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Abstract: A new genetic algorithm for community detection in complex networks was proposed. It adopts matrix encoding that 
enables traditional crossover between individuals. Initial populations are generated using nodes similarity, which enhances the 
diversity of initial individuals while retaining an acceptable level of accuracy, and improves the efficiency of optimal solution search. 
Individual crossover is based on the quality of individuals’ genes; all nodes unassigned to any community are grouped into a new 
community, while ambiguously placed nodes are assigned to the community to which most of their neighbors belong. Individual 
mutation, which splits a gene into two new genes or randomly fuses it into other genes, is non-uniform. The simplicity and 
effectiveness of the algorithm are revealed in experimental tests using artificial random networks and real networks. The accuracy of 
the algorithm is superior to that of some classic algorithms, and is comparable to that of some recent high-precision algorithms. 
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1 Introduction 
 

With recent advances in complex network research, 
many real networks have been shown to possess 
community structure; in other words, the whole network 
is composed of several communities. Community 
structure emerges as the third important characteristic of 
complex networks, the other properties being 
small-world and scale-free. In complex networks, the 
nodes in a community connect closely with each other, 
while communities connect sparsely with other 
communities. Community structure acquires different 
meanings in different application fields. For example, in 
a social network, the community represents a group of 
people closely connected or possessing similar 
characteristics, while in world-wide-web terminology, a 
webpage community comprises a set of webpages linked 
by a common theme. In 2002, NEWMAN and GIRVAN 
[1] initiated a new development in complex networks 
research, i.e., community detection in complex networks. 

Community detection attempts to gain a meaningful 
community partition of complex networks by using the 
information hidden in network topology. Assuming that 
all nodes in complex networks can be assigned to groups, 
these nodes are divided into several mutually exclusive 
communities. Therefore, community detection in 
complex networks is a typical NP combinatorial 
optimization problem. Owing to its high performance in 
solving NP-hard problems, genetic algorithm (GA) has 

been widely applied by scholars across the world to 
detect the community structure of complex networks. 

We develop a simple and effective GA based on 
matrix encoding and nodes similarity (abbreviated to 
MENSGA), for community detection in complex 
networks. In MENSGA, network modularity function is 
set as target and fitness function, matrix encoding is 
adopted, and nodes similarity is used to generate an 
initial population. The details of the algorithm are 
described in the next section. 
 
2 MENSGA 
 
2.1 Network modularity function 

Let G(V, E) represent a complex network, where V 
and E represent the node set and edge set of the network, 
respectively, and 
 

{ | 1,  2,  ,  },iV v i n   { | 1,  2,  ,  }iE e i m    
 
where n and m are the numbers of nodes and edges, 
respectively. 

Network modularity function, also called 
Q-function, is widely used to quantitatively evaluate the 
community partition of complex networks. It is 
expressed as follows [1]: 
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where aij is an element of the network adjacency matrix 
A=(aij)n×n. If vi and vj are connected by an edge, then  
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aij=1, or aij=0; ci and cj represent the communities to 
which vi and vj belong, respectively; if ci=cj, then δ(ci, 
cj)=1, or δ(ci, cj)=0; ki and kj are respectively the degrees 

of vi and vj, with 
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Note that |Q|≤1. Higher Q values (close to 1) correspond 
to stronger community partition of G. 
 
2.2 Individual encoding 

Present research on community detection in 
complex networks widely employs string encoding [2−7] 
and graph-based encoding [8−11]. The former probably 
does not admit traditional crossover operations, while the 
latter requires additional decoding [2, 7]. To avoid these 
shortcomings, individuals are encoded into a binary 
matrix, as described in Ref. [12]. Then, regardless of 
how G is partitioned, the community partition of G is 
always represented by a binary matrix M: 
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where M is an n×t matrix, t (1<t<n) is the number of 
communities after partitioning G. Row i (1≤i≤n) of M 
corresponds to the assigning result of vi, and column j 
(1≤j≤t) corresponds to community cj. If vi belongs to cj, 
then mij=1, or mij=0. 

Since any node of G must and can belong to a single 
community, M must follow the constraints defined in   
Eqs. (2) and (3): 
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A simple example of the encoding process is shown 

in Fig. 1. The network comprises 6 nodes divided into 
two communities v1, v3, v6 and v2, v4, v5, respectively 
(delineated by dotted lines). The community partition of 
the network is encoded by the matrix M in the right 
section of Fig. 1. 
 

 
Fig. 1 Example of matrix encoding 

 
Different community structures can be generated by 

different partitions of G, thus the number of columns of 

M is variable. Regardless of the ordering of the columns, 
M always represents the same partition of G, unless any 
entry of the columns changes. 
 
2.3 Population initialization 

Inspired by the quantitative description of nodes 
similarity of a complex network presented in Ref. [13], 
we propose a new population initialization method based 
on traditional clustering. 

LEICHT et al [13] took into account the similar 
relation between nodes in both long and short paths of 
network topology, and derived Eq. (4) to compute the 
nodes similarity of a complex network. 
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where λmax is the maximum eigenvalue of A; D is an 
n-order diagonal square matrix whose diagonal entries 
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is the identity matrix and S is the nodes similarity matrix. 
For optimal S, α (0<α<1) is generally set to 0.97 [13]. 

We propose the algorithm for population 
initialization based on nodes similarity (abbreviated to 
PINS) as follows: 

Step 1: Obtain the nodes similarity matrix S by 
iterating Eq. (4) until the left and right hand sides of the 
equation converge. 

Step 2: Randomly select v1, v2, …, vt as centers of t 
communities, 1<t<n. 

Step 3: By following the max-similarity principle 
that a node has greater similarity with one community 
center than with the others, use S to assign each 
non-community-center node to a selected community. 

Repeat Steps 2 and 3 for all members of the 
population (up to and including Pn). 

The time complexity of Step 1 is O(ln3), where l is 
the iteration time. In Step 2, the community centers 
chosen are different for each time, which provides high 
diversity to the initial individuals, and the time 
complexity can be ignored. Step 3 greatly reduces the 
possibility that node pairs with low similarity or no link 
between each other are divided into the same community, 
thus assigning initial individuals with enhanced accuracy, 
lessening the algorithm’s search space and speeding up 
the convergence. The time complexity of Step 3 is 
O[Pn(n− )t t ], where t  is the average number of 
communities after each partition. Therefore, the time 
complexity of PINS is O[n3+(n− )t t ]. 
 
2.4 Crossover operator 

Having quantitatively described the quality of 
individuals’ genes, a traditional single-point crossover 
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operator is adopted for crossing individuals. Referring to 
Section 2.2, a column of M corresponds to one gene of 
an individual, as well as to a single community of G. 
Generally, as the average nodes similarity in a 
community enlarges, the community structure improves. 
Crossover operation based on the quality of individuals’ 
genes is then implemented as follows: 

Step 1: Use Eq. (1) to calculate the fitness of all 
individuals, and sort the individuals in descending order 
according to their fitness. Next, select the top Pn×Pc 
individuals possessing optimal fitness and pair them to 
cross. Pc (0<Pc<1) is a fixed constant, and (Pn×Pc)mod2= 
0. As an illustrative example, let the top six individuals 
with optimal fitness sorted in descending order be 
represented by I1, I2, I3, I4, I5 and I6. Pair them to cross; 
then successively cross I1 and I6, I2 and I5, I3 and I4. 

Step 2: Measure the genetic quality of the crossover 
individuals. Suppose that in M, column Mi=(m1i, m2i, …, 
mni)

T contains r nonzero elements, mu1i, mu2i, …, muri, 
where 1≤up≤n, 1≤p≤r, 1≤r<n, then use S and Eq. (5) to 
calculate the average similarity is  of vu1

, vu2
, …, vur

,  
which also indicates the quality of gene i of the 
individual. In Eq. (5), 

qpuus  is the similarity between 
puv  

and .
quv  
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Sort each crossover individual’s genes in 

descending order according to ,is  whose value is 0 when 
a community possesses only one node. 

Step 3: Implement traditional single-point crossover. 
Exchange the best genes of two crossover individuals 
(corresponding to the first two columns of their encoding 
matrices) to generate two new individuals. As shown in 
Fig. 2, if (X1, X2, … , Xp) and (Y1, Y2, … , Yq) 
respectively represent the encoding matrices’ column 
vectors of individuals X and Y, the exchange of X1 and 
Y1 generates two new individuals ) , , ,( 21 pXXYX   
 

 
Fig. 2 Schematic of crossover operation 

and Y  =(X1, Y2, …, Yq). 
It is worth noting that the new individuals generated 

by Step 3 may be illegal, which means that their 
encoding matrixes may violate Eqs. (2) and (3). In this 
case, some nodes may not belong to a community, or 
may belong to more than one community, which 
contradicts the presupposition. These invalid solutions 
are revised as follows: 

1) Form a new community composed of nodes 
belonging to none of the communities. Thus, if M 
contains rows whose entries are all 0 (called 0-rows for 
brevity), then add a new all-zero column to M, and set 
the elements intercepting both the new column and the 
0-rows to 1; 

2) Assign nodes belonging to more than one 
community into the communities holding most of their 
neighbors, which is a process known as neighbor-most 
principle [7]. Thus, if M contains a row with several 1s 
(called 1s-row for brevity), identify the column with the 
highest number of neighbors of the node represented by 
the 1s-row, retain that column element of the 1s-row at 1, 
and set all other elements in the 1s-row to 0. 

In Fig. 3, suppose that v3 has neighbors v1 and v6, 
and an invalid solution is reached in which v2 and v4 
belong to none of the existing communities, and v3 
belongs to both c2 and c3. To revise this solution, add a 
new all-zeros column to the invalid solution, then set its 
2nd and 4th elements to 1. Additionally, set all elements 
in the 3rd row to 0 except the first, which is retained as 1. 
Delete all columns containing zeros only. 
 

 
Fig. 3 Example of revision of an invalid crossover solution 

 
In the above crossover operation, all sortings are 

made using bubble sort. Denote the average numbers of 
nodes in each community and those which are divided 
into more than one community after each partition, by αn 
and βn, respectively, where 0<α<1, 0<β≤1. Then the 
respective time complexities of the three steps are 
O ),( 22

nPn   ]}))[({( 22
c ttnPPO n    and O[(Pn×Pc)· 

βn t ], yielding a time complexity for the crossover 
operation of ).( 22 ttnO   

 
2.5 Mutation operator 

In the matrix encoding, non-uniform mutation based 
on individuals’ genes sorted in order of descending 
fitness is used to change the gene through split or fusion 
operations. In M, the split operation is achieved by 
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randomly splitting the last column (whose elements sum 
to more than 1) into two columns that replace the 
original one; whereas the fusion operation moves the 
none-zero elements of the last column to other columns 
according to the neighbor-most principle, and deletes the 
last column. The details of the mutation operation are as 
follows: 

Step 1: Select the bottom-ranked Pn×Pm individuals 
which have minimum fitness, then measure and sort their 
genes according to the method applied to the 2nd step of 
crossover operation. Here, Pm (0<Pm<1) is a fixed 
constant and Pn×Pm is an integer. 

Step 2: If M contains just two columns, implement 
the split operation; if M contains three or more columns, 
implement split or fusion operation randomly. During the 
fusion operation, if most of the neighbors of a node 
belonging to more than one community reside in the least 
fit community (corresponding to the last column), the 
node is assigned to the community in which the second 
most neighbors reside. 

In Fig. 4, suppose that v3 has neighbors v1 and v6, v5 
has neighbors v2 and v4, then in the mutation individual, 
a split operation splits the last column into two columns, 
enabling v3 and v5 to each constitute a new community; 
while a fusion operation sets the 3rd element in the 1st 
column and the 5th in the 2nd column to 1, and deletes 
the last column. 
 

 
Fig. 4 Example of a mutation operation 

 
Denote the average number of nodes involved in 

fusion operations after each partition as γn, with 0<γ<1. 
The respective time complexities of the two mutation 
steps are then 

2 2{( )(( ) )}n mO P P n t t   and O[(Pn× 
Pm)γ ],tn  yielding an overall time complexity for the 
mutation operation of ).( 22 ttnO   

 
2.6 Selection operator and description of MENSGA 

By using μ+λ strategy, the top Pn individuals with 
optimal fitness are selected from the parent generation 
and the new population generated by crossover and 
mutation, as the progeny generation [7]. In MENSGA, 
these procedures are implanted as follows: 

Algorithm input: This comprises the network 

adjacency matrix A and the parameters of MENSGA 
given in Table 1. 
 
Table 1 Parameters of MENSGA 

Parameter Value Description 

α 0.97 
Parameter used to calculate nodes 

similarity 

Pn 100 
Number of individuals in 

population 

Pc 0.8 
Ratio of crossover individuals to 

all individuals of population 

Pm 0.2 
Ratio of mutation individuals to 

all individuals of population 

Nmax 100 Maximum number of iterations 

 
Algorithm output: Encoding matrix M 

representing the community partition of a complex 
network. 

Terminal condition to end iteration: The 
algorithm runs through Nmax iterations. 

Algorithm pseudo-code: 
1) Use PINS to generate initial population Poriginal; 
2) for i=1:Nmax 
3) Calculate the fitness of each individual using  

Eq. (1), and sort individuals in descending fitness order; 
Generate Pn(Pc+Pm) new individuals through 

crossover and mutation to form new population Pnew; 
4) Select the fittest Pn×Pc individuals to cross, 

and calculate the quality of their genes using Eq. (5), 
then sort the genes of each crossover individual in order 
of descending quality; 

5) Pair crossover individuals and exchange their 
best genes; 

6) Revise invalid individuals generated by the 
crossover operation; 

7) Select the least fit Pn×Pm individuals to mutate, 
and calculate the quality of their genes using Eq. (5), 
then sort the genes of each mutation individual in order 
of descending quality; 

8) Allow mutation individuals to mutate non- 
uniformly; 

Following completion of Steps 4 to 8, a new 
population is obtained Pnew; 

9) Use Eq. (1) to compute the fitness of all 
individuals in Pnew, integrate Pnew and Poriginal, and select 
the top Pn individuals possessing optimal fitness as the 
progeny generation; 

end 
10) Select the maximally fitted individual as the 

community partition result of the complex network. 
Referring to Sections 2.3−2.5, and noting that t  is 
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usually far less than n, the time complexity of MENSGA 
is O(n3). 
 
3 Experimental analysis 
 
3.1 Experimental description 

Similarly to Refs. [2] and [7], the performance of 
MENSGA is tested on artificial random networks and 
five real networks, and is compared with the classical 
algorithms GN [14] and FN [15], as well as 
contemporary high-accuracy algorithms TGA [5], CCGA 
[7] and LGA [2]. To avoid repetition, some of the 
performance data are replicated from Ref. [2]. It is worth 
noting that, to achieve high accuracy, TGA, CCGA and 
LGA require many optimizing steps. 

The experiment was run on a Microsoft Windows 
Server 2003 (X64) operation system using a Matlab 7 
programming platform; Intel (R) Core (TM)2 Duo CPU 
T8300 @ 2.40GHz processor, 4.00 GB memory and  
350 GB hard disk. 

MENSGA parameter values were set as given in 
Table 1. Specially, Pn, Pc, Pm and Nmax could be altered as 
appropriate for the situation. In practice, for the networks 
used in the following experiments, we have found that it 
is optimum to set Pc as 0.8 and Pm as 0.2 by 
experimenting repeatedly. 
 
3.2 Experimental results and analysis 
3.2.1 Artificial random network 

RN (N, C, D, Zout) [14] represents an artificial 
random network. N=32 is the number of nodes in each 
community, C=4 is the number of communities, D=16 is 
the degree of each node, Zout is the number of links 
between each node and nodes in other communities. 
When Zout is small, the community structure of the 
network is well-defined; otherwise, it is poorly 
characterized, especially when Zout≥8. Each algorithm is 
tested 50 times on this artificial random network, and the 
results are shown in Fig. 5. 

In Fig. 5, the y-axis indicates average NMI 
similarity [16] between the 50 independently-generated 
community partitions of the network and its true 
community structure. Note that this measure assesses the 
algorithm’s accuracy. From Fig. 5, it is seen that 
MENSGA outperforms GN, FN and TGA in the artificial 
random network test. In the case of unclear community 
structure, as occurs particularly when Zout=8, MENSGA 
is inferior to CCGA and LGA. However, the     
overall accuracy of MENSGA exceeds that of the other  

 

 
Fig. 5  Accuracies of GN, FN, TGA, CCGA, LGA and 

MENSGA running on artificial random networks 

 
algorithms. 

In an additional test, setting Zout=7, 10 individuals 
were randomly generated by PINS. Table 2 gives the 
accuracy of the individuals, represented by the NMI 
similarity between their community partition generated 
by PINS and the true community structure of the network. 
In Table 3, the upper and lower triangular data are the 
NMI and Jaccard similarities between the individuals, 
respectively [17]. Collectively, Tables 2 and 3 reveal an 
average accuracy of the 10 individuals of 39.08%, with 
large differences between them, indicating that 
PINS-generated initial individuals are diverse yet retain a 
respectable level of accuracy. It is worth noting that, 
since the calculation methods of NMI and Jaccard 
similarity differ, the NMI and Jaccard similarities tend to 
differ by an order of magnitude (Table 3). 
3.2.2 Real network 

The performance of MENSGA was further tested on 
five widely used real networks [18]. The specifications 
of these networks are listed in Table 4. 

MENSGA was run 50 times on each real network. 
The average Q-function values obtained for each 
network were compared against those of GN, FN, TGA, 
CCGA and LGA reported in Ref. [2]. The results are 
summarized in Table 5. 

For each real network, MENSGA returns 
approximately the same result each time and converges 
rapidly. For example, the convergence of MENSGA 
running on American college football network is shown 
in Fig. 6. 

In Table 4, the community structures of the first 
three real networks are known in advance. Thus,     
the performance of MENSGA was analyzed further by  

 

Table 2 Accuracies of 10 individuals randomly generated by PINS running on RN(32, 4, 16, 17) 

Individual 1 2 3 4 5 6 7 8 9 10 Average

Accuracy/% 44.79 45.66 30.66 32.60 40.66 46.81 38.11 35.13 45.29 31.14 39.08 
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Table 3 NMI similarity and Jaccard similarity between 10 individuals in Table 2 

Individual 1 2 3 4 5 6 7 8 9 10 Average similarity

1 0 0.919 5 0.648 5 0.708 5 0.766 8 0.850 2 0.650 9 0.701 3 0.917 7 0.455 6 

2 0.087 0 0 0.678 8 0.735 3 0.812 7 0.871 9 0.671 3 0.716 0 0.942 3 0.480 1 

3 0.028 1 0.020 7 0 0.483 1 0.571 5 0.574 7 0.402 0 0.422 1 0.676 0 0.273 2 

4 0.031 9 0.016 8 0.083 6 0 0.604 4 0.668 6 0.4974 0.489 6 0.718 0 0.376 4 

5 0.038 1 0.053 2 0.115 6 0.083 3 0 0.755 8 0.544 8 0.598 2 0.807 7 0.428 2 

Average 
NMI similarity: 

0.6200 

6 0.080 4 0.063 2 0.029 1 0.059 1 0.101 6 0 0.604 2 0.651 7 0.863 1 0.417 1 

7 0.026 9 0.013 9 0.072 8 0.099 1 0.074 2 0.044 7 0 0.437 2 0.669 1 0.298 1 

8 0.036 8 0.012 7 0.068 4 0.050 6 0.081 4 0.053 4 0.061 9 0 0.728 6 0.329 9 

9 0.092 8 0.085 7 0.027 4 0.007 0 0.063 2 0.043 7 0.016 9 0.032 1 0 0.480 1 

10 0.014 6 0.008 7 0.091 3 0.085 3 0.066 6 0.029 0 0.110 8 0.073 6 0.011 5 0 

Average Jaccard
similarity: 

0.0544 

            
 

Table 4 Specifications of real networks used in experiments 

Network name 
Number of 

nodes 
Number of 

edges 

Zachary’s karate club 34 78 

Dolphin sociality 62 159 

Books on US politics 105 441 

American college football 115 613 

Jazz musicians 198 5484 

 

Table 5 Average Q-function values of GN, FN, TGA, CCGA, 

LGA and MENSGA running on 5 real networks 

Network name GN FN TGA 

Zachary’s karate club 0.401 3 0.252 8 0.403 9

Dolphin sociality 0.470 6 0.371 5 0.524 1

Books on US politics 0.516 8 0.502 0 0.524 5

American college football 0.599 6 0.454 9 0.593 7

Jazz musicians 0.405 1 0.403 0 0.440 6

Network name CCGA LGA MENSGA

Zachary’s karate club 0.419 8 0.419 8 0.419 8

Dolphin sociality 0.527 3 0.528 0 0.527 2

Books on US politics 0.526 9 0.527 2 0.526 2

American college football 0.600 5 0.604 6 0.604 4

Jazz musicians 0.444 5 0.444 9 0.444 7

 
applying the algorithm to these networks. 

1) Zachary’s karate club network 
This network reflects the social relations of a karate 

club in an American university. Its nodes represent club 
members, and an edge indicates social communication 
between two club members. The club splits into two 
independent clubs due to internal divergence between the 
original coach and director. Figure 7 shows the 
community partitions generated by a single random run 
of MENSGA on this network. The black and white nodes 
delineate two independent communities following the 

 

 
Fig. 6 Convergence of MENSGA running on American college 

football network 

 

  
Fig. 7 Community partition result of Zachary’s karate club 

network using MENSGA 

 
split, while the four node shapes represent four small 
communities of different sizes. Nodes 1 and 34 represent 
the coach and director, respectively. Figure 7 reveals that 
MENSGA not only accurately discovers the network’s 
real community structure, but identifies small 
communities nested within the known ones. When 
MENSGA is run 50 times on this network, the average 
value of the Q-function is 0.419 8, which exceeds that 
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corresponding to its real community structure (0.371 5). 
2) Dolphin sociality network 
This network reflects the contact of dolphins within 

male and female communities. Its nodes represent 
dolphins, in which an edge indicates that two dolphins 
contact frequently. Figure 8 illustrates the output of a 
single random run of MENSGA on this network. The 
square nodes represent female dolphins, and different 
square nodes delineate the small communities within the 
female dolphin population. Triangular nodes represent 
male dolphins. Figure 8 shows that MENSGA not only 
accurately discovers the network’s real community 
structure, but identifies smaller communities among 
female dolphins. Running MENSGA 50 times on this 
network yields an average Q-function value of 0.527 2, 
which again exceeds that of the real community structure 

(0.372 2). 
3) American college football network 
This network is a match network based on an 

American college football regular season plan in the 
autumn of 2000. The nodes represent teams, and an edge 
indicates that matches are played between the two 
connected teams. In the regular season, 115 teams attend 
12 conferences of different sizes. The majority of 
matches are played between teams within the same 
conference, thus the 12 conferences constitute the 
network’s 12 real communities. When MENSGA is 
randomly run on this network a single time, ten 
communities emerge as shown in Fig. 9. The nodes with 
different gray scales and shapes represent teams from 
different conferences. Figure 9 shows that MENSGA can 
correctly assign most of the teams belonging to the same 

 

 
Fig. 8 Community partition result of Dolphin social network using MENSGA 
 

 
Fig. 9 Community partition result of American college football network using MENSGA 
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conference into the equivalent community; however, 
teams from Independents and Sun Belt are placed into 
other communities. This is reasonable since more 
inter-community than intra-community matches are 
played by these teams. In addition, teams from 
Independents are independent [14]. The average 
Q-function value obtained from 50 runs of MENSGA on 
this network is 0.604 4, which, like the above networks, 
exceeds that corresponding to its real community 
structure (0.551 8). 
 
4 Conclusions 
 

1) In the presented generic algorithm for community 
detection in complex networks, matrix encoding enables 
traditional individual crossover and requires no 
additional decoding. 

2) Initial individuals generated by nodes similarity 
approaches are diverse yet retain an acceptable level of 
accuracy. 

3) Overall, MENSGA outperforms GN, FN and 
TGA. 

4) MENSGA is inferior to CCGA and LGA when 
processing a network with unclear community structure, 
but can detect the community structures of real networks 
to the same level of accuracy. 

5) MENSGA requires no additional optimizing 
steps. It adopts matrix encoding, uses nodes similarity to 
initialize the population and conducts simple crossover 
and mutation operations, yet achieves high accuracy. 
Therefore, it is a simple and effective genetic algorithm 
for community detection in complex networks. 
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