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In this paper a design method was formulated to deal with robustness and performance specifications

for any MIMO linear controller. The controller tuning procedure was expressed as an optimization

problem in which novel time-domain integrals of the weighted squared error and weighted squared

control signals, with initial state zero and inputs not necessarily defined over the Lebesgue normed

space ðL2þ Þ, were minimized. The control robustness is achieved by constraining the minimization such

that the maximum complex/real ratio of the closed-loop control system eigenvalues was lower than

one. The proposed tuning method was applied in the design of linear controllers with PID structure for a

CSTR with disturbance noise and a nonlinear CSTR with control signal saturations, both reported in

literature. The results show that the proposed control systems surpass the performance and robustness

characteristics of the controllers designed with other reported methods.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

PID algorithm is a linear control action that has been one of the
most successful algorithms in the control theory history. Even
with the introduction of non-linear and robust control theory, the
PID control action has demonstrated good performance and
robustness characteristics for non-linear processes (Tan et al.,
2002a, b; Garcı́a-Alvarado et al., 2005; Cheng and Chiu, 2008).
Even more, some non-linear controllers have PID configuration,
like the proposed by Alvarez et al. (1989) which structure
corresponds to a PI controller with gain and integral time as
functions of state variables. Furthermore, the robustness proper-
ties of PI and PID algorithms have been demonstrated (Bao et al.,
1999; Alvarez et al., 1998; Chen et al., 2002; Ge et al., 2002;
Toscano, 2005; Ruiz-López et al., 2006; Xiong et al., 2007;
Goncalves et al., 2008). The PID control action is a particular case
of a general linear controller, and therefore a higher order linear
controller must keep and may improve its performance and
robustness characteristics.

A process with a MIMO linear controller may be represented by,

dx

dt
¼ AxþB1wþB2u ð1Þ

y¼ C1xþD11wþD12u ð2Þ

dx
dt
¼AxþB1rþB2y ð3Þ
ll rights reserved.

ia-Alvarado).
u¼ CxþD1rþD2y ð4Þ

Where xARn�1 is the process state vector, wARm�1 is the
exogenous input vector (disturbance signals), yARr�1 is the
measured output vector (feedback to the controller), uARc�1 is
the control signal vector, xARk�1 is the control state vector, and
rARr�1 is the set point vector. Eqs. (1) and (2) represent the state-
space of the process and Eqs. (3) and (4) represent the state-space
of the control algorithm, in which is implicit the error signal
vector eARr�1

¼ r�y. If A, Bi, Ci and Dij are constants, the process is
linear-invariant, otherwise the system may be linear time-
dependent, quasi-linear or non-linear. If A, B1, B2, C, D1 and D2

are constants the controller is linear. A PID control action with
first order filter can be written in the form of Eqs. (3) and (4) as
will be shown later.

A common method for designing an optimal controller is by
evaluation of the control signal (u) that minimize a quadratic
performance index with the form,

I¼

Z 1
0
½x0Qxþu0Ru�dt ð5Þ

or

I¼

Z 1
0
½y0Qyþu0Ru�dt ð6Þ

In the case where the process is linear, the minimization of Eq. (5)
or (6) can be achieved by applying the Riccati equation. In this
way, the results may be a general linear controller (Engwerda
and Weeren, 2008), or the parameters for a PI algorithm
(Garcı́a-Alvarado et al., 2005). If the process is non-linear, the
problem may be solved by other techniques, as the Chebyshev
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spectral approximation, and the results are generally non-linear
controllers (El-Kady et al., 2003). However the minimization
of a quadratic performance index does not assure controller
robustness.

Nowadays, one of the most common design methods for an
optimal and robust control of the system represented by Eqs. (1)–
(4) is based on solving optimization problems in the Hardy normed
spaces RH2 and RH1. Doyle et al. (1989) showed that a unique
solution for matrices A, B, C and D exists that minimize the
H2-norm of the closed-loop matrix function of Eqs. (1)–(4).
Moreover, Doyle et al. (1989) deduced suboptimal solutions that
assure H2-norm og1 and H1-norm og2, where H1 is the infinite
norm of closed-loop matrix function of Eqs. (1)–(4) and g1 and g2

are any real positive number. Each one of the suboptimal problems,
is solved from the solutions of two Riccati equations. Because
H2-norm represents a quadratic performance index, and H1-norm
represents a robustness index, the suboptimal problems can be
used in order to equilibrate H2=H1 norms (that is, the tradeoff
between performance and robustness). Other solutions in
normed spaces RH2 and RH1 may be obtained from the
application of linear matrix inequalities (LMI) (Chilali et al., 1999).
As example, Saeki (2006) proposed a direct application of LMI for
the MIMO PID controller design as an optimization problem in
which matrix inequalities obtained from a H1-norm condition for
each frequency are approximated by LMIs, and then a sequence of
PID gains is obtained iteratively until reaching a H1-norm lower
than one.
H2=H1 methods have been applied in the design of chemical

engineering process controllers (Bao et al., 1999; Chen et al.,
2002; Ge et al., 2002; Toscano, 2005; Goncalves et al., 2008). Bao
et al. (1999) proposed an application of LMIs for the design of a
MIMO PID controller applied to a distillation column. This study
showed the dependence of transient response of the control
system designed with LMIs on weighting function selection
(Saeki, 2006). Ge et al. (2002), Toscano (2005) and Goncalves
et al. (2008), studied the control of a continuous stirred tank
reactor (CSTR), which dynamic was described by Uppal et al.
(1974). Ge et al. (2002) applied a classical PID algorithm and
founded the control parameters in such way that the H2 and H1
norms are kept under a desired value using LMIs. Toscano (2005)
also applied a classical PID algorithm and proposed a simple way
to evaluate the control parameters with robustness character-
istics. Toscano’s method consisted in finding the control para-
meters that minimize the sensitivity function JSðsÞJ1 norm
(similarly to Bao et al., 1999) and keep a pseudo-damping factor
in a lower bound. Goncalves et al. (2008) introduced a noise
disturbance in the same CSTR and applied an ISA (Instrument
Society of America) PID configuration with noise filter. The ISA PID
configuration is basically a PI with a weighted derivative action.
They found the set control parameters that minimize a weigh
function of JTðsÞJ2 and JTðsÞJ1. Goncalves et al. (2008) reported
explicitly that their method increase the performance and
robustness of the CSTR control with respect to Ge et al. (2002)
and Toscano (2005) methods. In Section 4, the Goncalves et al.
(2008) control will be described in detail and represented in the
general linear control form Eqs. (3) and (4). Chen et al. (2002)
designed a MIMO PI control for a CSTR with two target output
variables, two control signals, and two exogenous inputs via LMIs.
Although the control tuned by Chen et al. (2002) exhibited a good
performance, Ruiz-López et al. (2006) founded another ser of
controls parameters for the same system with better character-
istics for both reference tracking and disturbance rejection. The
method applied by Ruiz-López et al. (2006) represents an
alternative to LMIs that requires lower numerical effort and did
not depend on weighting functions. They showed that the
minimization of the eigenvalues maximal complex/real ratio
(Im/Re) for the closed-loop dynamic characteristic matrix is
equivalent to the minimization of the H1-norm and therefore
imparts robustness properties to the control systems. In order to
assure the controller performance, Ruiz-López et al. (2006)
minimized iteratively the quadratic index in Eq. (6) with R¼0,
r¼0, w¼0 and xð0Þ ¼ x0a0 which are the most common
conditions used for the minimization of quadratic performance
indexes (Engwerda and Weeren, 2008; Garcı́a-Alvarado et al.,
2005; El-Kady et al., 2003). However, an important characteristic
of the system defined by Eqs. (1)–(3) is that if, r¼0, w¼0 and
xð0Þ ¼ x0a0, then it reduces to an homogeneous state-space, so if
system is internally stable, the state-space trajectories tends to
zero when time approaches infinite even without a control action.
Therefore, the time-domain integral for error and control signals
when the system is subjected to input disturbances and x(0)¼0,
may represent better the control performance. That is, the
following quadratic index,

Ie ¼

Z t

0
½ðr�yÞ0Q ðr�yÞþu0Ru�dt ð7Þ

for Eqs. (1)–(4) and with

ra0=2L2þ ; wa0=2L2þ ; and xð0Þ ¼ 0 ð8Þ

The set point (r) and exogenous input (w) were declared non-
elements of Lebesgue normed space ðL2þ Þ in order to consider the
inclusion of a step input as forcing function. The analytical
solution of integral (7) under conditions (8) is not reported, and
therefore in this paper such analytical solution was deduced for a
general linear controller and applied in the design of linear
controllers. This design method was expressed as a minimization
problem of the deduced solution for integral (7) subjected to a
constraint in the maximum Im/Re ratio of the closed-loop
control system eigenvalues, as robustness index. The method
was validated by tuning the CSTR SISO control described
by Goncalves et al. (2008) and the CSTR MIMO control
described by Chen et al. (2002) and later improved by
Ruiz-López et al. (2006).
2. Theory

The process defined by Eqs. (1) and (2) with control declared in
Eqs. (3) and (4) can be rewritten as the following closed-loop
equations,

X0 ¼ ½x0 x0� ð9Þ

dX

dt
¼AXþB1wþB2r ð10Þ

y¼C1XþD11wþD12r ð11Þ

u¼C2XþD21wþD22r ð12Þ

where

A¼
AþB2D2D1C1 B2D2C
B2D1C1 AþB2D1D12C

" #
;

B1 ¼
B1þB2D2D1D11

B2D1D11

" #
; B2 ¼

B2D2D1

B1þB2D1D12D1

" #

C1 ¼ ½D1C1 D1D12C�; C2 ¼ ½D2D1C1 D2C�

D11 ¼ ½D1D11�; D12 ¼ ½D1D12D1�; D21 ¼ ½D2D1D11�; D22 ¼ ½D2D1�

D1 ¼ ðIr�D12D2Þ
�1; D2 ¼ ðIcþD2D1D12Þ
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Therefore, the closed-loop transfer matrix (from w and r inputs to
y as output) can be expressed as,

Twr;yðsÞ ¼CðInþks�AÞ�1BþD with C¼ ½C1�; B¼ ½B1 B2�;

D¼ ½D11 D12� ð13Þ

Ruiz-López et al. (2006) showed that the minimization of the
maximal Im/Re relation (called fmax) of eigenvalues of matrix A is
equivalent to the minimization of the H1-norm of matrix transfer
of Eq. (16) ðJTwr;yðsÞJ1Þ and therefore assures the robustness
properties of the control systems. Ruiz-López et al. (2006)
recommended a fmax value lower than one.

The analytical solution of problem (10)–(12) subjected to
certain given inputs and X(0)¼0 is required to solve integral (7). A
forcing function that can approximate a feasible perturbation in
the input or reference signals is a step function, which expressed
in Laplace dominion are given by,

wðsÞ ¼ s�1K1; rðsÞ ¼ s�1K2 ð14Þ

where K1ARm�1 and K2ARr�1 contain the magnitude of the step
functions. Under Eq. (17) the input signals are not defined in a
Lebesgue space ðwðtÞ; rðtÞ=2L2þ Þ, and therefore if the matrix
transfer of the process does not contain a zero-pole, a controller
with integral action (or a zero pole) is required to guarantee that
eðtÞ-0 when t-1 (or eðtÞAL2þ ) as in the PID algorithm. The
solution of Eqs. (10)–(12) subject to inputs (14) is,

X ¼A�1
½eAt�Inþk�½B1K1þB2K2� ð15Þ

And therefore,

y¼C1A
�1
½eAt�Inþk�½B1K1þB2K2�þD11K1þD12K2 ð16Þ

u¼C2A
�1
½eAt�Inþk�½B1K1þB2K2�þD21K1þD22K2 ð17Þ

Quadratic index (10) can be split in two integrals,

Ie ¼

Z t

0
½ðr�yÞ0Q ðr�yÞþu0Ru�dt ¼ Iyþ Iu ð18Þ

Each one of the integrals in Eq. (18) may be evaluated for the
servomechanism or regulator problems. In a servomechanism
problem no exogenous inputs are assumed (K1¼0), and therefore,

Iy;servo ¼

Z t

0
ðK2�yÞT Q ðK2�yÞdt ð19Þ

In a regulator problem no reference changes are assumed ðK2 ¼ 0Þ,
and therefore,

Iy;reg ¼

Z t

0
yT Qy dt ð20Þ

The analytical evaluation of integrals (19) and (20) is
summarized in the following theorems.

Theorem 1. For system defined with Eqs. (10)–(12) in minimal

realization, with a zero pole in A, B, C, D, and with A stable (the

whole of its eigenvalues must be in left complex semi plane), the

integral (19) is given by,

lim
t-1

Iy;servo ¼ K 02B
0

2PyB2K2 ð21Þ

where Py is obtained by solving the Riccati equation,

A0PyþPyA¼�ðA
�1
Þ
0C01QC1A

�1
ð22Þ

Proof. See Appendix A.

Theorem 2. For system defined by Eqs. (10)–(12) in minimal

realization, with a zero pole in A, B, C, D, and with A stable, the
integral (20) is given by,

lim
t-1

Iy;reg ¼ K 01B
0

1PyB1K1 ð23Þ

where Py is obtained solving the Riccati Eq. (22)

Proof. See Appendix B.

In the analytical evaluation of Iu is necessary to consider that
u(t) may not be in L2þ under condition given by Eq. (14), and
therefore is possible that Iu-1 when t-1. Thus, Iu must be
evaluated using a finite value for t. Then, the analytical evaluation
for the performance index of control variables (Iu) is obtained by
applying the results of Theorems 1 and 2. The results are,

Iu;servo ¼

Z t

0
u0Ru dt¼ K 02B

0

2PuB2K2�K 02B
0

2ðe
AtÞ0PueAtB2K2

þ2ðA�1
ÞðD21K2�C2A

�1B2K2Þ
0RC2A

�1
ðeAt�InþkÞB2K2

þðD21K2�C2A
�1B2K2Þ

0RðD21K2�C2A
�1B2K2Þt ð24Þ

Iu;reg ¼

Z t

0
u0Ru dt ¼ K 01B

0

1PuB1K1�K 01B
0

1ðe
AtÞ0PueAtB1K1

þ2ðA�1
ÞðD21K1�C2A

�1B1K1Þ
0RC2A

�1
ðeAt�InþkÞB1K1

þðD21K1�C2A
�1B1K1Þ

0RðD21K1�C2A
�1B1K1Þt ð25Þ

where Pu is obtained solving the Riccati equation

A0PuþPuA¼�ðA
�1
Þ
0C02RC2A

�1
ð26Þ

Another important performance indicator in a control system is
the capacity to reject noise. This capacity may be simulated with
the response to a unit-impulse (Dirac delta dðtÞ) in the exogenous
input,

wðsÞ ¼ 1; rðsÞ ¼ 0 where 10AR1�m ¼ ½1 1 � � � 1�

Analytical solution of Eq. (10) under these inputs is,

X ¼ eAtB11 ð27Þ

And therefore,

y¼C1eAtB11þD11dðtÞ ð28Þ

u¼C2eAtB11þD21dðtÞ ð29Þ

where: dðtÞ0AR1�m ¼ ½dðtÞ dðtÞ � � � dðtÞ�
Under Eqs. (28) and (29) the quadratic performance indexes

are finites only if D11¼0, due by the properties of Dirac delta
function,Z 1
�1

dðtÞdðtÞdt¼ dð0Þ-1

Then, the quadratic performance indexes only can be evaluated
assuming D11¼0. This assumption is similar to those required by
Doyle et al. (1989) for solving the sub-optimal problems for
H2=H1 norms. However in the proposed performance evaluation,
this assumption does not represent a loss of generality because in
the case of D11a0, its effect would be considered in
Iy;servo Iy;reg Iu;servo Iu;reg . Integral (19) may be solved by applying
the principles of Theorems 1 and 2, and assuming D11¼0. The
results are given by,

lim
t-1

Iy;pulse ¼ 10B01PypB11 ð30Þ

lim
t-1

Iu;pulse ¼ 10B01PupB11 ð31Þ

where Pyp and Pup are calculated by solving the following Riccati
equations,

A0PypþPypA¼�C
0

1QC1 ð32Þ
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A0PupþPupA¼�C
0

2RC2 ð33Þ

The quadratic performance indexes deduced in this section
complemented the principle of minimum fmax (Ruiz-López
et al., 2006) as the basis of a design method for optimal and
robust MIMO linear controllers. The proposed design method is
described in the next section.
3. Controller design method

Summarizing the robustness conditions given by Ruiz-López
et al. (2006), and the quadratic performance indexes deduced in
Section 2, a linear controller with a suitable robustness and
desired performance can be designed from the following
optimization problem,

For the system defined with Eqs. (10)–(12) in minimal
realization, find elements of A, B, C, D such that,

JðA;B; C;DÞ ¼w1Iy;servoþw2Iy;regþw3Iu;servo

þw4Iu;regþw5Iy;pulseþw6Iu;pulse-min

subject to

fmax ¼max
ImðliÞ

ReðliÞ

� �
o1 8i¼ 1;2; . . . ; ðnþkÞ where jInþkli�Aj ¼ 0

A, contains a zero pole
The trade-off between performance and control effort is fitted

with weights w1, w2, w3, w4, w5 and w6. This problem can be
solved using an adequate search method, like the described in
detail by Ruiz-López et al. (2006). Four Riccati equations must be
solved in each iteration (two Riccati equations for both step and
impulse forcing functions), which is similar to a standard H2=H1
optimal control (Doyle et al., 1989). This procedure defines a
multiobjective optimal control problem that considers the
quadratic performance of error, quadratic performance of control
signal, assures the robustness, and does not require to be defined
over H2=H1 normed spaces, or LMIs. The procedure is illustrated
with the design of control systems for two CSTR.
4. Illustrative examples

4.1. A CSTR SISO control with noise

Goncalves et al. (2008) tuned a SISO weighted PID control with
noise filter for a CSTR by minimizing a weighted function of
JTðsÞJ2 and JTðsÞJ1. The CSTR and control dynamics were defined
with the following transfer functions,

cðsÞ ¼
500b0

s2þa1sþa0
dðsÞþ

b0

s2þa1sþa0
uðsÞ ð34Þ

yðsÞ ¼ cðsÞþZðsÞ ð35Þ
Table 1

Quadratic indexes (I) robustness criterion ðfmaxÞ and H1-norm obtained for different c

Method Control parameters

Goncalves et al. (2008) kp ¼ 7297, ti ¼ 0:0315,

td ¼ 0:5772, N¼10,

Proposed kp ¼ 3789, ti ¼ 0:557,

td ¼ 0:115, N¼ 4:9062
uðsÞ ¼ kp
1

tis
eðsÞþeðsÞ�

tds

rtdsþ1
yðsÞ

� �
ð36Þ

where d is a disturbance (exogenous) input, and Z is an exogenous
disturbance noise. Goncalves et al. (2008) assumed that Z is
random, uniformly distributed, and jZjr0:01. Supported on the
work of Uppal et al. (1974), Goncalves et al. (2008) state three sets
of values ðS¼ fa1; a0; b0gÞ for the CSTR transfer function, which
depend on the CSTR operation point. The three sets, for time unit
in seconds are,

S1 ¼ f0:01248;5:862;0:03707g; S2 ¼ f2:674;10:97;0:04107g;

S3 ¼ f9:251;22:19;0:04612g

Eqs. (34) and (35) can be represented in state-space form
(Eqs. (1) and (2)) with the following matrices,

w¼
d

Z

" #
; A¼

0 1

�a0 �a1

" #
; B1 ¼

0 0

500b0 0

" #
; B2 ¼

0

b0

" #
;

C1 ¼ ½1 0�; D11 ¼ ½0 1�; D12 ¼ ½0�; ð37Þ

Eq. (36) is the ISA PID configuration, which has weighted PID
structure with a noise filter r¼ 1=N (where N is a noise filtering
constant Goncalves et al., 2008), and it can be written in state-
space form (Eqs. (3) and (4)) with the following matrices,

A¼
0 1

0 �1=rtd

" #
; B1 ¼

b11

b21

" #
; B2 ¼

b12

b22

" #
;

C¼ ½1 0�; D1 ¼ ½b01�; D2 ¼ ½b02� ð38Þ

where

b01 ¼ kp; b02 ¼�kp 1þ
td

rtd

� �
; b11 ¼ ½�b01þkpð1þrtd=tiÞ�=rtd

b12 ¼�½b02þkpð1þrtd=tiÞ�=rtd; b21 ¼ ð�b11þkp=tiÞ=rtd;

b22 ¼�ðb12þkp=tiÞ=rtd

The proposed indexes: Eqs. (21), (23), (24), (25), (30) and (31)
with Q ¼ I¼ 1, R¼ I¼ 1 (there is only one response and one
control signal), fmax, and JTwr;yðsÞJ1, calculated with the control
parameters evaluated by Goncalves et al. (2008) are listed in
Table 1.

The proposed method was applied by solving the optimization
problem defined in Section 3 for the kp, ti, td, and r¼ 1=N
elements of matrices A, B, C, and D in Eq. (38). The same
optimization method described in the first example was used. The
model defined by parameters presented in Set 1 ðS1Þ was selected
for the optimization because it has the worst eigenvalues, that is
the fmax of the open-loop characteristic matrix (A) was the
highest among the three sets. The noise filter value ðN Þ was taken
between 3 and 10 (Goncalves et al., 2008). The optimization
begun from kp ¼ 12605, ti ¼ 1:27, td ¼ 0:074, and N ¼ 9:93 as
initial guess which produces fmaxo0:2. The weights wi were
ontrol parameters of the CSTR.

Indexes, fmax and H1-norm

Iy;reg ¼ 3:48� 10�5, Iy;pulse ¼ 120,

Iu;reg ¼ 2:51� 106, Iu;pulse ¼ 7:56� 1011,

Iy;servo ¼ 0:103, Iu;servo ¼ 3:59� 106

fmax ¼ 8:24JTwr;yðsÞJ1 ¼ 4:47

Iy;reg ¼ 5:03� 10�3, Iy;pulse ¼ 16:7,

Iu;reg ¼ 2:50� 106, Iu;pulse ¼ 1:31� 1010,

Iy;servo ¼ 0:0814, Iu;servo ¼ 9:21� 105

fmax ¼ 1JTwr;yðsÞJ1 ¼ 1:52
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elected in such way that all the elements of objective function
were in the same magnitude order. The final values of these
weights were: w1 ¼ 5� 101, w2 ¼ 1� 103, w3 ¼ 2� 10�6,
w4 ¼ 2� 10�6, w5 ¼ 5� 10�2, w6 ¼ 3� 10�10. In Table 1 are listed
the optimal results. As in the first illustrative example, a higher
value of one performance index, in this case Iy;reg , was allowed to
obtain smaller values of the control signals indexes. In fact, in this
example only Iy;reg resulted in a greater value than the results of
Goncalves et al. (2008). It is important to emphasize that the
proposed method control parameters reduced Iu;pulse in almost
two magnitude orders. Another important result is that the
reduction of fmax produced a decrease of JTwr;yðsÞJ1. For the
performance test, a dynamic simulation of the proposed and
Goncalves et al. (2008) controls for the CSTR at the three
operation points (S1, S2, S3), was developed applying the random
noise jZjr0:01, a unit step in set point, an a unit step disturbance
Fig. 1. Dynamic simulation of y for the controlled CSTR as response of unit step in

set point r, a unit step disturbance in d applied at 5 s, and random uniformly

distributed noise jZjr0:01. Results for the three sets (S1, S2, S3).

Fig. 2. Dynamic simulation of u for the controlled CSTR as response of unit step in

set point r, a unit step disturbance in d applied at 5 s, and random uniformly

distributed noise jZjr0:01. Results for set S1.
from the fifth second. Simulated output signals are plotted in
Fig. 1. As it can be seen in this graph, the proposed method
performs with both lower overshot and stabilizing time than the
reported by Goncalves et al. (2008) for a set point tracking. The
regulatory test, from second 5 onward, show that Goncalves et al.
(2008) control performs better than the proposed one as it was
expected form the Iy;reg results. However, the performance
improvement of the proposed method can be better appreciated
in Fig. 2, in which the simulated control signals are plotted for the
same conditions of Fig. 1, but only the S1 operation point is shown
(the inclusion of the three operations points overload the graph).
A drastic reduction of the control signal can be observed with the
proposed method, mainly in the reaction to noise. This reduction
of control sensitivity to noise was the result of the Iu;pulse obtained
with the proposed method. These results are very important
because in a real operation higher values of control signals could
produce saturations. The robustness characteristics of both
control design methods can be observed from the fact that the
dynamics of the three operations points (S1, S2, S3) are practically
even when the differences of some parameters are more than two
magnitude orders.

4.2. A CSTR MIMO control

Chen et al. (2002) designed via LMIs a MIMO PI control for the
CSTR described in the following model,

V
dC

dt
¼ qðCf�CÞ�Vk0e�E=RT C ð39Þ

rCpV
dT

dt
¼ rCpqðTf�TÞþð�DHÞVk0e�E=RT C

þrcCpcqcð1�e�h=rcCpcqc ÞðTcf�TÞ ð40Þ

Eqs. (39) and (40) represent a non-linear dynamic system that
may have multiple steady states, and in which the inputs
variables may be bounded. In order to apply LMIs, Chen et al.
(2002) linearized Eqs. (39) and (40) by applying Taylor series
expansion around the neighborhoods of a given steady state. The
obtained model may be represented in linear space state form
(Eqs. (1) and (2)) with the following matrices,

x¼
C�Cs

T�Ts

" #
; w¼

Cf�Cfs

Tf�Tfs

" #
; u¼

q�qs

qc�qcs

" #
;

A¼
a11 a12

a21 a22

" #
; y¼

C�Cs

T�Ts

" #
; r¼

Cd�Cs

Td�Ts

" #

B1 ¼
1 0

0 1

� �
; B2 ¼

b11 b12

b21 b22

" #
; C1 ¼

1 0

0 1

� �
;

D11 ¼
0 0

0 0

� �
; D12 ¼

0 0

0 0

� �

The nominal steady state was reported as Cs ¼ 0:1 mol L�1,
Ts ¼ 438:54 K, qs ¼ 100 L min�1, qcs ¼ 103:41 L min�1, Cfs ¼ 1 mol
L�1, Tfs ¼ 350 K, Tcf ¼ 350 K, V ¼ 100 L, h¼ 7� 105 cal min�1 K�1,
k0 ¼ 7:2� 1010 L min�1, E=R¼ 104 K, DH¼�2� 105 cal mol�1,
r¼ rc ¼ 103 g L�1, Cp¼ Cpc ¼ 1 cal g�1 K�1. At this steady state,
the set of parameters, S¼ fa11; a12; a21; a22; b11; b12; b12; b22g is
given by

S0 ¼ f�9:999;�0:0468;1799:8;7:328;0:009;0;�0:885;�0:878g

However, Chen et al. (2002) used a set of parameters that
represent the average process behavior between the limits of
operations ranges. This set of parameters is

S1 ¼ f�14:677;�0:0453;2735:3;6:978;0:00858;0;�0:885;�0:867g
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Table 2

Quadratic indexes (I) robustness criterion ðfmaxÞ and H1-norm obtained for different control parameters of the MIMO CSTR.

Method Control parameters Indexes, fmax and H1-norm

Chen et al. (2002) kp11 ¼ 5783:1, kp12 ¼ 27:816 Iy;reg ¼ 3:16� 10�8, Iy;pulse ¼ 1:89� 10�5,

kp21 ¼�8724, kp22 ¼�137:69 Iu;reg ¼ 4:29� 101, Iu;pulse ¼ 3:36� 103,

ki11 ¼ 63 687; ki12 ¼ 252:68 Iy;servo ¼ 4:22� 10�5, Iu;servo ¼ 9:04� 103

ki21 ¼�30 645; ki22 ¼�1129:1 fmax ¼ 0JTwr;yðsÞJ1 ¼ 25:9

Ruiz-López et al. (2006) kp11 ¼ 7732:5, kp12 ¼ 0 Iy;reg ¼ 1:91� 10�8, Iy;pulse ¼ 1:55� 10�5,

kp21 ¼�13 771; kp22 ¼�673:64 Iu;reg ¼ 4:28� 101, Iu;pulse ¼ 4:95� 103,

ki11 ¼ 93 938:6; ki12 ¼ 142:6 Iy;servo ¼ 2:07� 10�5, Iu;servo ¼ 1:06� 104

ki21 ¼�97 507; ki22 ¼�6634:2 fmax ¼ 0JTwr;yðsÞJ1 ¼ 8:23

Proposed kp11 ¼ 7733:6, kp12 ¼ 1:2 Iy;reg ¼ 1:85� 10�8, Iy;pulse ¼ 1:58� 10�5,

kp21 ¼�13 772; kp22 ¼�674:5 Iu;reg ¼ 3:87� 101, Iu;pulse ¼ 4:66� 103,

ki11 ¼ 93 948; ki12 ¼ 141:7 Iy;servo ¼ 1:80� 10�5, Iu;servo ¼ 6:66� 103

ki21 ¼�97 506; ki22 ¼�6633:1 fmax ¼ 0JTwr;yðsÞJ1 ¼ 6:57

kd11 ¼ 126:1, kd12 ¼ 14:9

kd21 ¼�801:2, kd22 ¼�9002:1

td1 ¼ 49:8, td2 ¼ 48:5

Fig. 4. Dynamic simulation of output temperature for the controlled CSTR as

response of simultaneous step in set points concentration and temperature,

followed by a simultaneous step in input concentration and temperature.

Fig. 3. Dynamic simulation of output concentration for the controlled CSTR as

response of simultaneous step in set points concentration and temperature,

followed by a simultaneous step in input concentration and temperature.
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The MIMO PI algorithm can be written in space state form
(Eqs. (3) and (4)) with the following matrices,

A¼
0 0

0 0

� �
; B1 ¼

1 0

0 1

� �
; B2 ¼

�1 0

0 �1

� �
;

C¼
ki11 ki12

ki21 ki22

" #
; D1 ¼

kp11 kp12

kp21 kp22

" #
; D2 ¼

�kp11 �kp12

�kp21 �kp22

" #

Chen et al. (2002) obtained the set of control parameters listed
in Table 2 by applying LMIs and a space state representation with
uncertain limits. The proposed indexes: Eqs. (21), (23), (24), (25),
(30) and (31), fmax, and JTwr;yðsÞJ1 calculated with parameter set
S1 are also listed in Table 2. Reported values were evaluated with
the following weight and input matrices,

Q ¼
1 0

0 1� 10�4

� �
; R¼ I¼ 1; wðsÞ ¼

0:05

1

� �
s�1; rðsÞ ¼

0:05

1

� �
s�1

ð41Þ

The election of matrices Q and R was done by considering that
output concentration (C) varies in the magnitude order of 10�1

and temperature (T) changes occur in the magnitude order of 101;
while variations in both control variables (q and qc) have the same
magnitude order.

For the same system, Ruiz-López et al. (2006) calculated
another sets of parameters, by applying a minimization of both
fmax and the quadratic performance index of Eq. (6) with R¼ 0,
r¼ 0, w¼ 0 and xð0Þ ¼ x0a0. The control parameters with their
corresponding indexes (calculated with set S1, and the same
weight and input matrices of Eq. (41)) are listed in Table 2. As it
can be observed, the control parameters reported by Ruiz-López
et al. (2006) produce a reduction in all indexes with the exception
of Iu;pulse and Iu;servo. The performance of both control systems
under a simultaneous change of set point in concentration
and temperature to Cd ¼ 0:09 mol L�1 and Td ¼ 433:54 K,
followed by a simultaneous step change in exogenous inputs
to Cf ¼ 0:90 mol L�1 and Tf ¼ 345 K at minute 2 are plotted in
Figs. 3–6. It is important to emphasize that control performance
was simulated directly from the non-linear description of reactor
(Eqs. (39) and (40)) with linear control equations (Eqs. (3) and
(4)), and the control variables, that is the input and cooling flows
(q and qc), were bounded between 740 L min�1 of their nominal
values. The plotted behavior shows the effect of reducing Iy;reg

which is manifested through a lower overshoot in output
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Fig. 5. Dynamic simulation of feed flow for the controlled CSTR as response of

simultaneous step in set points concentration and temperature, followed by a

simultaneous step in input concentration and temperature.

Fig. 6. Dynamic simulation of cooling flow for the controlled CSTR as response of

simultaneous step in set points concentration and temperature, followed by a

simultaneous step in input concentration and temperature.
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concentration (Fig. 3), while the reduction of Iu;reg , is reflected in a
smaller change of the feed flow (Fig. 5). This last effect produces a
lower decrease of output temperature (Fig. 4).

An optimization search showed that there is not a better set of
control parameters simultaneously minimizing all the indexes. That
is, in this particular case the control parameters reported by Ruiz-
López et al. (2006) are optimal for a MIMO PI algorithm. However,
one of the main advantages of the proposed method is that
performance indexes can be easily calculated for any linear control
algorithm. Therefore, the ISA PID algorithm (Eq. (36)) was
implemented for this MIMO system in order to improve the
performance of the controller reported by Ruiz-López et al. (2006).
A MIMO ISA PID algorithm can be represented by Eqs. (3) and (4)
with the following matrices,

A¼

0 1 0 0

0 �1=t1 0 0

0 0 0 1

0 0 0 �1=t2

2
66664

3
77775; B1 ¼

b11
11 b11

12

b21
11 b21

12

b11
21 b11

22

b21
21 b21

22

2
666664

3
777775;
B2 ¼

b12
11 b12

12

b22
11 b22

12

b12
21 b12

22

b22
21 b22

22

2
666664

3
777775; C¼

1 0 0 0

0 0 1 0

� �
;

D1 ¼
b01

11 b01
12

b01
21 b01

22

2
4

3
5; D2 ¼

b02
11 b02

12

b02
21 b02

22

2
4

3
5;

b01
ij ¼ kpij; b02

ij ¼� kpijþ
kdij

ti

� �
; b11

ij ¼ ½�b
01
ij þkpijþkiijti�=ti

b12
ij ¼�½b

02
ij þkpijþkiijti�=ti; b21

ij ¼ ð�b
11
ij þkiijÞ=ti;

b22
ij ¼�ðb

12
ij þkiijÞ=ti

An optimization search with weight factors w1 ¼ 0:5� 108,
w2 ¼ 1� 105, w3 ¼ 0:25� 10�1, w4 ¼ 0:2� 10�3, w5 ¼ 0:5� 105,
w6 ¼ 1� 10�4 produced the parameter set and performance
indexes listed in Table 2. A general reduction in all indexes was
obtained in comparison with those calculated for the control
parameters reported by Ruiz-López et al. (2006) and Chen et al.
(2002). The control performance (direct simulation of Eqs. (39)
and (40)) plotted in Figs. 3–6 shows an improvement for both
output dynamics (Figs. 3 and 4) and control signals (Figs. 5 and 6).
In general, the dynamic behavior of the MIMO ISA PID controller
for the proposed model performs with lower overshoots in
outputs and smaller changes in control signals. It is important
to note that because simulations were performed with the
original nonlinear model and with the control signal bounded,
the improvement in both tracking performance and disturbance
rejection demonstrates the robustness characteristics of the
proposed controller.
5. Conclusion

The integrals of squared error and squared control signal
deduced in this paper complete the robustness concept proposed
by Ruiz-López et al. (2006) as theoretical basis for a design
method of quadratic optimal and robust MIMO linear controllers.
The design method was stated as a minimization of quadratic
performance indexes subjected to a constraint in the fmax ratio.
The presented method, applied in the design of both SISO and
MIMO controllers for two CSTR, showed an improvement with
respect to the previous LMI-based controllers defined in RH2 and
RH1 normed spaces. Therefore, the presented results demon-
strate the advantages of the proposed method to develop robust
controllers with good performance characteristics for both the
servomechanism and regulator problems.
Acknowledgments

The authors express their acknowledges with Mexican DGEST
by the financial support through the project entitle ‘‘Control de
sistemas no-lineales utilizando algoritmos de control lineales’’.
Appendix A. Proof of Theorem 1

If the system (10)–(12) is in minimal realization A is stable,
and the proposed controller contains a zero pole (integral action),
under a step disturbance in rðtÞ, there is not off set ðeðtÞAL2þ Þ and
therefore,

lim
t-1

yðtÞ ¼ rðtÞ ¼ K2 ðA:1Þ
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Eq. (16) for the servomechanism problem ðK1 ¼ 0Þ is,

y¼C1A
�1eAtB2K2�C1A

�1B2K2þD12K2 ðA:2Þ

Due the system is in minimal realization and A is stable,

lim
t-1

C1A
�1eAtB2K2 ¼ 0 ðA:3Þ

(A.1)–(A.3) implies,

�C1A
�1B2þD12 ¼ Ir ðA:4Þ

Therefore applying (A.2) and (A.4),

Iy;servo ¼

Z t

0
ðK2�yÞ0Q ðK2�yÞdt

¼

Z t

0
ðC1A

�1eAtB2K2Þ
0QC1A

�1eAtB2K2 dt ðA:5Þ

or

Iy;servo ¼ K 02B
0

2

Z t

0
ðeAtÞ

0
ðA�1

Þ
0C01QC1A

�1eAtdtB2K2 ðA:6Þ

defining

Y¼ eAt ðA:7Þ

(A.7) is the solution of the following differential equation and
initial condition,

_Y ¼AY; Yð0Þ ¼ 1 ðA:8Þ

And, like A is stable, exist a Lyapunov function such that,

VðtÞ ¼YTPyY ðA:9Þ

where Py can be calculating from the Riccati equation,

A0PyþPyA¼�ðA
�1
Þ
0C01QC1A

�1
ðA:10Þ

Then, by the properties of a Lyapunov function in Eq. (A.6),Z t

0
Y0ðA�1

Þ
0C01QC1A

�1Ydt¼�VðtÞjt0 ¼�Y
0
ðtÞPyYðtÞþY0ð0ÞPyYð0Þ

ðA:11Þ

Finally, due the system is in minimal realization and A is
stable,

lim
t-1

Y0ðtÞPyYðtÞ ¼ 0

and therefore from Eqs. (A.6), (A.8) and (A11),

lim
t-1

Iy;servo ¼ K 02B
0

2PyB2K2

which proof the Theorem 1.&
Appendix B. Proof of Theorem 2

If the system (10)–(12) is in minimal realization A is stable,
and the proposed controller contains a zero pole (integral action),
under a step disturbance in wðtÞ, eðtÞAL2þ and therefore,

lim
t-1

yðtÞ ¼ 0; ðfor K2 ¼ 0Þ ðB:1Þ
then

y¼C1A
�1eAtB1K1�C1A

�1B1K1þD11K1 ðB:2Þ

(B.1) implies,

�C1A
�1B1þD11 ¼ 0 ðB:3Þ

under this considerations,

Iy;reg ¼ K 01B
0

1

Z t

0
ðeAtÞ

0
ðA�1

Þ
0C01QC1A

�1eAt dtB1K1 ðB:4Þ

And therefore by the Theorem 1 the Theorem 2 is proofed.&
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