system (the first uniform color space adapted by
the International Commission on Illumination in 1976), whose
coordinates are related to the RGB values by non linear transforma-
tions. The L� parameter is the lightness coordinate and the chro-
matic information is carried in the u�, v� parameters. This color
system has been chosen because it defines a uniform color space
with the perceived color differences measured by Euclidian dis-
tances (Comaniciu & Meer, 1997).

Loosely speaking, if a specific pixel in a series of frames would
‘vote’ for its color property, the majority of the ‘votes’ is expected
to be concentrated in the chromatic neighborhood of the actual
background. In mathematical terms, this ‘voting’ schema is de-
scribed in detail in the following paragraphs.

Let U denote the discrete color space, U � fl ¼ ½L�=h�;u ¼ ½u�=h�;
v ¼ ½v�=h�g 2 Z3 (where ‘[]’ is the floor operator and h is the chro-
matic distance defined by the bin dimensions), which is generated
from the continuous L�u�v� color space U � fL�;u�;v� 2 R3g, by
considering cubic bins bl,u,v, fl;u;vg 2 N3, all edges of which have
length equal to h. Each discretization element bl,u,v is responsible
for a continuous chromatic range of colors, where l 6 L�/h < l + 1,
u 6 u*/h < u + 1 and v 6v�/h < v + 1, with the value that corresponds
to the discrete color parameters l = [L�/h], u = [u�/h], v = [v�/h].

Given a video capture that consists of F sequential frames of res-
olution n �m, let IijðtÞ ¼ ðIL�

ij ðtÞ; I
u�

ij ðtÞ; I
v�
ij ðtÞÞ, denote the color vector

at the (i, j) pixel of the frame at time t, IL�

ij ðtÞ; I
u�

ij ðtÞ and Iv
�

ij ðtÞ denote
the L�, u�, v� elements of Iij(t) respectively, and B = {Bij} the back-
ground color map. The pixel (i, j) color variation with respect to
time is estimated by a sampling procedure, where the color values
Iij(t) obtained by T consecutive frames, starting from t0, are col-
lected. Thus, the temporal sample Sijðt0Þ ¼ ðIijðt0Þ; Iijðt0 þ 1Þ; . . . ;

Iijðt0 þ T � 1ÞÞ of pixel (i, j) defines the frequency f̂ ijðl;u;vÞ of the
examined pixel having color value belonging into the bl,u,v bin:

f̂ ijðl;u;vÞ ¼
Xt0þT�1

t¼t0

d l�
IL�

ij ðtÞ
h

" # !
d u�

Iu�

ij ðtÞ
h

" # !
d v �

Iv
�

ij ðtÞ
h

" # !

ð2Þ

where l;u;v 2 N, d() is the kronecher delta function.
The frequency f̂ ijðlm;um;vmÞ within the mode bin blm ;um ;vm cor-

responds to the most persistent color Im ¼ ðlm;um;vmÞ in a se-
quence of T frames for pixel (i, j). For this reason, our
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approach assumes that this color represents the actual back-
ground Bij of point (i, j). Thus, the reconstruction of the back-
ground is the problem of extracting the mode for each of the
n �mSij samples:

Bij ¼ arg maxbf̂ ijðl;u;vÞc ¼ ðlm; um; vmÞ ð3Þ

The methodology described is of O(n3) complexity in terms of
memory and O(sn3) in terms of calculations involved (where s
denotes the total number of frames in the sample and n repre-
sents the magnitude of discretization for each color parameter).
In normal traffic conditions a 100–200-frames sample corre-
sponding to 4–8 s of traffic observation is adequate for the iden-
tification of the actual background. However, in general
conditions where the vehicle flow is dense having low speed
and/or involving stop-and-go behavior, the demanded sample
size is expected to be higher. Our tests in such conditions
showed that an average of 1250 frames, corresponding to
1 min capture length may be required to reliably reconstruct
the actual background. In these cases the sample size includes
a vast volume of information and therefore demands an in-
creased memory capacity, which may be prohibitive for the de-
sign and operation of the system.

The limitations posed by the hardware motivated us to seek for
a more efficient way to solve the problem while keeping the mem-
ory usage and the required amount of calculations within accept-
able limits. Towards this goal, our research focused on a different
approach of managing the discrete temporal chromatic informa-
tion l, u, v of the chromatic space U. Thus, we calculated the fre-
quencies f̂ ðlÞij ðlÞ; f̂

ðuÞ
ij ðuÞ; f̂

ðvÞ
ij ðvÞ for each l, u, v parameter separately,

through the following summations:
Fig. 3. Illustrative example of the principles of the background reconstruction metho
concentrated around a value (mode) that represents the background color.
f̂ ðlÞij ðlÞ ¼
Xumax

u¼umin

Xvmax

v¼vmin

f̂ ijðl;u; vÞ;

f̂ ðuÞij ðuÞ ¼
Xlmax

l¼lmin

Xumax

u¼umin

f̂ ijðl;u;vÞ;

f̂ ðvÞij ðvÞ ¼
Xlmax

l¼lmin

Xvmax

v¼vmin

f̂ ijðl;u;vÞ;

ð4Þ

where lmax, lmin, umax, umin, vmax and vmin are the maximum and
minimum values of the discrete l, u, v parameters respectively.

The calculation of the frequencies above Eq. (4) provides infor-
mation on the reconstruction of the background. According to the
proposed methodology, the most persistent color value in a se-
quence of frames, for a specific pixel, is the one that is most likely
to represent the actual background, and can also be calculated by
maximizing Eq. (2). Alternatively, it can be approximated by com-
posing an artificial color, which is composed by each one of the fre-
quency modes (lmode, umode, vmode) maximizing Eq. (4):

Bij ¼ arg max f̂ ðlÞij ðlÞ
h i

; arg max f̂ ðuÞij ðuÞ
h i

; arg max f̂ ðvÞij ðvÞ
h i� �

¼ lmode;umode;vmodeð Þ ð5Þ

The whole idea is implemented on the reconstruction of the ac-
tual background based on the clustering of pixel temporal color
values into two basic classes: ‘Background’ and ‘non-background’.
One of the most efficient methodologies for clustering color infor-
mation is the popular methodology of mean-shift, introduced by
Abdel-Aziz (1971). However, this methodology involves a vast
amount of calculations for the set of color values that correspond
dology: in a 2D distribution (v�u� plane) of image color values, the majority is



1624 N.A. Mandellos et al. / Expert Systems with Applications 38 (2011) 1619–1631
to a single pixel, making a solution for the whole image not realis-
tic. Additionally, the memory required is of the same complexity as
the one required for Eq. (2).

To overcome this obstacle we propose to use Eq. (4) to carry out
this clustering in a more flexible manner that is alleviated by the
main characteristics of the problem: (i) the distribution of sam-
pling in color space U is extremely sparse as each sample involves,
say, in a very extreme case, 20,000 color values compared to a total
of 414,720 color values involved in a common PAL 720 � 576 pix-
els image, (ii) the majority of these values is concentrated in the
vicinity of the background color cluster (see Fig. 3), while color val-
ues representing other objects are scattered throughout the color
space.

The main goal is to detect the background color cluster and to
locate its mode (the local maximum of a distribution of values).
In this case the concentration of values in the background cluster
can be roughly estimated by the integration of frequencies Eq.
(4) because the overall contribution of other color clusters to the
calculations is negligible.

To better illustrate the mode location based on our methodol-
ogy we shall employ the example of Fig. 3. The background color
cluster is the dominant in the distribution and this becomes obvi-
ous in this example: The color values are accumulated around a
core, where the density of color values forms a steep peak. On
the contrary, the foreground colors tend to be distributed following
the universal distribution and for that reason they do not form
remarkable value concentration around a color (attractors).

The calculation of frequencies f̂ ðlÞij ðlÞ; f̂
ðuÞ
ij ðuÞ; f̂

ðvÞ
ij ðvÞ of Eq. (4) re-

quires first the calculation and storage of the overall frequency

function f̂ ijðl;u;vÞ of Eq. (2), which is of O(n3) complexity in terms
of memory and O(sn3) in terms of calculations involved. For that

reason the frequencies f̂ ðlÞij ðlÞ; f̂
ðuÞ
ij ðuÞ; f̂

ðvÞ
ij ðvÞ can be equally derived

from the histograms HL�

l ;H
u�

u ;H
v�
v :

HL�

l � f̂ ðlÞij ðlÞ ¼
Xt0þT�1

t¼t0

d l�
IL�

ij

h

" # !

Hu�

u � f̂ ðuÞij ðuÞ ¼
Xt0þT�1

t¼t0

d u�
Iu�

ij

h

" # !

Hv�
v � f̂ ðvÞij ðvÞ ¼

Xt0þT�1

t¼t0

d v �
Iv
�

ij

h

" # !
ð6Þ

where l, u, v e N and d() is the kronecher delta function.
The calculations involved in Eq. (6) are of O(n) complexity in

terms of memory and O(tn) in terms of calculations involved (t de-
notes the time size of the sample and n represents the magnitude
of discretization for each color parameter). Hence, the proposed
methodology is realistic in design and operational level because
it does not depend on a predefined empty scene (initialization
step), but it dynamically calculates the background template. Fur-
thermore, the complexity reduction of problem Eq. (2) to problem
Eq. (6) makes possible the real time operation of the system under
typical hardware infrastructure.
3.2. Foreground extraction

The foreground extraction is one of the standard procedures of a
typical background subtraction algorithm. In this stage, the fore-
ground is being extracted by comparing each frame with the in-
stance of the background. The simplest way to perform this
operation is to calculate the chromatic difference for each pixel be-
tween the current frame and the background template. Thus, each
pixel for which the chromatic difference is greater than a prede-
fined threshold is classified as the foreground mask Mij.
In our work the chromatic difference between the current frame
and the background model Bij is defined by a norm that combines
the difference in lightness L� with the chromatic difference of the
u�, v� parameters in L�u�v� color space. The foreground mask Mij

is calculated then by the following relation:

Mij ¼
1; IL�

ij � BL�

ij

��� ��� > threshold ^ jjIu� ;v�
ij � Bu� ;v�

ij jj > threshold

0; elsewhere

(

ð7Þ

where jjIu� ;v�
ij � Bu� ;v�

ij jj is the Euclidean Norm in terms of chromatic
parameters u�, v� of the current frame and the background model.

The pixels belonging to the foreground mask are grouped to-
gether to form connected components. Usually the connected com-
ponents are further processed in order to remove holes or other
irregularities. Although, the most common practice is application
of a morphological filter (Davies, 2005), it demands valuable calcu-
lation time. Thus, we have utilized a convex hull algorithm for
shaping and forming objects (see next Section 3.3).

3.3. Shaping and clustering

At this step, the extracted foreground segments belonging to a
common object are grouped and shaped. The grouping process is
a complex procedure, especially for vehicles that have just passed
the entrance zone (see Fig. 2) for which there is no prior informa-
tion on their trajectory. In this case, the segments are grouped
based on their spatial characteristics via a region growing algo-
rithm. The vehicles that have already passed the entrance zone
prior information is available and can be appropriately utilized in
order to group segments that belong to the same vehicle. The
grouped segments are further processed to form compact and con-
vex vehicle shapes via an appropriate convex hull algorithm, as de-
scribed below.

3.3.1. Convex hull
The extracted objects (connected components) usually are not

compact and their shapes are likely to be non-convex with a bro-
ken surface having holes and cavities or/and broken into two or
more pieces. In many cases the extracted objects are just artifacts
of noise. This can lead to miscalculation of the amount of vehicles
existing in the image frame and inconsistency with previous
images. For instance an artifact of noise can be perceived as a vehi-
cle that only appears in one or more frames and suddenly vanishes
in the next one (‘ghosts’). A popular technique to repair this kind of
problem is morphological filters (erosion, dilution and combina-
tions of them). We have chosen to use a convex hull technique to
deal with doughnut-like object that are commonly encountered
in scenes where vehicles participate. In addition the O(nlog n) com-
plexity of the convex hull algorithm allows very fast computations.

To avoid such undesirable events a filtering procedure is repeat-
edly applied that is based on a convex hull algorithm. In our ap-
proach a Graham Scan convex hull algorithm (Graham & Yao,
1983) is employed in order to plot the convex hull for each set of
pixels and finally to form a connected component. This algorithm
is applied repetitively until there are no more sets of pixels to be
merged. Furthermore, after clustering has grouped all convex seg-
ments a hull algorithm is applied to form convex compact objects.
The outcome of this process is a mask of convex polygons (first and
second row of Fig. 4). These polygons represent compact vehicles,
but in many cases these polygons correspond to vehicle segments
that can be merged through the following clustering procedure.

3.3.2. Clustering
The outcome of the foreground extraction procedure is more

likely to be vehicle segments than compact vehicle shapes. This



Fig. 4. Clustering procedure: first row: group of pixels extracted from the
background subtraction procedure; second row: the convex hull of the first row;
and third row: clustering using the expected positions of the vehicles regarding
their trajectory and application of the convex hull algorithm to form compact
objects.

N.A. Mandellos et al. / Expert Systems with Applications 38 (2011) 1619–1631 1625
is a result of shadows, glares and vehicle colors that are quite sim-
ilar to the background. Thus, the clustering procedure aims to
group such segments to form a unique and compact vehicle. To
achieve this goal prior information is utilized. The trajectories of al-
ready detected vehicles in previous frames are used to calculate
vehicles motion and consequently to estimate their locations in
the current frame. Then, we merge the segments of this frame that
contact the traces of the estimated vehicle locations (see Fig. 4).

When a vehicle is entering the image (entrance zone – Fig. 2) no
prior information is available (e.g. dimensions and trajectory). For
that reason, the entering segments are simply clustered by a pop-
ular clustering algorithm namely, region growing. Region growing
algorithm is a heuristic for clustering segments based on their loca-
tions. It lies on the simple assumption that two segments are
merged if the eventually formed shape can belong to a vehicle
according to its dimensions.
3.3.3. Shadows and glares
We have used the approach of Horprasert et al. (1999) imple-

mented in LUV space. According to this we compare the chromatic-
ity and brightness of a pixel with the corresponding pixel of the
background model. The chromaticity of a pixel is defined by the
UV component, while the brightness is determined by the lightness
component L. In case that the chromaticity is similar but the
brightness differs, we distinguish two cases: the brightness differs
significantly from the background, in that case this pixel cannot be
classified as a shadow or glare, and otherwise if the brightness is
less than the background it is classified as a shadow else if the
brightness is higher than the background it is classified as a glare.
3.4. Classification and occlusion handling

The system classifier distinguishes the detected vehicles into
two classes, namely ‘vehicle’ and ‘large vehicle’, by assessing their
dimension and trajectory. The classifier rules are based on the fol-
lowing simple assumptions: Firstly, it is certified that the detected
object was present in the previous frame and the two shapes (pre-
vious and current) match (see Section 4). Then, it is examined
whether the vehicle position is consistent with vehicle motion
and recorded trajectory. The new position of the object should sat-
isfy the motion model of the vehicle, which is derived from the re-
corded trajectory. Same as before, its dimensions should match.
Otherwise, the detected object is rejected.

In case of considerable discrepancies of dimensions it is exam-
ined whether the vehicle under consideration occludes another
one. The rules for the occlusion are adopted from Criminisi et al.
(2004), where a graph is constructed that associates the nodes
Ci,t�1 (vehicle i at frame t � 1) with the detected objects Pi,t�1 (ob-
ject i at frame t). Subsequently, the objects can be merged or split-
ted. A merging is the occlusion of two (or more vehicles) in the
current frame, whereas a split is when two previously occluded
vehicles are separated. If the detected objects are consistent with
the association graph, then the detected object is approved to be
a vehicle.

However, the classification of the vehicle in one of the afore-
mentioned classes is performed only after its first contact with
the exit zone. It is then that the length of the detected vehicle is
compared with the length of a prototype; if their ratio is much lar-
ger than one then it is classified as a ‘large vehicle’, else as a
‘vehicle’.
4. Tracking

Tracking is a very important issue in computer vision. Recently,
there is a profound interest in surveillance applications. The aim of
tracking in computer vision is to recognize and locate a prototype
in a series of sequential frames. A lot of applications are based on
tracking such as video processing, security, surveillance and auto-
matic procedures. In our case, we need to track multiple vehicles to
record their trajectory and derive relevant information such as
vehicle speed, direction and driver behavior. Such tracking meth-
odologies are the mean-shift algorithm and template matching.

Mean-shift algorithm is originally introduced by Comaniciu as a
segmentation methodology (Abdel-Aziz, 1971) before it was
appropriately modified to a robust tracking system (Comaniciu, Ra-
mesh, & Meer, 2000). The main idea for a mean-shift tracking algo-
rithm is to plot a 2D probability space where an object template
can be located. Similarly, the template matching algorithm aims
to locate the maximum in a 2D probability space in order to specify
the location of a predefined template. Although, the two method-
ologies have the same principles: the mean-shift accelerates the
procedure by comparing histograms instead of template pixel by
pixel comparison. Both template matching and mean-shift algo-
rithms are robust in tracking a predefined template. The main
weakness of these algorithms is the lack of flexibility when track-
ing is influenced by image perspective.

More specifically, the template of a vehicle changes both in size
and resolution while passing through the image active area. More-
over, a template does not consist of the vehicle figure only, but
usually part of the background is also present in the template.
The template becomes less accurate when the vehicle is located
in the depth of the image. This deteriorates the efficiency and the
accuracy of this process. Empirically, we found that our simple
matching algorithm is more efficient than such a complex tracking
algorithm.

We tested template matching and mean-shift in order to en-
hance the vehicle matching procedure but found that both algo-
rithms presented problems. The first drawback was that they
demanded a large amount of calculations and they suffered insta-
bility problems. These result in loss of the tracking object. The
main cause for instability is the template update: while the vehicle
moves towards the camera its shape becomes larger, and as a con-
sequence its resolution becomes better than the template’s. Hence,
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a simple matching methodology was found to meet better the
needs of this problem.

The matching procedure adopted in this study is similar to
(Criminisi et al., 2004) and is based on the assumption that the
next position for a vehicle can be estimated by its motion. Accord-
ing to this, we estimate the positions of previous frame vehicles
and we draw their traces in the current frame. Then a vehicle V1
Fig. 5. The snapshots above were taken from the four captures used for evaluation. In ea
the image and two at the back). Note that some of the pixels are sited over the white strip
asphalt. Evaluation results are presented in Tables 1 and 2 as well as at Fig. 6.

Fig. 6. The 2D-topology of the pixel series (PCk, k = 0, 1, . . .) of Scene I at pixel 1 of Fig. 5:
respectively. The side bar graphs in each topology correspond to the color parameter hi
having mask M1 matches with vehicle V 01 having mask M0
1 from

previous frame only if M1 \M0
1–£. If there is a conflict between

two vehicles then the matching vehicle is the one that maximizes
the common surface.

Even with the most accurate algorithm for locating templates in
an image, small drifts and miscalculations due to conversion of dis-
tances in the image discrete space into real conditions result in
ch snapshot, five pixel positions (1–5) have been chosen (three pixels at the front of
e of the road in order to study the behavior of the system in a color different from the

top, middle and bottom rows present ‘‘background”, ‘‘foreground” and all elements
stogram.
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small errors in measurements. In order to form a more accurate
and smooth trajectory for each vehicle a Kalman filter algorithm
is employed.

Kalman filter employs a procedure that a state variable is repet-
itively predicted according to a theoretical model and is subse-
quently corrected by an actual measurement. The state variable
of the described system is a vector of vehicle location, speed and
length. In our approach we assumed simple constant straight mo-
tion along the direction of the road, a rational approach for traffic
in avenues and national roads. In addition, we assume constant
vehicle length for our kinematic model along its trajectory.
5. Experimental results – evaluation

In order to validate the effectiveness of the background recon-
struction algorithm we created an evaluation process which aims
to provide evidence supporting the color that is more frequent at
a specific pixel in a series of frames is more likely to belong to
background rather than foreground.

For that reason, we created a testing group of four video cap-
tures (Scene I-79,000 frames, Scene II-29,000 frames, Scene III-
28,000 frames and Scene IV-7000, see Fig. 5). In each scene five pix-
el positions have been chosen, two at the back of the image and
Fig. 7. Visual presentation of compar

Table 1
Comparison with other models.

Scenes MOG (S
Van der

FG (%)

Scene I
E94 – direction Elefsina stop-and-go traffic conditions (79,000 frames

capture)
74.3

Scene II
E94 – direction El.Venizelos normal traffic conditions (29,000 frames

capture)
82.4

Scene III
E94 – direction El.Venizelos normal and dense flow traffic conditions

(28,000 frames capture)
80.7

Scene IV
E75 – direction lamia dense normal and dense flow traffic conditions (7000

frames capture)
77.0
three at the front. For each pixel position of a specific scene two ar-
rays were constructed, as described below:

The first array is a collection of color values PCp
k;s (PC = [pixel col-

or, class], p = testing pixel, k = array index = 1, 2, . . . , s = scene)
appropriately classified as one of the following classes: ‘Fore-
ground’ or ‘Background’. This array comprises a sampling of the
color values collected at the pre-selected pixels for each testing
scene taken in a 500 frames interval. According to this, the 1st,
500th, 1000th, . . . frames (of each testing scene and each pre-se-
lected pixel position) were manually extracted and classified to
construct the PCp

k;s array.
The second array consists of the background color values at the

pre-selected pixels of the testing scenes BGp
k;s (BG = background col-

or, p = testing pixel, k = array index = 1, 2, . . . , s = scene). As in the
first array, the background color values of the 1st, 500th,
1000th, ... frame (of each testing scene and each pre-selected pixel)
were recorded in order to form the BGp

k;s array whenever this was
possible (when the testing pixel was not obstructed by foreground
objects). If the testing pixel was obstructed by a foreground object
we sought for the nearest frame where the testing pixel could
clearly be defined.

The graphical representation of the first array PCp
k;s (testing

scene I, pixel 1) is presented in Fig. 6. The topology is analyzed into
the three combinations of planes: v�u�, u�L� and v�L� and for each
ed methodologies (see Table 1).

tauffer & Grimson, 1999; Zivkovic &
Hijden, 2006)

Codebook Kim et al.,
2005

This work

BG (%) FG (%) BG (%) FG (%) BG (%)

99.6 92.5 93.6 97.1 98.3

98.7 94.9 92.2 95.0 99.0

98.7 93.4 91.1 94.2 98.7

96.6 88.1 93.8 91.2 97.1



Table 2
Background Reconstruction process outcome.

Scenes Test pixel 1 of Fig. 5
Mean color value (first row), standard deviation (second row)

Test pixel 5 of Fig. 5
Mean color value (first row), standard deviation (second row)

L* u* v* L* u* v*

Experimental Our
work

Experimental Our
work

Experimental Our
work

Experimental Our
work

Experimental Our
work

Experimental Our
work

500-frames sample background reconstruction
Scene I
E94 – direction

Elefsina stop-and-
go traffic
conditions
(79,000 frames
capture)

65.7 66.6 0.5 0.4 4.3 4.5 73.9 75.2 1.1 0.5 3.1 3.5
2.1 8.7 1.3 1.8 2.0 2.8 2.1 2.0 12.8 3.7 8.7 2.8

Scene II
E94 – direction

El.Venizelos
normal traffic
conditions
(29,000 frames
capture)

60.0 60.4 �3.9 �4.0 �2.5 �2.9 71.0 71.5 �3.1 �3.2 �0.1 �0.2
1.7 0.7 2.1 1.2 2.3 1.1 1.7 2.3 0.7 1.1 0.7 1.1

Scene III
E94 – direction

El.Venizelos
normal and dense
flow traffic
conditions
(28,000 frames
capture)

59.7 60.1 0.8 1.6 �2.0 �1.7 74.2 74.4 3.8 3.7 6.2 6.2
1.7 1.2 1.4 1.2 2.2 2.0 1.7 2.2 1.2 2.0 1.2 2.0

Scene IV
E75 – direction lamia

dense normal and
dense flow traffic
conditions (7000
frames capture)

63.7 63.8 �0.3 �0.3 3.5 3.9 81.0 87.8 1.9 2.7 12.0 14.3
0.6 0.5 1.3 0.3 0.8 0.3 0.6 0.8 0.5 0.3 0.5 0.3

2500-frames sample background reconstruction
Scene I
E94 – direction

Elefsina stop-and-
go traffic
conditions
(79,000 frames
capture)

66.8 66.0 0.7 0.5 4.8 4.5 75.6 75.1 1.4 0.6 4.2 3.4
1.2 1.2 1.1 0.6 1.7 1.4 1.2 1.7 15.2 2.0 1.2 1.4

Scene II
E94 – direction

El.Venizelos
normal traffic
conditions
(29,000 frames
capture)

59.5 60.3 �3.0 �4.1 �1.9 �2.9 71.7 71.4 �2.9 �3.2 0.7 �0.3
2.0 0.8 1.3 1.3 2.2 0.9 2.0 2.2 0.9 0.7 0.8 0.9

Scene III
E94 – direction

El.Venizelos
normal and dense
flow traffic
conditions
(28,000 frames
capture)

59.5 60.0 0.7 1.6 �3.0 �1.9 73.3 74.2 3.9 3.6 5.7 6.2
0.7 1.4 0.5 1.1 1.7 2.0 0.7 1.7 1.3 1.9 1.4 2.0

Scene IV
E75 – direction lamia

dense normal and
dense flow traffic
conditions (7000
frames capture)

63.0 64.3 �1.4 �0.3 3.0 4.0 85.7 87.6 1.8 2.7 14.3 14.3
0.4 0.7 0.4 0.4 0.6 0.0 0.4 0.6 0.7 0.4 0.7 0.0
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parameter L*,u*,v* the corresponding histogram HL�, Hu�, Hv� is gen-
erated. In each diagram the darkest areas represent high concen-
tration of values, which also corresponds to high values at the
side histograms.

The distribution of PCp
k;s array elements that have been classified

as ‘Background’ and ‘Foreground’ are presented in the first and
second row respectively. In the last row the PCp
k;s series are illus-

trated independent of their classification.
It can be clearly seen that in the first row the distribution of the

background color values is densely populated around a central va-
lue, which is the mode of this distribution. The mode can also be
located from the side bar graphs, where the bars are steeply
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increased around a narrow interval. On the contrary, in the second
row (foreground values distribution), the side bar graphs tend to be
Fig. 8. Background reconstruction p
flat with multiple modes dispersed uniformly in the 2D parameter
space. When the two distributions are mixed, the color that is
rocess in a 500 frames interval.
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present in the majority of frames (so its color value is distributed in
a narrow zone of a central value) is the background color. More-
over, the side 1D histograms HL�, Hu�, Hv� can precisely locate the
background color (using Eq. (5) providing almost the same results
as in the 2D distributions.

In order to test further our methodology we carried out the fol-
lowing test: We processed the data of Scenes I–IV by applying the
background reconstruction algorithm to implement the 3D and 1D
problem – Eqs. (3) and (5), respectively for a specific test frame,
chosen for each scene (I–IV, Fig. 5). Moreover, the proposed back-
ground subtraction algorithm was tested against two of the most
popular algorithms found in literature, that is to say MOG and
codebook. For the case of MOG model the Mahalanobis distance
was used to account for problems where the standard deviation
of the Gaussian distribution is high. The results are presented in
Table 1. For all scenes, the percentage of successfully detecting
the foreground and background pixels is given for all methods
tested. The methodology proposed outperforms all previous algo-
rithms. Visual presentation of the results is given in Fig. 7 (Scene
III was left out since the actual scene data were similar to scene
II – same location). In addition, the performance of the suggested
algorithm was faster since it did not involve the computational
burden of adopting the MOG cluster parameters or the enrichment
of codebook codewords.

Background reconstruction is a statistical methodology, there-
fore the identification of the sample size is important. In general,
the sample size should be large enough to carry enough informa-
tion for extracting the background color in each image pixel. To
achieve this goal the sample size, in terms of time, should exceed
the average time that a passing vehicle occupies any pixel in the
image. In our test we chose a 500 frames and a 2500 frames sam-
ple, translated in terms of time to a 20 and 100 s exposure
correspondingly.

The 500 frames sample is quite satisfactory for a highway
where vehicles’ average speed is about 80 km h�1 (22.22 ms�1)
and the occupation of a specific pixel close to the camera is ex-
pected to be less than a second. We chose the 2500 frames sample
in order to examine if overexposure can improve the reconstruc-
tion procedure. We observe that the choice of a larger sample size
tends to decrease the accuracy (Tables 1 and 2) for two reasons:
first, as the sample size increases, the background color changes
following the diminutive change of lighting (this also explains
the differences on the measured values in different sample sizes
for the same pixel) and second, the larger the sample size the more
the inserted noise and the subsequent degradation of the back-
ground reconstruction performance.

The proposed system was implemented and tested as it is
shown in Fig. 8, where the result of the Scene I experiment is pre-
sented. This result is also published on the internet corresponding
author’s personal page http://www.users.ntua.gr/nmand/BGRe-
construction.htm. Moreover, the background reconstruction proce-
dure for the test scenes I–IV is also included in the same web page.

Overall, the system was found to work satisfactorily and the
background reconstruction algorithm added robustness to the pro-
cess. In normal traffic conditions the system responded well and
the outcome results regarding vehicle speed and trajectory were
accurate enough. The maximum number of vehicles detected and
tracked simultaneously for the heavy traffic instances of scene 1,
was 10.
6. Conclusion

In this study we presented a system that implements a classical
computer vision algorithm, the background subtraction, appropri-
ately modified for the purposes of a traffic surveillance system. The
innovation of this study lies on a new algorithm for reconstruction
of the actual background. This algorithm is based on statistical col-
or sampling per pixel over time. This algorithm is robust in recon-
structing the actual background, even in real time. This was
achieved due to algorithm’s low complexity: O(n) complexity in
terms of memory and O(tn) in terms of calculations involved (t de-
notes the time size of the sample and n represents the magnitude
of discretization for each color parameter). The experiments car-
ried out showed that the proposed algorithm is capable of real time
operational working due to its low complexity.

The reconstruction of a new background instance, wherever this
is required, enhances the typical background subtraction algo-
rithm. Thus, in our approach the implementation of the back-
ground subtraction does not depend on an initial background
instance and for that it has broadened its applicability. One of
the main advantages of the proposed system is that it can be ap-
plied in an existing traffic surveillance system without substantial
modifications and the background reconstruction algorithm allows
the unobstructed operation of the system without human inter-
vention. The system works well either in real time mode or in al-
ready stored video.

The testing arrangement used, which simulates the operation of
a traffic surveillance system, was found to work satisfactory in out-
door diverse lighting conditions. In all cases background recon-
struction algorithm managed to accurately reconstruct the actual
background in various harsh conditions including heavy conges-
tion and changes in the lighting. This methodology added robust-
ness to the traditional background subtraction algorithm and
overcame known instability issues.

In future work, we aim to focus on night surveillance, where
some primary tests leave space for improvement on the existing
algorithms reported in literature. However, the other modules of
our proposed system should be improved, focusing on the occlu-
sion handling and vehicle matching procedure. Moreover, it re-
mains a challenge to utilize the capabilities of the proposed
algorithm to other kind of machine vision problems, such as secu-
rity, remote sensing, ship surveillance and a plethora of surveil-
lance applications.
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