
A

A
O

HQ1

a

b

c

a

A
R
R
A
A

K
M
P
R
L

1
Q3

c
fl
s
[
m
a
a
e
l
m
s
o

P
i
[
s
d
S

Q2

h
1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
ARTICLE IN PRESSG Model
SOC 3409 1–22

Applied Soft Computing xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

 new Reinforcement Learning-based Memetic Particle Swarm
ptimizer

ussein Sammaa,b, Chee Peng Limc,∗, Junita Mohamad Saleha

School of Electrical and Electronic Engineering, Universiti Sains Malaysia, Malaysia
Faculty of Education, University of Aden, Shabwah, Yemen
Centre for Intelligent Systems Research, Deakin University, Australia

 r t i c l e i n f o

rticle history:
eceived 1 August 2015
eceived in revised form 2 January 2016
ccepted 5 January 2016
vailable online xxx

eywords:

a b s t r a c t

Developing an effective memetic algorithm that integrates the Particle Swarm Optimization (PSO) algo-
rithm and a local search method is a difficult task. The challenging issues include when the local search
method should be called, the frequency of calling the local search method, as well as which particle should
undergo the local search operations. Motivated by this challenge, we introduce a new Reinforcement
Learning-based Memetic Particle Swarm Optimization (RLMPSO) model. Each particle is subject to five
operations under the control of the Reinforcement Learning (RL) algorithm, i.e. exploration, convergence,
emetic algorithm
article Swarm Optimization
einforcement learning
ocal search

high-jump, low-jump, and fine-tuning. These operations are executed by the particle according to the
action generated by the RL algorithm. The proposed RLMPSO model is evaluated using four uni-modal and
multi-modal benchmark problems, six composite benchmark problems, five shifted and rotated bench-
mark problems, as well as two benchmark application problems. The experimental results show that
RLMPSO is useful, and it outperforms a number of state-of-the-art PSO-based algorithms.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
. Introduction

Memetic-based optimization algorithms have been used suc-
essfully in many applications, e.g. DNA sequence compression [1],
ow shop scheduling [2], multi-robot path planning [3], wireless
ensor networks [4], finance applications [5], image segmentation
6], and radar applications [7]. The main objective of developing

emetic-based algorithms is to exploit the benefits of both global
nd local search methods and combine them into a single model. As
n example, the Particle Swarm Optimization (PSO) algorithm is an
ffective global optimizer, and has been integrated with different
ocal search methods to produce a number of memetic PSO-based

odels [1,2,8–11]. The resulting models combine the global search
trength of PSO and the refinement capability of local search meth-
ds into a unified framework.

In the literature, many successful applications of memetic
SO-based models have been reported. In [1], a memetic model
ntegrating PSO and an Intelligent Single Particle Optimizer (ISPO)
12] to solve the DNA sequence compression problem was pre-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ented. In [11], an adaptive memetic algorithm with PSO was
eveloped and applied to the Latin hypercube design problem.
pecifically, the standard PSO algorithm was adopted to perform

∗ Corresponding author. Tel.: +61 352273307.
E-mail addresses: chee.lim@deakin.edu.au, cplim123@yahoo.com (C.P. Lim).

ttp://dx.doi.org/10.1016/j.asoc.2016.01.006
568-4946/Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

62

63

64
Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved.

the global search operations. It was integrated with a Lamarckian
algorithm to perform the refinement operations. A hybrid model of
PSO and a pattern-based local search method was studied in [10].
The resulting model was useful for parameter tuning of the Support
Vector Machine (SVM). On the other hand, some studies indicate
that PSO can be used for performing the local search operations in
memetic models [5,13,14]. In [5], a hybrid model of PSO and genetic
algorithm was introduced, whereby the PSO algorithm acted as a
local search method. A hybrid shuffled frog-leaping algorithm and
modified quantum-based PSO local search method was described
in [13]. Recently, a hybrid model combining the differential evalu-
ation algorithm and PSO was introduced. Again, PSO functioned as
a local search method [14].

There are a lot of challenges in developing an effective memetic-
based PSO model. The key challenges include when the local search
method should be called, the frequency of calling the local search
method, and which particle should undergo the local search opera-
tions. Indeed, the findings in [1] indicate that efficient management
of the local search method in terms of time and frequency of call-
ing has a significant impact on the performance. Besides these
challenges, the standard PSO algorithm also suffers from several
weaknesses, primarily the premature convergence and high com-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

putational cost problems. The first weakness is related to its fast
premature convergence condition [15,16]. As pointed in [15,16],
PSO can be trapped quickly in local optima at the beginning of the
search process. The second limitation of PSO comes from its high

65

66

67

68

dx.doi.org/10.1016/j.asoc.2016.01.006
dx.doi.org/10.1016/j.asoc.2016.01.006
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:chee.lim@deakin.edu.au
mailto:cplim123@yahoo.com
dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

2 ft Com

c
b
i
a
i

d
m
l
pQ4
p
h
a
p

d
o
u
t
fi
a
f

(

(

(

(

t
i
i
w
h
a
i
s
w
s

s
w
s
r
d
r
s
D
w
N

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187
ARTICLESOC 3409 1–22

 H. Samma et al. / Applied So

omputational cost. While a large particle population size gives a
etter swarm diversity capability, the computational cost becomes

ntensive too, e.g. each particle needs to undergo the fitness evalu-
tion in every search cycle. This limitation of PSO has been reported
n [17,18].

To mitigate the aforementioned problems, this study intro-
uces a new reinforcement learning-based memetic PSO (RLMPSO)
odel. RL has been employed with standard PSO and other evo-

utionary algorithms [3,19]. An integration of RL and PSO was
roposed by Grigoris [19]. Another recent study [3] employed RL for
arameter tuning a differential evolution algorithm. On the other
and, RL worked independently from PSO in [6], whereby it was
dopted to enhance the estimation of the objective function in noisy
roblems.

Comparing with the existing work in the literature, this study
iffers in the aspect that RL is embedded in RLMPSO to control the
peration of each particle during the search process. Each particle,
nder the control of RL, performs one of the five possible opera-
ions [20], i.e. exploration, convergence, high-jump, low-jump, and
ne-tuning. Moreover, each operation is given a reward or penalty
ccording to its achievement. The proposed RMLPSO model has the
ollowing advantages:

1) RLMPSO works with a small population size (typically 3
particles). It utilizes the ISPO (i.e. Intelligent Single Particle Opti-
mizer) algorithm [12]. Additionally, it is enhanced with a total of
five operations, i.e. exploration, convergence, high-jump, low-
jump, and fine-tuning.

2) The RL algorithm is embedded into RLMPSO to control the oper-
ation of each individual particle in the swarm. Specifically, RL
adaptively switches the particle from one operation to another
in accordance with the particle’s achievement. Positive rewards
are given to particles that have performed well, while penalties
are imposed to non-performing particles.

3) Each particle in RLMPSO evolves independently, e.g. one parti-
cle executes exploration, while others perform their respective
operations.

4) To minimize the computational cost of fine-tuning, two param-
eters are introduced i.e. delay (D) and cost (C). The delay
parameter prevents fine-tuning (i.e., for local search) to be initi-
ated at the beginning of the search process. The cost parameter
controls the duration between each consecutive call of the fine-
tuning operation.

Similar to RL, the idea of selecting the best performing opera-
ors from a set of alternatives has been comprehensively studied
n the literature [21–24]. As an example, four PSO velocity updat-
ng strategies were used in [21]. A probability execution variable

as assigned for each strategy, and the best operation was given a
igher probability of selection. An evolutionary-based optimization
lgorithm with an ensemble of mutation operators was introduced
n [22]. Each individual in the population would select a mutation
trategy according to a probability distribution. Improved results
ere achieved with the ensemble strategy as compared with the

ingle mutation strategy [25].
Differential Evolution (DE)-based methods with ensemble

trategies were studied in [23,24,26]. In [23], an evolving DE model
ith an ensemble mutation strategy was presented. During the

earch process, DE randomly selected a mutation strategy with a
andom set of parameters to generate a new offspring. If the pro-
uced vector was better than the parent, the strategy would be
etained; otherwise a new random mutation strategy with a new
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

et of parameters would be generated [23]. The multi-objective
E algorithm with a pool of Neighbourhood Size (NS) parameter
as presented in [24]. In particular, DE was developed using k
S candidates. The best NS value was adaptively selected from k
 PRESS
puting xxx (2016) xxx–xxx

candidates according to their historical performances. Improve-
ments were achieved using k NS candidates as compared with
only one candidate. Another DE-based model with an ensemble
mutation strategy was presented in [26]. In particular, the pop-
ulation was randomly divided into three small sub-populations
and one large sub-population. The three small sub-populations
were executed for a specific number of Fitness Evaluations (FEs).
Each sub-population was executed with a different mutation strat-
egy, i.e. “current-to-pbest/1” and “current-to-rand/1”, and “rand/1”
[26]. A reward was computed as the ratio of fitness improvement to
the total number of fitness calls consumed by each sub-population.
After that, the large sub-population was executed with the set-
ting of the best performing small sub-population. This process was
repeated until the maximum number of FEs is met. In this case,
the best mutation strategy could be selected dynamically during
run time. The proposed model was able to outperform other DE
variants.

The rest of this paper is organized as follows. In Section 2, an
overview of PSO and its variants is given. The proposed RLMPSO
model is explained in Section 3. In Section 4, a series of experi-
ments to evaluate the effectiveness of RLMPSO using benchmark
optimization problems is described. A summary of the research
findings is presented in Section 5.

2. Particle Swarm Optimization and its variants

PSO was introduced by Kennedy and Eberhart about two
decades ago [27]. The motivation of PSO is to mimic social interac-
tion and search behaviours of animals, such as bird flocking and fish
schooling. In general, PSO is represented by a swarm of N particles.
Each particle in the swarm is associated with two vectors, i.e., the
velocity (V) and position (X) vectors, as follows:

Xi =
[
d1

i , d2
i , d3

i , . . ., xD
i

]
(1)

Vi =
[
v1

i , v2
i , v3

i , . . ., vD
i

]
(2)

where D represents the dimension of the optimization problem
and i denotes the particle number in the swarm. During the search
process, the velocity and position vectors are updated as follows:

Vi+1 = w ∗ Vi + c1 ∗ randuniform(pBest − Xi)

+ c2 ∗ randuniform(gBest − Xi) (3)

Xi+1 = Xi + Vi+1 (4)

where w is the inertia weight, c1 is the cognitive acceleration
coefficient, c2 is the social acceleration coefficient, randuniform is a
uniformly distributed random number within [0, 1], pBest is the
local best position achieved by a particular particle, and gBest is the
global best position achieved by the whole swarm.

As can be seen in Eq. (3), each particle’s movement is affected
by three components, namely its particle velocity (Vi), the distance
from its local best (pBest − Xi), and the distance from the global
best (gBest − Xi) in the swarm. Therefore, to control each compo-
nent in Eq. (3), three parameters are used, i.e., w, c1, and c2. The
suggested range of the inertia weight is w ∈ [0.4, 0.9] [27]. It has
been pointed out that w must be high in the exploration stage and
low in the convergence stage [20]. On the other hand, the settings
of c1 and c2 need to strike a balance between pBest and gBest. As
suggested in [20,21], c1 must be higher than c2 in the exploration
stage, and the opposite in the convergence stage.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Since the introduction of the original PSO algorithm, many
PSO variants have been put forward to improve its performance
[1,2,4–11,13,14,17,18,28–48]. The main PSO-based algorithms
available in the literature can be divided into five categories i.e.

188

189

190

191

dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

ft Com

m
a
p

2

P
e
s
r
p
n
i
b
b
f
a
S
t
w
d
t
b
w
t
w
i
e

e
A
s
p
t
i
w
e
e
t
w
p
t
d
w
a

[
l
d
r
t
o
c
t
f
o
r
I
p
t
n
c
t
c

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311
ARTICLESOC 3409 1–22

H. Samma et al. / Applied So

odified-based, hybrid-based, cooperative-based, micro-based,
nd memetic-based algorithms. A discussion of each category is
resented, as follows.

.1. Modified PSO-based algorithms

The main aim of this category is to enhance the performance of
SO by controlling its parameters [20,45,48], balancing between the
xploitation and exploration operations [46,49], or modifying the
warm topology connectivity [44,47,50–53]. An adaptive PSO algo-
ithm was introduced in [20]. The aim was to improve the search
erformance by efficiently controlling its parameters, i.e. the cog-
itive acceleration parameter, social acceleration parameter, and

nertia weight parameter. These parameters were adaptively tuned
y using fuzzy rules [20]. However, the method relied on the distri-
ution of the swarm particles at run time, which was not suitable
or PSO with small populations. The PSO variant proposed in [45]
ssigned independent parameters for each particle in the swarm.
pecifically, each particle was given its own parameters (i.e. cogni-
ive acceleration, social acceleration, and inertia weight), and they
ere tuned adaptively according to the behaviour of the particle
uring the search process [45]. However, managing these parame-
ers independently would increase the complexity of PSO. Inspired
y control theory, a new strategy for controlling the PSO parameters
as suggested in [48]. The strategy adopted the concept of the peak

ime and overshoot in its search process. Nevertheless, the strategy
orked with a large population size (i.e. 250 particles); therefore

ncreasing the computational cost owing to fitness evaluation for
ach particle during each search cycle.

Other researchers attempted to improve PSO by balancing
xploitation and exploration operations at run time [46,49].
ccording to [54], exploration was concerned with spreading the
warm particles to visit the whole search space of the optimization
roblem, while exploitation was concerned with searching around
hose visited regions found during the exploration process [54]. The
dea of evolving two concurrent swarms as a master–slave model

as presented in [46]. The master particles were responsible for
xploration while the slave particles performed exploitation. Again,
volving two swarms simultaneously increased the complexity of
he proposed model [46]. An intelligent scheme which divided the
hole swarm into two groups i.e. exploration and exploitation, was
roposed in [49]. Two metrics were developed to split the popula-
ion, i.e. population spatial diversity and population fitness spatial
iversity. Besides its model complexity, the reported results [48]
ere not competitive on difficult, complex benchmark problems

s compared with those from other PSO-based models.
Methods to modify the swarm topology were examined in

44,47,50–53]. The swarm topology is related to the information
ink between each particle and its neighbour. These links produce
ifferent types of topologies, such as fully connected topology [52],
ing topology [47], and wheels topology [50]. The dynamics of these
opologies can be either static or dynamic. In the former, the topol-
gy is fixed during the search process. The latter has dynamically
hanging topologies at run-time. The main advantage of a dynamic
opology over a static one is its ability to prevent the swarm
rom the premature convergence problem [51] at the beginning
f the search process. However, it increases the computational cost
equired to manage the swarm topology during the search process.
n [51], a dynamic topology was proposed. The connection between
articles started with one particle, i.e. each particle was connected
o another randomly selected particle in the swarm. Then, the con-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ection was linearly increased with time until it reached a fully
onnected topology, i.e. all particles in the swarm were connected
ogether so that learning from the global best particle in the swarm
ould take place [51].
 PRESS
puting xxx (2016) xxx–xxx 3

One of the drawbacks of modified PSO-based algorithms is the
lack of optimization refinement capabilities. In other words, these
methods cannot fine-tune the individual dimension of the particles
independently without affecting other dimensions.

2.2. Hybrid PSO-based algorithms

Enhancing the effectiveness of PSO by hybridization with other
meta-heuristic optimization algorithms has been studied in the
literature [34–39,55–58]. PSO has been used to form hybrid mod-
els with Ant Colony Optimization (ACO) [37,55,58], GA [34,35,56],
Artificial Bee Colony (ABC) [36], and Harmony Search (HS) [38,39].
The main aim of hybrid PSO-based algorithms is to combine the
strengths of the constituents into one integrated model. An inte-
gration of PSO and HS was proposed in [39]. The PSO swarm was
divided into several dynamic multi-swarm particle optimizers, and
each sub-swarm was managed by HS. The sub-swarms commu-
nicated with one another and exchanged their knowledge after a
pre-defined number of FEs. Nevertheless, the model [39] worked
with a large population size (i.e. 10 sub-swarms), and required the
FEs operation for each search iteration. Another hybrid model of
PSO and HS was proposed in [38]. The pitch adjustment operation
in HS was replaced with the particle velocity addition operation.
The resulting model was applied to dynamic load dispatch opti-
mization problems. As PSO and HS both performed global search
[38], the search refinement capabilities were inadequate.

Hybrid PSO and ACO models were studied in [37,55,58]. The
hybrid model in [58] comprised two sequential phases, i.e. the ant
colony phase and the PSO phase. In addition, a global best exchange
operation was added after each search cycle. The proposed model
[58] was computational expensive owing to the execution of two
swarms simultaneously. Another hybrid PSO and ACO model was
developed in [55]. The model [55] comprised four hybridization
strategies, i.e., sequential, parallel, sequential with an enlarged
table, and a global best exchange strategy. It was proposed to tackle
data clustering problems, and the results [55] showed that the
hybrid PSO-ACO model outperformed its constituents (i.e. PSO and
ACO).

The main challenge of hybrid-based PSO algorithms is three-
fold: (i) simultaneous managing multiple swarms and exchanging
information between them; (ii) the computational cost of the FEs
operation for each swarm; (iii) hybrid-based PSO models mainly
comprise global search methods [59], and they lack the capability
of performing search refinement.

2.3. Cooperative PSO-based algorithms

Unlike the aforementioned categories where all dimensions
of the particle are evolved together, cooperative PSO-based algo-
rithms split the optimization process into several sub-problems.
This strategy was examined in [28–33,43], in which the task was
split into K sub-problems for simultaneous optimization before
combining the results.

A cooperative PSO-based algorithm with application to large-
scale optimization problems was proposed in [32]. A new position
update scheme was introduced to identify the sub-component size
in an optimal manner. Another cooperative PSO-based algorithm
was developed in [28] to tackle FPGA (Field Programmable Gate
Array) placement problems. The placement task was divided into
two sub-problems: logic blocks and I/O (Input/Output) blocks. A
cooperative-based algorithm was proposed in [30], in which a new
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

statistical strategy was used to decompose the optimization prob-
lem. The aim was to estimate the degree of inter-dependencies
pertaining to the optimization variables, and then to include the
dependent variables in the same sub-problem [30].

312

313

314

315

dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

4 ft Com

w
p
w
i
w
b
s
c

i
d

2

u
e
r
w
p
o
t
a
i
[
i
c
t

p
w
l
o
w
r
i

i
p
d
s
u
e

2

[
f
m
i
s
i
t
b
s
s
n
h
c
M
p
s
h
o

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434
ARTICLESOC 3409 1–22

 H. Samma et al. / Applied So

In [43], where the original micro PSO algorithm [17] was used
ith a new master–slave model. At the beginning of the search
rocess, the problem was decomposed into several sub-problems
ith small dimensions. Then, each sub-problem was solved by an

ndependent micro PSO population [17], and all sub-populations
ere executed in parallel. As such, the proposed model [43] could

e classified as a cooperative PSO-based model. The results in [43]
howed its effectiveness in tackling high dimension problems as
ompared with those from other PSO variants.

One of the key challenges of cooperative-based PSO algorithms
s identifying the best sub-problem size and finding the indepen-
ent variables to be placed in different sub-problems.

.4. Micro PSO-based algorithms

To minimize the computational cost of PSO with large pop-
lation sizes, i.e. the cost associated with the FEs operation of
ach particle during the search process, micro PSO-based algo-
ithms have been introduced [17,18,41–43]. A micro PSO algorithm
as introduced in [17] for tackling high dimension optimization
roblems. The results [17] showed the capability of the developed
ptimizer to achieve competitive performance as compared with
hose from the standard PSO algorithm. On the other hand, the
pplication of micro PSO to image reconstruction problems was
nvestigated in [18]. The limitations of the micro PSO algorithm in
17,18] included prevention from exploitation of possible promis-
ng search regions due to the repelling force, as well as the high
omputational cost of re-starting the whole micro swarm during
he search process.

The application of a micro PSO algorithm to real-world design
roblems was discussed in [41,42]. PSO with a small population size
as developed for tuning the parameters of power system stabi-

izers [42]. A re-generation scheme was used to improve diversity
f the micro PSO swarm, where the position and velocity vectors
ere randomized after a pre-defined number of FEs. The reported

esults [42] revealed the usefulness of the re-generation strategy
n enhancing the diversity property.

In summary, the main advantage of micro PSO-based algorithms
s the ability to overcome the high computational cost per each
article in a standard PSO algorithm. However, it lacks population
iversity due to the small number of particles employed. It also
uffers from the problem of premature convergence, i.e., the pop-
lation converges rapidly towards the global best particle at the
arly stage of the search process [17].

.5. Memetic PSO-based algorithms

As the PSO algorithm is generally a global search optimizer
1], it lacks the capability of refining its local search space. There-
ore, a number of investigations to integrate PSO with local search

ethods to produce memetic-based PSO models have been stud-
ed [1,2,4,5,7–11,13,14,60]. A memetic model of PSO and two local
earch methods, i.e. cognition-based search and random walk, was
ntroduced in [9]. The local search methods were able to enhance
he performance of the standard PSO algorithm. Another memetic-
ased PSO model was studied in [10]. In particular, a probabilistic
election scheme to determine which particle should undergo local
earch was developed [10]. Then, those particles with better fit-
ess were given a higher probability to be fine-tuned [10]. A
ierarchical-based memetic model was developed in [8]. The model
ontained two (top and bottom) layers. The bottom layer comprised

 swarms while the top layer comprised one swarm with M best
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

articles from the bottom layer. In addition, the search process con-
ecutively switched from the bottom layer to the top layer. A Latin
ypercube sampling optimizer was embedded for the fine-tuning
peration, which was triggered every ten search generations [8].
 PRESS
puting xxx (2016) xxx–xxx

Nevertheless, managing local search methods in terms of when to
call the local search method, as well as the frequency of calling
posed as a difficult problem in memetic-based PSO models.

Another memetic-based PSO algorithm was reported in [13]. An
improved Quantum-based PSO optimizer was developed to act as a
global optimizer, while the shuffled complex evolution technique
was adopted for local search operations. The numerical results [13]
indicated that the local search method was able to improve the
PSO performance as compared with that from the standard PSO
algorithm. A recent study of a memetic-based PSO algorithm with
application to a large-scale Latin hypercube design problem was
presented in [11]. Specifically, PSO was integrated with multiple
local search methods to tackle the hypercube design problem. How-
ever, incorporating multiple local search methods increased FEs in
each local refinement operation [11].

The synergy of PSO with local search methods was discussed
in [60]. In particular, an enhanced PSO algorithm was integrated
with gradient-based and derivative-free local search methods. The
gradient-based methods were used for numerical optimization
problems, while the derivative-free local search methods were
adopted for real-world problems. The reported results revealed that
the employed local search methods were able to improve the search
performance of PSO [61].

Real-world applications of memetic-based PSO algorithms were
reported in [1,2,4,5,7]. A memetic-based PSO model for undertak-
ing flow shop scheduling problems was described in [2]. Several
local search methods were developed, e.g. nawaz-enscore and
simulated-annealing, and they were embedded in the memetic-
based PSO model. A memetic PSO optimizer for tackling DNA
sequence compression problems was presented in [1]. The search
space was clustered into several regions for facilitating the local
search operations. The frequency of calling the local search method
was suggested to be low [1]. For financial applications, an integrated
model of GA and PSO was developed in [5]. GA and PSO were used
as a global optimizer and a local search method, respectively. The
application of a memetic-based PSO algorithm to wireless sensor
networks was described in [4]. Operating as a global search opti-
mizer, PSO was integrated with an active-set local search method
[4]. The proposed model [4] was used to maximize the quality of
transmitted video streams by visual sensors. A recent study of a
memetic-based PSO optimizer for radar applications was presented
in [7]. The combination of PSO as a global search optimizer and a
gradient-free local search method was proposed [7]. A memetic-
based PSO optimizer for SVM parameter tuning was examined in
[10]. In particular, the standard PSO optimizer was integrated with a
pattern-based local search method for refinement operations. The
results showed the effectiveness of the memetic-based model in
tuning SVM parameters, as compared with those from the standard
PSO as well as other optimizers reported in [10].

3. The proposed model

The proposed RLMSPO model integrates RL into the memetic
PSO operations. The detailed explanations are as follows.

3.1. Reinforcement learning

RL [62] stems from research in machine learning and artificial
intelligence. It has been widely studied in game theory [63,64]. The
main components of RL include a learning agent, an environment,
states, actions, and rewards. To implement RL in this study, the
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Q-learning algorithm [65] is adopted.
Let S = [S1, S2, . . ., Sn] be a set of states of the learning agent,

A = [a1, a2, . . ., an] be a set of actions that the learning agent can
execute, rt+1 be the immediate reward acquired from executing

435

436

437

438

dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

ft Com

a
r
l

Q

A
p
a
r

v
d
0

Q

A
t
l
e
g
m
˛
t
F
o
t

˛

439

440

441

442

443

444

445

446

447

448

449

450
451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492
493
ARTICLESOC 3409 1–22

H. Samma et al. / Applied So

ction a, � be the discount factor within [0,1], ̨ be the learning
ate within [0,1], Q(st, at) be the total cumulative reward that the
earning agent has gained at time t, and it is computed as follows:

t+1(st, at) = Q (st, at) + ˛[rt+1 + � maxaQ (st+1, a) − Q (st, at)] (5)

A numerical example is presented to clarify Eq. (5), as follows.
ssuming a learning agent with st has to perform one of the four
ossible actions, i.e. move up, move down, move left, or move right,
s shown in Fig. 1. After executing the “move right” action with a
eward of 1 (i.e., r = 1), the next state is st+1, as shown in Fig. 1(b).

Assume that the parameter settings are as follows: the pervious
alue stored in the Q-table for Q(st, at) is 10, i.e. Q(st, at) = 10; the
iscount factor is 0.1, i.e. � = 0.1; and the learning rate parameter is
.9, i.e., ̨ = 0.9. Then, the new value in the Q-table updated to

t+1(st, at)=10 + 0.9 ∗ [1 + 0.1 ∗ max(20, 30, 100, 90) − 10]=10.9

Then, update the state st → st+1
The search steps of the Q-learning algorithm are illustrated in

lgorithm 1. One of the main characteristics of Q-learning is how
he learning rate (i.e., ˛) determines the extent of which the newly
earned information overrides the existing, old information. As an
xample, when ̨ is close to 1, this means that a higher priority is
iven to the newly gained information, and Q-learning performs
ore exploration for all defined states. On the other hand, a small

 value gives a higher priority for the existing information in the Q-
able to be exploited. This puts Q-learning in the exploitation mode.
or this reason, ̨ normally is set to a high value at the beginning
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

f the search process, and is decreased at each time step, in order
o switch to the exploitation mode, as follows [3]:

(t) = 1 −
(

0.9 ∗ t

MaxFEs

)
(6)

(a) (b)

100
30

90
20

Fig. 1. A numerical illustration of (a) the current state and (b) the next state.

494

495

496

497

498

499
 PRESS
puting xxx (2016) xxx–xxx 5

where, MaxFEs is the maximum number of FEs. The discount factor
� is responsible for penalizing the future reward. When � = 0, Q-
learning considers the current reward only. When � = 1, Q-learning
looks for a higher, long-term reward. It is suggested to set � = 0.8
[3].

3.2. The RLMPSO structure

Fig. 2 shows the overall RLMPSO structure that integrates RL
and PSO. The PSO particles acts as the RL agents. The environment
is characterized by the search space of the particles. The states
represent the current operation of each particle, i.e., exploration,
convergence, high-jump, low-jump, or fine-tuning. The action is
defined as it changes from one state to another. As can be seen in
Fig. 2, RL controls the operation of each particle in the PSO swarm.
Specifically, RL adaptively switches the particle from one operation
(state) to another according to the particle’s achievement. Posi-
tive rewards are given to particles that have performed well, while
penalties (negative rewards) are given to non-performing particles.

In a standard PSO algorithm, the exploration operation is ini-
tiated at the beginning for the whole swarm particles. Then, the
operation gradually switches to the convergence state towards the
end of the search process. In RLMPSO, the choice of the most suit-
able search operation for each particle is selected adaptively using
RL. Algorithm 2 illustrates the proposed RLMPSO search procedure.
The procedure is repeated until the maximum number of FEs is met.

The main interaction between Q-learning and the five possible
search operations can be summarized in three steps, as follows:

(i) Obtain the best operation to be executed based on the Q-table
value for the current particle.

(ii) Execute the selected operation and compute the fitness func-
tion. The immediate reward is computed, i.e.,

r =
{

1 if fitness is improved

−1 otherwise
(7)

(iii) Update the Q-table for the current particle using Eq. (5).
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

In Algorithm 2, after calling the fine-tuning operation, a cost
(i.e. a negative reward) is given to penalize the execution of this
operation, in order to give a higher priority for other operations to
be executed (as further clarified in Section 3.7).

500

501

502

503

dx.doi.org/10.1016/j.asoc.2016.01.006

 IN PRESSG Model
A

6 ft Computing xxx (2016) xxx–xxx

504
ARTICLESOC 3409 1–22

 H. Samma et al. / Applied So
Please cite this article in press as: H. Samma, et al., A new Reinforcement Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 7

Acti on

Reward

Reinforcement Lea rning

Global
Search Ope ration s

Exploration

Low-jump

High-jump

Fine-tuning

Convergenc e

Local Search Operation

Acti on

Reward

3

i
t
t
3

b
o
F
R
F
m
i

s

b

states / action

 0 0 0 0 -10 .78

 0 0 0 0 -10 .78

 0 0 0 0 -10.78

 0 0 0 0 -10.78

E C H L F

E

C

H

L

(

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541
Fig. 2. The proposed RLMPSO structure.

.3. The Q-table and its contents

The Q-table is shown in Fig. 3. It is an M × M matrix, where M
s the number of states. In RLMPSO, each particle has its own Q-
able. Therefore, to minimize the computational cost of managing
he Q-tables, a micro PSO model with a small population size (i.e.,
-particles) has been used throughout this research.

To delay the execution of the fine-tuning operation (F) at the
eginning of the search process and to give a higher priority for
ther operations to be executed, the initial Q-table entry for state

 is set to a negative value, as indicated in Fig. 3. In addition,
LMPSO has to be executed N times (i.e., a minimum lapse of N
Es is required) before RL activates fine-tuning. Finally, the maxi-
um negative value is considered as the initial value of F, as shown

n Fig. 4.
During the execution of RLMPSO, the best action for the current
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

tate is retrieved from the Q-table, as follows:

est action = Max[Q (current state, all actions)]) (8)

 (a) FEs (N=1)

 states / action

 0 0 0 0 -inf

 0 0 0 0 -inf

 0 0 0 0 -inf

 0 0 0 0 -inf

 0 0 0 0 -inf

E C H L F

E

C

H

L

F

 states / act ion

 -9.9 0 -9.23

 -9.8 7 -9.88

 -9.8 4 -9.1

 -9.0 1 -9.7

 0 0

E

E

C

H

L

F

(c) FE

Fig. 3. (a)–(c) computing the
 0 0 0 0 -10 .78 F

Fig. 4. The initial values in the Q-table of particle 1.

A numerical example of the Q-table entries for Particle 1 is
shown in Fig. 5. Assuming that the current state of Particle 1 is
exploration (E). When Eq. (8) is applied, the next state is C, as
indicated in Fig. 6.

To update the content of the Q-table, Eqs. (5) and (6) are used.
The new content of the Q-table is shown in Fig. 6. As can be seen,
after executing the exploration (E) operation, Particle 1 receives a
penalty because it cannot improve the search process.

3.4. The boundary condition

In PSO, there are four possible boundary conditions, i.e. reflect-
ing wall, damping wall, invisible wall, and absorbing wall, as shown
in Fig. 7. The details are as follows:

(i) Reflecting wall: When a particle exceeds the limit of the search
space in any dimension Xi, the sign of its velocity (i.e., Vi) is
changed, and Xi is reflected back to the search space.

(ii) Damping wall: This case is similar to the reflecting wall except
that the particle is reflected with a small random value.

iii) Invisible wall: The particle is allowed to jump out of the pre-
defined search space; however, the fitness function is not
computed.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

9

 (b) FEs (N =100)

states / action

 -3.29 -5.2 9 -4.52 -4.52 - inf

 -5.29 -5.9 9 -5.33 -5.29 - inf

-3.40 -4.67 -5.05 -5.29 - inf

-4.52 -3.34 -4.67 -5.29 - inf

 0 0 0 0 - i nf

E C H L F

E

C

H

L

F

 -10.78 -8.2 - inf

 -10.44 -7.9 2 - inf

8 -9.98 -8.3 4 - inf

6 -10.14 -1 0.2 - inf

 0 0 - in f

 C H L F

s (N=1000)

 initial value of state F.

(iv) Absorbing wall: When the particle exceeds the limit of the
search space in any dimension Xi, its velocity Vi is set to zero,
and Xi is set to the boundary limit.

542

543

544

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

8 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

states / action

 -0.05 0.91 0 0 -10.78

 -0.14 -0.9 9 -1.00 -0.9 9 -10.78

 -0.05 0 0 0 -10 .78

 0 0 0 .85 0 -10 .78

 0 0 0 0 -10.78

E C H L F

E

C

H

L

F

Current stat e

Next state

Fig. 5. The Q-table of particle 1 after five operations.

states / action

 -0.05 -0.14 0 0 -1 0.78

 -0.14 -0.9 9 -1.00 -0.9 9 -10.78

 -0.05 0 0 0 -10 .78

 0 0 0 .85 0 -10 .78

E C H L F

E

C

H

L

10

Current state

Next state

n

3

c
r
t
M
e
a
t

b
l
a
F
a

()

 ()

Fig. 8. The exploration operation.

()

()545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561
 0 0 0 0 -10.78 F

Fig. 6. The Q-table values of particle 1 after six operations.

In this research, the damping wall, which has been used in a
umber of PSO variants [18,66], is adopted.

.5. Exploration and convergence operations

The exploration and convergence operations are normally exe-
uted at the beginning and towards the end of the search process,
espectively. However, some studies recommend switching adap-
ively at any time from exploration to convergence, and vice versa.

otivated by the findings in [20], RLMPSO can execute any state, i.e.
xploration, convergence, high-jump, low-jump, and fine-tuning,
t any time during the search process. RL is responsible to keep
rack of the best executed operation pertaining to each particle.

As stated earlier, particle Xi moves in the search space guided
y the global best particle, gBest, its current velocity, Vi and the
Please cite this article in press as: H. Samma, et al., A new Reinforcement Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ocal best particle, pBesti, as indicated in Eq. (3). Parameters w, c1
nd c2 control the direction and movement of particlei, as shown in
igs. 8 and 9. Therefore, in the exploration state, w should be high to
llow the particle to make a large movement to explore the search

Fig. 9. The convergence operation.

(d)

(a)
(b)

(c)

Fig. 7. The boundary conditions of PSO, (a) reflecting wall, (b) damping wall, and (c) invisible wall (d) absorbing wall.

dx.doi.org/10.1016/j.asoc.2016.01.006

 IN PRESSG Model
A

ft Computing xxx (2016) xxx–xxx 9

s
t
t

t
b
p
s
r
s

3

b
i
l
s

X

w
o
d
s
j

3

o
c

o
fi
a
r
v

V

w
c
d
V
s
i

ter is introduced to provide an internal delay between consecutive
fine-tuning operation calls, as shown in Fig. 11.

Fine-Delay Fine- Co st

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619
ARTICLESOC 3409 1–22

H. Samma et al. / Applied So

pace. Moreover, as stated in [20], c1 should be higher than c2 in
he exploration mode, in order to move the particle far away from
he global best particle, as shown in Fig. 8.

The convergence operation is similar to the exploration opera-
ion, except that all particles converge slowly towards the global
est particle, gBest. Therefore, w should be low, in order to prevent
article Xi from oscillating around the gBest location. Moreover, the
ettings of c1 and c2 should be the opposite of those in the explo-
ation mode. In this study, c1 = 0.5 and c2 = 2.5, as used in [67]. Fig. 9
hows the location of particle Xi+1 after applying Eq. (3).

.6. High and low jump operations

The high and low jump operations have been used in many PSO-
ased variants [20,49–51]. The main idea of these jump operations

s to enable the local best particle, pBesti, to escape from possible
ocal optima. Specifically, a random value is added to each dimen-
ion of pBesti, as follows:

i = pBesti + randnormal(Rmax − Rmin) (9)

here Rmax, and Rmin are the maximum and minimum boundaries
f the search space, respectively, randnormal ∈ [0, 1] is a normal
istributed random number, i.e., N ∼ (u, �2) with mean u = 0 and
tandard deviation �. Note that � = 0.9 helps the escape with a high
ump while � = 0.1 helps the escape with a low jump.

.7. Fine-tuning operation

The fine-tuning operation aims to fine-tune each dimension, di,
f particle pbesti independently from other dimensions, as indi-
ated in Fig. 10.

In this study, the ISPO model [12] is adopted for the fine-tuning
peration. The details of fine-tuning are shown in Algorithm 3. The
ne-tuning operation iterates through all dimensions of pBesti,d,
nd it tunes each dimension independently. As indicated in Algo-
ithm 3, the search process continues for J times. In ISPO, the
elocity is computed as follows [12]:

i,d = a

jp
r + Li,d (10)

here a is the acceleration factor, p is the descent parameter that
ontrols the decay of the velocity, r is a uniformly distributed ran-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

om number within [−0.5,0.5], and j is the current FEs number.
ariable Li,d represents the learning rate that controls the jumping
ize. Its value is doubled if the fitness value improves; otherwise it
s decreased. As such, Li,d is updated as follows:
Fig. 10. Fine-tuning operation.

Li,d =

⎧⎨
⎩

2Vi,d if fitness improved

Li,d

2
otherwise

(11)

The value of pBesti,d is updated as follows:

pBesti,d =
{

pBesti,d + Vi,d if fitness improved

pBesti,d otherwise
(12)

Fine-tuning is useful for exploiting promising search regions.
However, it has been given a low priority because it consumes a
high number of FEs as compared with other operations which take
only a single FEs per call, as indicated in Algorithm 2. The execu-
tion of fine-tuning must be delayed until the global operations i.e.
exploration operation, convergence operation, and jumping oper-
ations, have been performed. This allows the fine-tuning operation
to perform exploitation of the regions that have been explored by
the global search operations. Therefore, to prevent RLMPSO from
executing the fine-tuning operation at the beginning of the search
process, fine-tuning in the Q-table is initialized with a negative
value, in order to delay its execution (i.e. after a minimum lapse
of N FEs, as discussed in section 3.3). Moreover, a cost parame-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Time
tuning tunin g

Fig. 11. Delay and cost parameters.

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

10 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Table 1
List of parameter settings used in this study.

4

t
s
w

4

m
b
c

Table 3
Parameters and levels of the CCD experiment.

Parameter Level

Low (−1) Medium (0) High (+1)

D 10 100 1000

was delayed by a negative value of −10.78 (explained in Section
3.3). In other words, a minimum lapse of 1000 FEs was required
before fine-tuning could be executed.

Low (-)

High (+)

(+)
(1) (5)

(2) (4)

Medium (3)

D

C

T
U

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655
. Experimental study

Three benchmark optimization problems were investigated in
his experiment, i.e. unimodal, multi-modal, composite problems,
hifted, and rotated problems. In addition, two real-world problems
ere studied. The details are as follows.

.1. Parameter settings and performance metrics

Table 1 shows the parameter settings of RLMPSO. For perfor-
ance evaluation, the mean fitness value was computed from the

est fitness values obtained from different runs. The convergence
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

urve was computed during the RLMPSO search process.

able 2
nimodal and multi-modal benchmarks used in this study.

Test function Mathematical formula

Sphere f1(x) =
N∑

n=1

x2
n

Schwefel 2.22 f2(x) =
N∑

n=1

|xn| +
N∏

n=1

|xn|

Ackley f5(x) = 20 + e − 20 exp

(
−0.2
√

1
N

N∑
n=1

x2
n

)

Griewank f3(x) = 1 + 1
4000

N∑
n=1

x2
n −

N∏
n=1

cos
(

xn√
n

)

FEs FEs FEs
C −2 −4 −8

4.2. Case study I: unimodal and multi-modal benchmark
problems

A total of four commonly used unimodal and multi-modal prob-
lems, i.e. Sphere, Schwefel, Ackely, and Griewank, were examined.
These benchmark problems were studied previously using PSO in
[1,68,69]. Table 2 shows the mathematical formula of each bench-
mark problem as well as the associated search range. The maximum
number of FEs was set to FEmax = 2.5 × 105, as in [1].

4.2.1. Analysis of the delay and cost parameters
The Centre Composite Design (CCD), a useful design-of-

experiment method [70,71], was employed to analyze the effects
of the delay (D) and cost (C) parameters pertaining to the RLMPSO
performance. During the experimental run, the value of each
parameter was set at three different levels, i.e. low, medium, and
high. The possible combinations of the experimental parameters
at each level were generated, in order to study the interaction
between these parameters. A total of 100 runs for each of the five
cases were carried out with different levels of both D and C sett-
ings. Table 3 and Fig. 12 show the detailed parameter settings and
experimental configurations.

As can be seen in Table 4, for Exp. 4 (D = 1000 FEs, and C = −2),
the cost (penalty) of executing fine-tuning was set at −2 by RL. On
the other hand, D = 1000 indicated that the fine-tuning operation
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Fig. 12. A CCD experiment with two parameters and five points (i.e. one centre and
four corners).

Search range

−100 ≤ xn ≤ 100

−10 ≤ xn ≤ 10

− exp

(
1
N

N∑
n=1

cos(2�xn)

)
−32 ≤ xn ≤ 32

−600 ≤ xn ≤ 600

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 11

Table 4
Effects of delay and cost parameters on RLMSPO.

Function Sphere
(Std. dev.)

Schwefel
(Std. dev.)

Ackley
(Std. dev.)

Griewank
(Std. dev.)

Experiment 1 7.37e−54 2.67e−29 5.14e−14 4.32e−4
(D = 10, and C = −2) (2.11e−53) (2.77e−29) (8.21e−15) (2.14e−05)

Experiment 2 8.52e−29 1.93e−17 3.89e−08 2.20 e−03
(D = 100, and C = −4) (2.69e−28) (4.02e−17) (1.22e−07) (3.60 e−03)

Experiment 3 2.36e−08 4.02e−05 0.3051 2.0 e−03
(D = 1000, and C = −8) (4.98e−08) (8.41e−05) (0.4880) (3.60 e−03)

Experiment 4 6.62e−56 2.25e−29 4.81e−14 1.54e−05
9.44e−30) (5.51e−15) (4.87e−05)

.98e−09 0.0025 2.0 e−03
3.06e−08) (0.0075) (3.20 e−03)

t
B
F
R
T
o
v
r
fi
a
p

e
w
s
o
e
t
p
a
f
v
p
c

Table 5
The RLMPSO performance with different population sizes.

Function 3 Particles
(Std. dev)

5 Particles
(Std. dev)

10 Particles
(Std. dev)

Sphere 6.62e−56 6.69e−55 6.74e−39
(1.64e−55) (1.60e−54) (1.27e−38)

Schwefel 2.25e−29 3.54e−29 4.45e−19
(9.44e−30) (2.96e−29) (7.83e−19)

Ackley 4.81e−14 5.17e−14 9.54e−10
(5.51e−15) (1.19e−14) (2.51e−09)

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687
(D = 1000, and C = −2) (1.64e−55) (

Experiment 5 4.12e−15 9
(D = 10, and C = −8) (1.19e−14) (

For each benchmark problem, the experiment was repeated 100
imes. The averages and standard deviations are reported in Table 4.
etter results were achieved from two configurations, i.e., D = 1000
Es and C = −2 as well as D = 10 FEs and C = −2. This implied that
LMPSO could produce better results with small penalty values.
he worst result was produced with the highest cost value. On the
ther hand, the best result was produced by Exp. 4, where the delay
alue was the highest while the cost value was the lowest. The
esults in Table 4 reveal that it is better to delay the execution of
ne-tuning rather than calling it in the early stage, where it requires

 large computational cost for FEs especially in high-dimensional
roblems.

For further analysis, the average number of calls pertaining to
ach operation and the average number of FEs for each operation
ere computed. Fig. 13 shows the results plotted in the logarithm

cale. The fine-tuning operation accumulated the lowest number
f calls, owing to the restriction of the cost and delay parameters
mbedded in the RL algorithm. The minimum number of calls per-
aining to fine-tuning occurred in Exp. 3, in which the cost and delay
arameters were the highest. Other operations showed a similar
verage number of calls. Fig. 14 shows the average numbers of FEs
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

or each operation. The fine-tuning operation showed the highest
alue. Exp. 1 and Exp. 4 required the highest FEs in all benchmark
roblems. This was because Exp. 1 and Exp. 4 had the minimum
ost (C = −2).

Fig. 13. Average calls of each RLMPSO operation for (a) Sph
Griewank 1.54e−05 5.33e−03 3.7e−03
(4.87e−05) (3.15e−02) (3.5e−03)

4.2.2. Analysis of the number of particles
The effect of the population size on the RLMPSO performance

was evaluated. Table 5 shows the results of varying the number of
particles. A larger population size degraded the results in all bench-
mark problems. This was owing to the increase in complexity of
RLMPSO, i.e., the increase of the number of Q-tables and the FEs
pertaining to the fine-tuning operation.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

4.2.3. Analysis of the contributions of each operation
The importance of each individual operation in RLMPSO was

analyzed. RLMPSO was executed 100 times, each with one of its

ere, (b) Schwefel, (c), Ackley (d) Griewank functions.

688

689

690

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

12 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 14. Average FEs of each RLMPSO operation for (a) Sphere, (b) Schwefel, (c), Ackley (d) Griewank functions.

Table 6
Contribution of each RMPLSO operation.

Function Without exploration Without convergence Without high jump Without low jump Without fine-tuning

Sphere Mean 6.37e−49 1.89e−40 1.53e−48 2.15e−45 46.64
Std (1.82e−48) (4.02e−40) (4.85e−48) (5.67e−45) (45.26)

Schwefel Mean 9.03e−29 1.15e−24 2.37e−29 5.64e−28 0.64
Std (2.36e−25) (2.42e−24) (6.67e−28) (1.39e−27) (0.53)

Ackley Mean 4.53e−14 2.16e−12 1.57e−14 5.99e−14 3.65
Std (1.02e−14) (4.69e−12) (4.81e−14) (1.85e−14) (0.44)

o
o
T
s
w
b
o
S

4

T
t
f

•

•

•

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724
Griewank Mean 2.50e−05 0.0039

Std (8.71e−04) (0.0031)

perations omitted. As can be seen in Table 6, the most important
perations affecting RLMPSO were convergence and fine-tuning.
his was because of the nature of the benchmark problems, i.e.
mall numbers of local optima [1]. The least important operations
ere exploration and high jump. However, both operations would

e useful for complicated benchmark problems with high numbers
f local optima, such as the composite benchmark problems in Case
tudy II.

.2.4. Analysis of the RLMPSO behaviour at run-time
To trace the sequence of each RLMPSO operation at run time,

able 7 shows the detailed information of each particle as well as
he identification (denoted as ID) of the global best particle. The
ollowing abbreviations are used in the illustration:

(H) Particle executed the high jump operation, and improved the
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

local best value.
(h) Particle executed the high jump operation, and could not
improve the local best value.
(–) Particle was not selected.
5.25e−05 5.25e−04 0.0019
(3.57e−05) (1.16e−02) (0.0031)

• (L) Particle executed the low jump operation, and improved the
local best value.

• (l) Particle executed the low jump operation, and could not
improve the local best value.

• (C) Particle executed the convergence operation, and improved
the local best value.

• (c) Particle executed the convergence operation, and could not
improve the local best value.

• (E) Particle executed the exploration operation, and improved the
local best value.

• (e) Particle executed the exploration operation, and could not
improve the local best value.

• (F) Particle executed the fine-tuning operation, and improved the
local best value.

• (f) Particle executed the fine-tuning operation, and could not
improve the local best value.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

As an example, at the fifth FEs, particle 2 successfully executed
the convergence operation, and became the global best particle.
On the other hand, particle 3 successfully executed the exploration
operation at FEs = 9. While its local best particle was updated, it was

725

726

727

728

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 13

Table 7
Analysis of the particle execution sequence.

Table 8
Control parameters of RLMPSO.

Parameter Number of setting levels

N (population size) −1 (3) 0 (5) +1 (10)
D (minimum lapse of RLMPSO FEs) −1 (10) 0 (100) +1 (1000)
C (cost of local search operation) −1 (−2) 0 (−4) +1 (−8)
J (number of fine-tuning FEs) −1 (5) 0 (30) +1 (100)

i
t

h
a
t
a

4

t
b
t
a
m
p
fi
e
i
[

c
t
v
o
F
e
fi
o
g
n

i
a
J
i
w
m
w
G
t
u

diversity curve decreased from high to low as the search process

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809
V (the range of velocity [Vmin, Vmax]) −1 (0.2) 0 (0.5) +1 (0.8)

nferior to that of particle 2. However, particle 3 was able to achieve
he best results at FEs = 14, and became the global best particle.

In addition, it can be concluded from Table 7 that when a particle
ad executed an operation successfully, the operation was accorded

 higher priority to be executed in the next FEs. Notice that the fine-
uning operation was delayed until a minimum lapse of 1000 FEs,
s shown in Table 7.

.2.5. Sensitivity analysis of the RLMPSO control parameters
To investigate the effect of the key RLMPSO control parame-

ers, i.e., N (population size), D (minimum lapse of RLMPSO FEs
efore executing fine-tuning), C (cost of the local search opera-
ion), J (number of fine-tuning FEs), and V (the range of velocity),

 graphical sensitivity technique as used in [72] was followed. The
ain idea was to measure the influence of each parameter inde-

endently with respect to the RLMPSO performance. The effects of
ve RLMPSO control parameters are shown in Table 8. During the
xperiment, the remaining RLMPSO parameters were set to those
n PSO and ISPO models recommended in the literature, i.e., [67],
20,49–51] and [12] as explained in Sections 3.5, 3.6, and 3.7.

During this experiment, each parameter was independently
hanged from low (i.e. −1) to high (i.e. +1) as shown in Table 8, and
he settings of the remaining parameters followed the suggested
alues in Table 1. As an example, when parameter N was studied,
ther parameters (i.e. D, C, J, and V) were set according to Table 1.
or each parameter analysis, RLMPSO was executed 100 times for
ach of the three levels (i.e. −1, 0, and +1). After that, the mean
tness value was computed, as shown in Fig. 15. The main benefit
f the sensitivity analysis is to show the change of each parameter
raphically, i.e., having an increasing effect, a decreasing effect, or
o effect with respect to the RLMPSO performance.

From the graphical plot in Fig. 15, it can be seen that the most
mportant parameter that affected the performance of RLMPSO in
ll benchmark problems was J (the fine-tuning FEs). By increasing
, the number of FEs calls consumed by the fine-tuning operation is
ncreased. As can be seen in Fig. 15, when J was high (i.e. at state +1

ith 100 FEs), the RLMPSO performance for the unimodal bench-
ark problems (i.e. Sphere and Schwefel) improved, but became
orse for the multimodal benchmark problems (i.e. Ackely and
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

riewank). Because of many local optima in multimodal problems,
he fine-tuning operation was less effective, as compared with the
nimodal problems with only a single global solution. The least
important factor was V (the range of velocity) in all benchmark
problems, as shown in Fig. 15.

A further analysis has been carried on by evaluating the effect
and relative effect measures as defined in [72]:

relative effect = 100 × effect

global mean
(13)

effect = max
(

abs
(

log (f (x))0 − log (f (x))+1)
)

,

abs
(

log (f (x))0 − log (f (x))−1)
)

,

abs
(

log (f (x))+1 − log (f (x))−1)
))

(14)

where the global mean is the mean effect among all parameters,
log (f (x))0 is the log mean fitness function at parameter setting (0),
log (f (x))+ is the log mean fitness function at parameter setting
(+1), and log (f (x))− is the log mean fitness function at parameter
setting (−1).

The effect and relative effect measures are reported in Table 9.
Parameters C (the cost of local search) and J (the local search
FEs) showed the highest impact on the RLMPSO performance, as
compared with those from other parameters. This implied that
managing the local search method efficiently constituted one of the
most important issues in developing an effective memetic-based
algorithm.

4.2.6. RLMPSO diversity analysis
An analysis of the diversity curve generated by RLMPSO dur-

ing the execution time of a 2-D sphere optimization function was
conducted. The 2-D sphere optimization function is defined as:

Minimize f (x) = x2
1 + x2

2, xi ∈ [−10, 10] (15)

Following [69], the diversity analysis measure is defined as:

Diversity(t) = 1
N|L|

N∑
i=1

√√√√ D∑
j=1

(
X j

i
− Xj

)2
(16)

where t is the current search FEs, N is the total number of particles, L
is the longest diagonal length in the search space, D is the dimension
of the search space, Xj

i
is the value of particle i at dimension j, and

Xj is the mean value of the whole swarm particles at dimension j.
For comparison purpose, PSO [61] was employed with a total

of 30 particles, and the maximum number of FEs was set to 1000.
Fig. 16 shows the diversity measures for both PSO and RLMPSO.
The RLMPSO diversity curve moved up and down during the search
operation. This was owing to the dynamic behaviour of RLMPSO,
where each particle evolved independently and could execute any
search operations under the control of RL. However, in general, the
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

progressed.
Further analyses were carried on by plotting the locations of

the particles at four different search FEs (i.e. FEs = 1, 200, 500, and

810

811

812

dx.doi.org/10.1016/j.asoc.2016.01.006

Please cite this article in press as: H. Samma, et al., A new Reinforcement Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

14 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 15. (a)–(d) Sensitivity analysis of the RLMPSO control parameters.

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 15

Table 9
The effect and relative effect measure on RLMPSO performances.

N D C J V

Sphere Effect 6.74e−39 7.30e−54 2.36e−08 4.93e−17 6.45e−56
Relative effect 1.4280e−28 1.5466e−43 500.00 1.05e−06 1.37e−45

Schwefel Effect 4.45e−19 1.54e−05 4.02e−05 9.97e−09 1.5750e−28
Relative effect 4.00e−12 138.46 361.45 0.09 1.42e−21

Ackley Effect 9.54e−10 3.30e−15 0.31e−00 4.45e−09 3.10e−15
Relative effect 1.54e−06 5.32e−12 500.00 7.18e−06 5.00e−12

Griewank Effect 0.10 e−01 4.17e−04 0.20 e−02 0.25 e−02 7.33e−05
Relative effect 333.55 13.91 66.71 83.39 2.44

f RLM

9
o
g
c

4

R
a
g
a
a
t
w
w

w
t
F

b
m
R

T
C

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852
Fig. 16. Diversity curve o

00), as shown in Fig. 17. The particles started with the exploration
peration at the beginning of the search process and then shifted
radually to the convergence state, i.e., the swarm particles became
rowded around the global best particle.

.3. Comparison with other PSO variants

Table 10 reports the average fitness values from 100 runs of
LMPSO. For comparison purposes, the reported results in [1,68,69]
re included in Table 10. Note that the results in Table 10 were
enerated using the same number of FEs in [1], i.e. FEmax = 2.5 × 105,
nd the configuration for all benchmark problems were set at 30-D,
nd each experiment was repeated 100 times as in [1]. In [68,69],
he benchmark problems were set at the same dimension (i.e. 30-D)
hile the experimental runs were 30 times, and the FEs in [68,69]
ere 3 × 105 and 2 × 105, respectively.

Therefore, the maximum FEs of RLMPSO (i.e., FEmax = 2.5 × 105)
as the same as that in [1] (i.e., FEmax = 2.5 × 105), lower than

hat in [68] (i.e., FEmax = 3 × 105), but higher than that in [69] (i.e.,
Emax = 2 × 105).
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

As can be seen in Table 10, RLMPSO outperformed the memetic-
ased PSO variant in [1] for all four benchmark problems and the
ethods in [68] and [69] for three benchmark problems. However,

LMPSO yielded inferior results than those reported in [68,69] for

able 10
omparison between the RLMPSO results and other reported results in the literature.

Function [68] Mean [69] Mean

Sphere 2.78e−49 1.35e−30

Schwefel 1.35e−26 –

Ackley 3.47e−14 1.69e–14

Griewank 2.06e−0 2.54e−2
PSO and PSO algorithm.

the Ackley function. In addition, it should be noted that since the
method in [69] was executed with fewer number of FEs as com-
pared with that of RLMPSO, it could outperform RLMPSO if it was
executed with FEmax = 2.5 × 105. As such, it was not surprising that
the result from the method in [69] was better than that in [68] for
the Ackley function, since more FEs were consumed [73].

To quantify the achieved results statistically, the 95% confidence
intervals of the RLMPSO results were computed using the bootstrap
method [74], as shown in parentheses in Table 10. Statistically,
RLMPSO significantly outperformed other methods, except the
Ackley benchmark problem. The refinement capability of RLMPSO
allowed it to outperform other methods studied in this comparison.

4.4. Case Study II: composite benchmark problems

In this case study, six composite functions in [1] were examined.
They constituted more challenging benchmark problems as com-
pared with the unimodal and multi-modal functions in Case Study
I. As an example, composite function five (cf5) is composed of ten
benchmark functions comprising two rotated Rastrigin functions,
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

two rotated Weierstrass functions, two rotated Griewank functions,
two rotated Ackley functions, and two sphere functions.

The same benchmark composite problems were studied in [1]
with three PSO variants i.e., CLPSO [53], ISPO [12], and POMA

[1] Mean RLMPSO Mean (95% confidence interval)

1.04e−20 6.62e−56 (1.74e−55, 7.42e−57)

4.08e−10 2.25e−29 (1.68e−29, 2.81e−29)

0.415 4.81e−14 (4.49e−14, 5.13e−14)

1.807e−3 1.52e−05 (0, 1.54e−05)

853

854

855

856

dx.doi.org/10.1016/j.asoc.2016.01.006

Please cite this article in press as: H. Samma, et al., A new Reinforcement Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

16 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 17. Population distributions of RLMPSO as compared with PSO, i.e., (a)–(d) distribution of PSO at FEs = 1, 200, 500, and 900; (e)–(h) distribution of RLM PSO at FEs = 1,
200, 500, and 900, respectively.

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 17

Table 11
Results for the composite problems.

Function CLPSO [53]
Mean

ISPO [12]
Mean

POMA [1]
Mean

RLMPSO
Mean (95% confidence
interval)

cf1 45.07 252.00 8.00 1.20e−01 (3.48 e−01,
6.5000e−04)

cf2 89.86 362.01 47.29 27.0757 (20.7540,
33.3975)

cf3 201.06 480.0 148.77 157.02 (143.96, 170.34)

cf4 356.04 671.23 377.85 320.91 (312.26, 329.96)

[
p
a
1
v

o
i
w
u
e
t
A
b

T
fi
o
P

4

r
2
i
t
a
T
a

T
p

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909
cf5 62.49 435.99

cf6 742.58 851.96

1]. The results from [1] are included in Table 11 for comparison
urposes. The maximum number of FEs was set to FEmax = 2.5 × 105,
s used in [1], and the dimension of all benchmark problems was
0-D. The experiment was repeated 100 times. The mean fitness
alues are shown in Table 11.

RLMPSO yielded the best results as compared with those from
ther PSO variants, except POMA in cf3. One of the reasons pertain-
ng to the good performance of RLMPSO was because of fine-tuning,

hereby each particle in the micro swarm had the chance to
ndergo the refinement operation. In addition, the capability of
ach particle to change from convergence to exploration at any
ime provided RLMPSO a better chance to escape from local optima.
s a result, RLMPSO outperformed other methods in most of the
enchmark problems.

The 95% confidence intervals are shown in parentheses in
able 11. Note that the upper limit of the 95% bootstrapped con-
dence interval is smaller than the reported mean fitness values
f the related methods in all functions, except for cf3, whereby the
OMA result resides within the 95% confidence interval of RLMPSO.

.5. Case Study IIII: shifted and rotated benchmark problems

To investigate the effectives of RLMPSO in solving shifted and
otated benchmark problems, a total of ten functions from CEC
005 [75] were used. These problems have been widely studied

n the literature [50,68,76,77]. Four models were evaluated using
he same CEC 2005 functions, i.e., CLPSO [53], CPSO [31], ANS [78],
nd GWO [79]. The settings of these models are shown in Table 12.
he mathematical formulae of the employed benchmark functions
re defined, as follows [75].

F1: Shifted sphere function

F (x) =
D∑

Z2 + f bias, Z = X-O, X = [x , x , . . ., x]
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

1

i=1

i 1 2 D

D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . ., oD]

able 12
arameter settings of RLMPSO and other algorithms.

Algorithm Dimension Population size Parameter settings

GWO 30 30 a: 2 –1
CPSO 30 30 c1 = c2 = 1.49, w:

0.9–0.5, group number
equals to
dimensionality

CLPSO 30 30 w: 0.9–0.4, c1 = c2 = 2,
m = 7

ANS 30 30 � = 0.5, and n = 10
RLMSO 30 3 The same settings in

Table 1

910

911

912

913

914

915

916

917
39.74 23.47 (9.23, 48.94)

673.80 495.21 (475.77, 505.74)

f bias: the bias value
F2: Shifted Schwefel’s Problem 1.2

F2(x) =
D∑

i=1

⎛
⎝ i∑

j=1

Zj

⎞
⎠

2

+ f bias, Z = X-O,

X = [x1, x2, . . ., xD]

D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . ., oD]
F3: Shifted Schwefel’s Problem 1.2 with noise in fitness

F4(x) =

⎛
⎜⎝ D∑

i=1

⎛
⎝ i∑

j=1

Zj

⎞
⎠

2
⎞
⎟⎠ ∗ (1 + 0.4

∣∣N(0, 1)
∣∣) + f bias, Z =

X-O,
X = [x1, x2, . . ., xD]
D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . ., oD]
F4: Shifted rotated Weierstrass function

F9(x) =
D∑

i=1

(
kmax∑
k=0

[
ak cos

(
2�bk (Zi + 0.5)

)])
−

D

kmax∑
k=0

[
ak cos

(
2�bk (0.5)

)]
+ f bias

a = 0.5, b = 3, a = 0.5, b = 3, kmax = 20
Z = (X-O)*M, X = [x1, x2, . . ., xD]
D: dimensions, X ∈ [−5, 5]D

O: the shifted global optima O = [o1, o2, . . ., oD]
M: linear transformation matrix for function rotation
F5: Shifted Rastrigin’s Function

F8(x) =
D∑

i=1

(Zi
2 − 10 cos (2�Zi) + 10) + f bias

Z = (X-O), X = [x1, x2, . . ., xD]
D: dimensions, X ∈ [−5, 5]D

O: the shifted global optima O = [o1, o2, . . ., oD]

4.5.1. Mean fitness value analysis
The mean fitness values achieved by RLMPSO and other meth-

ods for the rotated and shifted benchmark problems are shown
in Table 13. Each method was executed 30 times with a total of
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

30 × 104 FEs at 30-D using the parameter settings in Table 12. It
can be seen in Table 13 that RLMPSO compared favourably with
other methods. In particular, RLMPSO achieved the highest accu-
racy scores for F1, F2, and F5.

918

919

920

921

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

18 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Table 13
The mean fitness values for the rotated and shifted functions.

Algorithm F1 F2 F3 F4 F5

GWO 9.66E−05 ± 7.71E−05 1.06E+04 ± 9.14E+02 1.22E+04 ± 5.61E+03 1.25E+02 ± 3.94E+00 1.03E−04 ± 7.83E−05
CPSO 7.29E−05 ± 3.19E−05 0.57E−02 ± 0.50E−02 2.40E+04 ± 7.48E+03 1.07E+02 ± 4.43E+00 1.58E−04 ± 1.15E−04
CLPSO 2.50E−11 ± 4.78E−12 2.04E−12 ± 4.30E−12 4.50E+03 ± 6.14E+02 1.14E+02 ± 2.34E+00 1.98E−12 ± 2.52E−12

1.1
3.7

4

s
a
R
m
c
w
t
R
t
e
A

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941
ANS 0.28E−02 ± 0.16E−02 0.11E−01 ± 0.21E−02

RLMPSO 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00

.5.2. Convergence curve analysis
To investigate the characteristics of RLMPSO at run time for the

hifted and rotated benchmark problems, a graphical comparison
nalysis technique was used by plotting the convergence curves of
LMPSO and other methods. Specifically, the base-10 logarithmic
ean values of the fitness function from a total of 30 runs were

omputed, as shown in Fig. 18. The convergence speed of RLMPSO
as slower than those from other models. This was because of

he small population size (i.e. 3 particles) of RLMPSO. However,
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

LMPSO could escape from local optima owing to the benefit of
he jumping operations, as well as its capability of changing from
xploration to convergence at any time during the search process.
s an example, RLMPSO started with a slow convergence rate in

Fig. 18. The convergence curves of RLMPSO and other
5E+02 ± 1.26E+02 1.12E+02 ± 1.06E+00 4.70E−04 ± 1.88E-04
3E+04 ± 7.85E+03 1.21E+02 ± 3.71E+00 0.00E+00 ± 0.00E+00

Fig. 18(a), (b), and (e), but was able to converge rapidly once the
global optima regions were identified.

4.5.3. Computational time analysis
To analyze the computational time, the evaluation criteria in

[75] were adopted. The general steps of the criteria are explained,
as follows:

Step 1: Run and compute the time consumed by the code seg-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

ment in Fig. 19. This code segment was suggested in [75] to measure
the time required for executing different mathematical operations
such as summation division, multiplication operations. The time
consumed is represented by variable T0.

 methods (a) F1, (b) F2, (c) F3, (d) F4, (e) and F5.

942

943

944

945

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 19

(5.55);

2

() () ()

Fig. 19. The code segment for evaluating T0.

Table 14
Results of computational complexity in seconds.

Algorithm T0 T1 T2 (T2 − T1)/T0

GWO

3.49e−05 12.23

25.67 3.85e+5
CPSO 42.78 8.75e+5
CLPSO 34.54 6.39e+5

S
a
c

f
c
H
b

T

a
r
r
s
o
t
e
n
s
s

s
Q
t
W
p
N
f
t
m
t
m

4

a

Table 16
The p-values of the statistical t-test.

Function F1 F2 F3 F4 F5

GWO 0.0042 0.0000 0.0014 0.0002 0.0235
CPSO 0.0011 0.0389 0.0002 0.0426 0.0195
CLPSO 0.0267 0.0298 0.0043 0.1675 0.0115
ANS 0.0025 0.0001 0.0001 0.0027 0.0017

Table 17
The results of the gear design problem.

Algorithm Mean 95% confidence interval

[51] 5.72E−09 –
[68] 2.22E−09 –

5

T
R

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012
ANS 302.1 8.31e+6
RLMPSO 21.89 2.77e+5

Step 2: Compute the time required to evaluate function F3 (i.e.
hifted Rotated High Conditioned Elliptic Function) from [75] with

 dimension of 50-D for 200,000 FEs according to [75]. The time
onsumed is represented by variable T1.

Step 3: Compute the time required by the entire model with
unction F3 at 50-D for 200,000 FEs according to [75]. This step is
onducted independently for each model, i.e. PSO, CLPSO, DE, BAT,
armony, GWO, and RLMPSO. The time consumed is represented
y variable T2.

Repeat Step 3 for five times and compute the mean of T2, i.e.,
2 = mean(T2). The time complexity is represented by T0,T1, T2,
nd (T2 − T1)/T2, as indicated in Table 14. The computational time
equired by each model (i.e. T2) was similar except RLMPSO which
equired a slightly shorter time (i.e. 21.89 s). This was owing to the
mall population size of RLMPSO (i.e. 3 particles), as compared with
ther methods that worked with a large population size of 30. Addi-
ionally, RLMPSO with a large population size (i.e. 30 particles) was
xperimented, and the results are shown in Table 15. It should be
oted that the CPU time consumed by each method is affected by
everal factors such as programming language and programming
kill, as well as hardware configuration.

A detailed analysis was conducted to investigate the time con-
umed by the Q-table operations of RLMPSO, i.e. updating the
-table and obtaining the best action from the Q-table. The compu-

ational times required for both operations are reported in Table 15.
ith three particles, the time consumed was very small as com-

ared with the total time consumed by the entire model (i.e. T2).
ote that the Q-table size was small (i.e. 5 × 5) and was independent

rom the dimension of the problem. Moreover, a large popula-
ion size of RLMPSO (i.e. 30 particles) was experimented, with the

aximum FE set to 200,000. As can be seen in Table 15, the compu-
ational time of RLMPSO increased (i.e. T2 = 29.87 s) owing to extra

emory requirements.
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

.5.4. Statistical evaluation measure
The t-test [80] was conducted to statistically evaluate the

chieved results by RLMPSO as compared with other methods in

able 15
esults of the RLMPSO computational time in seconds.

Algorithm T0 T1 T2 (T2 −
RLMPSO with 3 particles

3.49e−05 12.23
21.89 2.77e

RLMPSO with 30 particles 29.87 5.12e
[49] 4.25E−09 –
RLMPSO 1.6300e−11 (2.0833e−11, 9.5000e−12)

solving the shifted and rotated functions of CEC 2005. For compar-
ing two methods (X and Y, where X = RLMPSO and Y = the compared
method), the null hypothesis H0 claimed that X and Y performed
equally well. The alternative hypothesis H1 assumed that X out-
performed Y. The significance level of p-value was set at 0.05, i.e.,
the alternative hypothesis H1 would be accepted if the p-value was
less than 0.05 (i.e., 95% confidence level). Table 16 presents the p-
values from the paired t-test between RLMPSO and other methods.
All the p-values were smaller than 0.05, except for the test between
RMLPSO and CLPSO for F4.

4.6. Case Study IIII: real-world benchmark problems

Two real-world engineering design optimization problems were
examined, i.e., train gear design and pressure vessel design, as fol-
lows.

4.6.1. Gear design problem
The problem of designing train gears was studied in [81], and

was further examined in [49,51,68]. The main objective of the
problem was to optimize the gear ratio of a compound train gear
containing three gears, as shown in Fig. 20. The optimization prob-
lem is defined as follows:

f (x) =
(

1
6.931

− AD

BC

)2

(17)

where A, B, C and D are the decision variables that represent the
number of gear teeth and their range, i.e., 12 =< A, B, C, and D ≤ 60,
as described in [81].

The main objective was to find the optimal values of A, B, C and
D that could produce a gear ratio as close to 1/6.931 as possible. The
formulation of the gear ratio is as follows:

The gear ratio = angular velocity of output shaft

angular velocity of input shaft
(18)

In this study, the performance of RLMPSO was compared with
the reported results in [49,51,68]. The parameters used in this
experiment were the same as those in [49,51,68], where the max-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

imum FEs was fixed at FEmax = 3 × 10 . As indicated in Table 17,
RLMPSO achieved the best results. Again, the capability of per-
forming fine-tuning was useful to tackle this train gear design
optimization problem. Furthermore, from the statistical point

 T1)/T0 Q-Table Update operation Q-Table Get best operation

+5 0.12 0.18
+5 0.86 1.2

1013

1014

1015

1016

dx.doi.org/10.1016/j.asoc.2016.01.006

ARTICLE IN PRESSG Model
ASOC 3409 1–22

20 H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx

Fig. 20. The gear design problem [82].

R R

o
[

4

m
p
s
t
c
d

C

M

s

g

g

g

w
l
t
F

[
e
[
y
m
o
fi

Table 18
Results of the pressure vessel design problem.

Algorithm Mean 95% confidence interval

[85] 6064.34 –
[84] 6447.74 –
[83] 6410.09 –

1017

1018

1019

1020

1021

1022

1023

1024

1025
1026

10271028

1029

10301031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084
Fig. 21. The pressure vessel design problem.

f view, RLMPSO significantly outperformed other methods in
49,51,68], as indicated by the 95% confidence intervals.

.6.2. Pressure vessel design problem
The pressure vessel design problem [83–85] aimed to find the

inimum manufacturing cost of designing the cylindrical com-
ressed air storage with pre-defined conditions and constrains, as
hown in Fig. 21. The complexity of this design problem was higher
han that of the train gear design problem as a total of four design
onstraints (i.e. g1, g2, g3, and g4) were involved. The problem is
efined as follows.

onsider �x = [Ts, Th, R, L]

inimize f (�x) = 0.6224 TsRL + 1.7781 ThR2

+ 3.1661T2
s L + 19.84 T2

s R (19)

ubject to g1(�x) = 0.0193R − Ts ≤ 0

2
(�x) = 0.00954R − Th ≤ 0

3
(�x) = 1296000 − �R2L − 4

3
�R3 ≤ 0

4
(�x) = L − 240 ≤ 0

here 0 ≤ Ts ≤ 99, 0 ≤ Th ≤ 99, 10 ≤ R ≤ 200, 10 ≤ L ≤ 200, and L is the
ength of the cylinder, R is the cylinder radius, Ts is the cylinder
hickness, and Th is the thickness of cylinder head, as shown in
ig. 21.

This experiment was conducted using the same settings in
85], where the maximum FEs was set to FEmax = 5 × 104, and the
xperimental run was repeated 30 times. The reported results in
83–85] are shown in Table 18 for comparison purposes. RLMPSO
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ielded the best mean results as compared with those from other
ethods. From the statistical point of view, RLMPSO significantly

utperformed the methods in [83,84], as indicated by the 95% con-
dence intervals.

1085
RLMPSO 6028.50 (5.9577, 6.1251)

5. Summary

A new RLMPSO model has been presented in this paper. RLMPSO
operates with a micro population size, with only three particles. It
has five dedicated operations, i.e. exploration, convergence, high-
jump, low-jump, and fine-tuning. Each particle is able to switch
from one operation to another under the control of the RL algo-
rithm. The effectiveness of RLMPSO has been evaluated using four
unimodal and multi-modal benchmark problems, six composite
benchmark problems, five shifted and rotated benchmark prob-
lems, as well as two real-world design problems. The bootstrap
confidence intervals as well as the statistical t-test have been used
to quantify the performance indicators. From the statistical analysis
of the results, the proposed RLMPSO model significantly outper-
forms a number of PSO variants reported in the literature.

There are a number of areas to be pursued as further work.
Firstly, the fine-tuning operation plays a vital role. As such, dif-
ferent local search methods can be incorporated into RLMPSO,
such as tabu search [86], simulated annealing [87], and reactive
search optimizer [88]. Secondly, the RL algorithm can be used to
manage different swarm optimization algorithms such as CLPSO
[53], GWO [79], Bee Colony [89], and Harmony [90]. Thirdly, the
proposed RLMPSO model can be applied to different real-world
optimization problems such as DNA sequence compression [1],
flow shop scheduling [2], multi-robot path planning [3], wireless
sensor networks [4], and finance applications [5]. Finally, RLMPSO
can be used to design SVM-based pattern recognition model [10]
by performing simultaneous features selection, parameters tuning,
and training instances selection.

References

[1] Z. Zhu, J. Zhou, Z. Ji, Y.-h. Shi, DNA sequence compression using adaptive particle
swarm optimization-based memetic algorithm, IEEE Trans. Evol. Computat. 15
(2011) 643–658.

[2] B. Liu, L. Wang, Y.-H. Jin, An effective PSO-based memetic algorithm for flow
shop scheduling, IEEE Trans Syst. Man Cybernet. − Part B: Cybernetics 37 (2007)
18–27.

[3] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain, A.K. Nagar,
Realization of an adaptive memetic algorithm using differential evolution and
q-learning: a case study in multirobot path planning, IEEE Trans. Syst. Man
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Cybernet.: Syst. 43 (2013) 814–831.
[4] K. Pandremmenou, L.P. Kondi, K.E. Parsopoulos, A study on visual sensor

network cross-layer resource allocation using quality-based criteria and meta-
heuristic optimization algorithms, Appl. Soft Comput. 26 (2015) 149–165.

1086

1087

1088

1089

dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

ft Com

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
[

[

[

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256
ARTICLESOC 3409 1–22

H. Samma et al. / Applied So

[5] S.C. Chiam, K.C. Tan, A.A. Mamun, A memetic model of evolutionary
PSO for computational finance applications, Expert Syst. Appl. 36 (2009)
3695–3711.

[6] L. Jiao, M. Gong, S. Wang, B. Hou, Z. Zheng, Q. Wu, Natural and remote sensing
image segmentation using memetic computing, Computat. Intell. Mag. IEEE 5
(2010) 78–91.

[7] S.-H. Yang, J.-F. Kiang, Optimization of asymmetrical difference pattern with
memetic algorithm, IEEE Trans. Antennas Propag. 62 (2014) 2297–2302.

[8] Y. Peng, B.-L. Lu, A hierarchical particle swarm optimizer with latin sampling
based memetic algorithm for numerical optimization, Appl. Soft Comput. 13
(2013) 2823–2836.

[9] H. Wang, I. Moon, S. Yang, D. Wang, A memetic particle swarm optimiza-
tion algorithm for multimodal optimization problems, Inform. Sci. 197 (2012)
38–52.

10] Y. Bao, Z. Hu, T. Xiong, A PSO and pattern search based memetic algorithm for
SVMs parameters optimization, Neurocomputing 117 (2013) 98–106.

11] M. Aziz, M.-H. Tayarani-N, An adaptive memetic Particle Swarm Optimiza-
tion algorithm for finding large-scale Latin hypercube designs, Eng. Appl. Artif.
Intell. 36 (2014) 222–237.

12] Z. Ji, H. Liao, Y. Wang, Q.H. Wu, A novel intelligent particle optimizer for global
optimization of multimodal functions, in: IEEE Congress on Evolutionary Com-
putation, 2007. CEC 2007, 2007, pp. 3272–3275.

13] D. Tang, Y. Cai, J. Zhao, Y. Xue, A quantum-behaved particle swarm optimization
with memetic algorithm and memory for continuous non-linear large scale
problems, Inform. Sci. 289 (2014) 162–189.

14] W.K. Mashwani, A. Salhi, Multiobjective memetic algorithm based on decom-
position, Appl. Soft Comput. 21 (2014) 221–243.

15] C.-L. Chan, C.-L. Chen, A cautious PSO with conditional random, Expert Syst.
Appl. 42 (2015) 4120–4125.

16] Y. Zhang, S. Wang, P. Phillips, G. Ji, Binary PSO with mutation operator for feature
selection using decision tree applied to spam detection, Knowledge-Based Syst.
64 (2014) 22–31.

17] T. Huang, A.S. Mohan, Micro-particle swarm optimizer for solving high
dimensional optimization problems (�PSO for high dimensional optimization
problems), Appl. Math. Computat. 181 (2006) 1148–1154.

18] T. Huang, A.S. Mohan, A microparticle swarm optimizer for the reconstruction
of microwave images, IEEE Trans. Antennas Propag. 55 (2007) 568–576.

19] G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A.C. Likas, Inte-
grating particle swarm optimization with reinforcement learning in noisy
problems, in: Proceedings of the 14th Annual Conference on Genetic and Evo-
lutionary Computation, ACM, Philadelphia, Pennsylvania, USA, 2012.

20] Z. Zhi-Hui, Z. Jun, L. Yun, H.S.H. Chung, Adaptive particle swarm opti-
mization, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 39 (2009)
1362–1381.

21] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, Q. Tian, Self-adaptive learning based
particle swarm optimization, Inform. Sci. 181 (2011) 4515–4538.

22] R. Mallipeddi, S. Mallipeddi, P.N. Suganthan, Ensemble strategies with adaptive
evolutionary programming, Inform. Sci. 180 (2010) 1571–1581.

23] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, M.F. Tasgetiren, Differential evolution
algorithm with ensemble of parameters and mutation strategies, Appl. Soft
Comput. 11 (2011) 1679–1696.

24] Z. Shi-Zheng, P.N. Suganthan, Z. Qingfu, Decomposition-based multiobjective
evolutionary algorithm with an ensemble of neighborhood sizes, IEEE Trans.
Evol. Computat. 16 (2012) 442–446.

25] H. Dong, J. He, H. Huang, W. Hou, Evolutionary programming using a mixed
mutation strategy, Inform. Sci. 177 (2007) 312–327.

26] G. Wu, R. Mallipeddi, P.N. Suganthan, R. Wang, H. Chen, Differential evolution
with multi-population based ensemble of mutation strategies, Inform. Sci. 329
(2016) 329–345.

27] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings, IEEE
International Conference on Neural Networks, 1995, vol. 1944, 1995, pp.
1942–1948.

28] M. El-Abd, H. Hassan, M. Anis, M.S. Kamel, M. Elmasry, Discrete cooperative
particle swarm optimization for FPGA placement, Appl. Soft Comput. 10 (2010)
284–295.

29] Y. Ren, Y. Wu, An efficient algorithm for high-dimensional function optimiza-
tion, Soft Comput. 17 (2013) 995–1004.

30] L. Sun, S. Yoshida, X. Cheng, Y. Liang, A cooperative particle swarm optimizer
with statistical variable interdependence learning, Inform. Sci. 186 (2012)
20–39.

31] F. Van den Bergh, A.P. Engelbrecht, A Cooperative approach to particle swarm
optimization, IEEE Trans. Evol. Computat. 8 (2004) 225–239.

32] X. Li, X. Yao, Cooperatively coevolving particle swarms for large scale optimiza-
tion, IEEE Trans. Evol. Computat. 16 (2012) 210–224.

33] F. Zhao, G. Li, C. Yang, A. Abraham, H. Liu, A human–computer cooperative
particle swarm optimization based immune algorithm for layout design, Neu-
rocomputing 132 (2014) 68–78.

34] S. Duman, N. Yorukeren, I.H. Altas, A novel modified hybrid PSOGSA based on
fuzzy logic for non-convex economic dispatch problem with valve-point effect,
Int. J. Elect. Power Energy Syst. 64 (2015) 121–135.

35] A. Gálvez, A. Iglesias, A new iterative mutually coupled hybrid GA–PSO
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

approach for curve fitting in manufacturing, Appl. Soft Comput. 13 (2013)
1491–1504.

36] M.S. Kiran, M. Gündüz, A recombination-based hybridization of particle swarm
optimization and artificial bee colony algorithm for continuous optimization
problems, Appl. Soft Comput. 13 (2013) 2188–2203.

[

[

 PRESS
puting xxx (2016) xxx–xxx 21

37] R. Rahmani, R. Yusof, M. Seyedmahmoudian, S. Mekhilef, Hybrid technique
of ant colony and particle swarm optimization for short term wind energy
forecasting, J. Wind Eng. Ind. Aerodyn. 123 (Part A) (2013) 163–170.

38] R. Pandi, B.K. Panigrahi, Dynamic economic load dispatch using hybrid swarm
intelligence based harmony search algorithm, Expert Syst. Appl. 38 (2011)
8509–8514.

39] S.Z. Zhao, P.N. Suganthan, Q.-K. Pan, M. Fatih Tasgetiren, Dynamic multi-swarm
particle swarm optimizer with harmony search, Expert Syst. Appl. 38 (2011)
3735–3742.

40] L. Ma, M. Gong, J. Liu, Q. Cai, L. Jiao, Multi-level learning based memetic algo-
rithm for community detection, Appl. Soft Comput. 19 (2014) 121–133.

41] T.K. Das, G.K. Venayagamoorthy, U.O. Aliyu, Bio-inspired algorithms for the
design of multiple optimal power system stabilizers: SPPSO and BFA, IEEE
Trans. Industry Appl. 44 (2008) 1445–1457.

42] V.H. Hinojosa, R. Araya, Modeling a mixed-integer-binary small-population
evolutionary particle swarm algorithm for solving the optimal power flow
problem in electric power systems, Appl. Soft Comput. 13 (2013) 3839–3852.

43] K.E. Parsopoulos, Parallel cooperative micro-particle swarm optimization: a
master–slave model, Appl. Soft Comput. 12 (2012) 3552–3579.

44] M.A.M. de Oca, T. Stutzle, M. Birattari, M. Dorigo, Frankenstein’s PSO: a com-
posite particle swarm optimization algorithm, IEEE Trans. Evol. Computat. 13
(2009) 1120–1132.

45] M. Hu, T. W, J.D. W, An adaptive particle swarm optimization with multiple
adaptive methods, IEEE Trans. Evol. Computat. 17 (2013) 705–720.

46] S. Sun, J. Li, A two-swarm cooperative particle swarms optimization, Swarm
Evol. Computat. 15 (2014) 1–18.

47] X. Li, Niching without niching parameters: particle swarm optimization using
a ring topology, IEEE Trans. Evol. Computat. 14 (2010) 150–169.

48] W. Zhang, D. Ma, J.-j. Wei, H.-f. Liang, A parameter selection strategy for particle
swarm optimization based on particle positions, Expert Syst. Appl. 41 (2014)
3576–3584.

49] W.H. Lim, N.A. Mat Isa, Two-layer particle swarm optimization with intelligent
division of labor, Eng. Appl. Artif. Intell. 26 (2013) 2327–2348.

50] W.H. Lim, N.A. Mat Isa, Teaching and peer-learning particle swarm optimiza-
tion, Appl. Soft Comput. 18 (2014) 39–58.

51] W.H. Lim, N.A. Mat Isa, Particle swarm optimization with increasing topology
connectivity, Eng. Appl. Artif. Intell. 27 (2014) 80–102.

52] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm: simpler,
maybe better, IEEE Trans. Evol. Computat. 8 (2004) 204–210.

53] J.J. Liang, A.K. Qin, P.N. Suganthan, S. Baskar, Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions, IEEE Trans.
Evol. Computat. 10 (2006) 281–295.

54] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary
algorithms: a survey, ACM Comput. Surv. 45 (2013) 1–33.

55] C.-L. Huang, W.-C. Huang, H.-Y. Chang, Y.-C. Yeh, C.-Y. Tsai, Hybridization strate-
gies for continuous ant colony optimization and particle swarm optimization
applied to data clustering, Appl. Soft Comput. 13 (2013) 3864–3872.

56] S. Jayaprakasam, S.K.A. Rahim, C.Y. Leow, PSOGSA-explore: a new hybrid
metaheuristic approach for beampattern optimization in collaborative beam-
forming, Appl. Soft Comput. 30 (2015) 229–237.

57] Y. Liu, B. Niu, Y. Luo, Hybrid learning particle swarm optimizer with genetic
disturbance, Neurocomputing 151 (Part 3) (2015) 1237–1247.

58] M. Mahi, Ö.K. Baykan, H. Kodaz, A new hybrid method based on Particle Swarm
Optimization, Ant Colony Optimization and 3-Opt algorithms for Traveling
Salesman Problem, Appl. Soft Comput. 30 (2015) 484–490.

59] C. Blum, J. Puchinger, G.R. Raidl, A. Roli, Hybrid metaheuristics in combinatorial
optimization: a survey, Appl. Soft Comput. 11 (2011) 4135–4151.

60] G. Wu, D. Qiu, Y. Yu, W. Pedrycz, M. Ma, H. Li, Superior solution guided particle
swarm optimization combined with local search techniques, Expert Syst. Appl.
41 (2014) 7536–7548.

61] S. Yuhui, R. Eberhart, A modified particle swarm optimizer, in: in: The 1998 IEEE
International Conference on Evolutionary Computation Proceedings, 1998. IEEE
World Congress on Computational Intelligence, 1998, pp. 69–73.

62] R.S. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: a framework
for temporal abstraction in reinforcement learning, Artif. Intell. 112 (1999)
181–211.

63] M. McPartland, M. Gallagher, Reinforcement learning in first person shooter
games, IEEE Trans. Computat. Intell. AI Games 3 (2011) 43–56.

64] R. Sharma, M.T.J. Spaan, Bayesian-game-based fuzzy reinforcement learning
control for decentralized POMDPs, IEEE Trans. Computat. Intell. AI Games 4
(2012) 309–328.

65] C.C.H. Watkins, P. Dayan, Q-learning, Mach. Learning 8 (1992) 279–292.
66] T. Huang, A.S. Mohan, Micro-particle swarm optimizer for solving high

dimensional optimization problems (uPSO for high dimensional optimization
problems), Appl. Math. Computat. 181 (2006) 1148–1154.

67] A. Ratnaweera, S. Halgamuge, H.C. Watson, Self-organizing hierarchical particle
swarm optimizer with time-varying acceleration coefficients, IEEE Trans. Evol.
Computat. 8 (2004) 240–255.

68] C. Li, S. Yang, T. Nguyen, A self-learning particle swarm optimizer for global
optimization problems, IEEE Trans. Syst. Man Cybernet. Part B: Cybernet. 42
(2012) 627–646.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

69] K. Tang, Z. Li, L. Luo, B. Liu, Multi-strategy adaptive particle swarm optimization
for numerical optimization, Eng. Appl. Artif. Intell. 37 (2015) 9–19.

70] Q.-K. Pan, M. Fatih Tasgetiren, Y.-C. Liang, A discrete particle swarm optimiza-
tion algorithm for the no-wait flowshop scheduling problem, Comp. Operat.
Res. 35 (2008) 2807–2839.

1257

1258

1259

1260

1261

dx.doi.org/10.1016/j.asoc.2016.01.006

 ING Model
A

2 ft Com

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[Q5

[

[

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305
ARTICLESOC 3409 1–22

2 H. Samma et al. / Applied So

71] C.-H. Wang, T.-W. Lin, Improved particle swarm optimization to minimize peri-
odic preventive maintenance cost for series-parallel systems, Expert Syst. Appl.
38 (2011) 8963–8969.

72] Y. Lee, J.J. Filliben, R.J. Micheals, P. Jonathon Phillips, Sensitivity analysis for
biometric systems: A methodology based on orthogonal experiment designs,
Comp. Vision Image Understand. 117 (2013) 532–550.

73] M. Črepinšek, S.-H. Liu, M. Mernik, Replication and comparison of computa-
tional experiments in applied evolutionary computing: common pitfalls and
guidelines to avoid them, Appl. Soft Comput. 19 (2014) 161–170.

74] B. Efron, Bootstrap methods: another look at the Jackknife, Ann. Stat. 7 (1979)
1–26.

75] P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y. Chen, A. Auger, S. Tiwari, Prob-
lem definitions and evaluation criteria for the CEC 2005 special session on
real-parameter optimization, Technical Report, Nanyang Technological Uni-
versity, Singapore, May 2005 and KanGAL Report 2005005, IIT Kanpur, India,
2005.

76] Z.-H. Zhan, J. Zhang, Y. Li, Y.-h. Shi, Orthogonal learning particle swarm opti-
mization, IEEE Trans. Evol. Computat. 15 (2010) 832–847.

77] W.N. Chen, J. Zhang, Y. Lin, N. Chen, Z.H. Zhan, H.S.H. Chung, Y. Li, Y.H. Shi,
Particle swarm optimization with an aging leader and challengers, IEEE Trans.
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

Evol. Computat. 17 (2013) 241–258.
78] G. Wu, Across neighborhood search for numerical optimization, Inform. Sci.

329 (2016) 597–618.
79] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69

(2014) 46–61.

[

[

 PRESS
puting xxx (2016) xxx–xxx

80] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures,
CRC Press, 2003.

81] E. Sandgren, Nonlinear integer and discrete programming in mechanical design
optimization, J. Mech. Des. 112 (1990) 223–229.

82] S. Mirjalili, S. Mirjalili, A. Hatamlou, Multi-verse optimizer: a nature-inspired
algorithm for global optimization, Neural Comput. Appl. (2015) 1–19.

83] A.H. Gandomi, Interior search algorithm (ISA): a novel approach for global
optimization, ISA Trans. 53 (2014) 1168–1183.

84] A. Gandomi, X.-S. Yang, A. Alavi, Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems, Eng. Comp. 29 (2013)
17–35.

85] A. Baykasoğlu, F.B. Ozsoydan, Adaptive firefly algorithm with chaos for mechan-
ical design optimization problems, Appl. Soft Comput. 36 (2015) 152–164.

86] F. Glover, Future paths for integer programming and links to artificial intelli-
gence, Comp. Oper. Res. (1986).

87] C.C. Ski, B.L. Golden, Optimization by simulated annealing: a preliminary com-
putational study for the TSP, in: Proceedings of the 15th Conference on Winter
Simulation – Volume 2, Arlington, Virginia, USA, IEEE Press, 1983, pp. 523–535.

88] R. Battiti, M. Brunato, F. Mascia, Reactive Search and Intelligent Optimization,
Springer Publishing Company, Incorporated, 2008.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

89] D. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, M. Zaidi, The Bees algo-
rithm. Technical note, Manufacturing Engineering Centre, Cardiff University,
UK, 2005, pp. 1–57.

90] W. Geem, Zong, J. Kim, G. Hoon, V. Loganathan, A new heuristic optimization
algorithm: Harmony search, Simulation 76 (2001) 60–68.

1306

1307

1308

1309

1310

dx.doi.org/10.1016/j.asoc.2016.01.006

	A new Reinforcement Learning-based Memetic Particle Swarm Optimizer
	1 Introduction
	2 Particle Swarm Optimization and its variants
	2.1 Modified PSO-based algorithms
	2.2 Hybrid PSO-based algorithms
	2.3 Cooperative PSO-based algorithms
	2.4 Micro PSO-based algorithms
	2.5 Memetic PSO-based algorithms

	3 The proposed model
	3.1 Reinforcement learning
	3.2 The RLMPSO structure
	3.3 The Q-table and its contents
	3.4 The boundary condition
	3.5 Exploration and convergence operations
	3.6 High and low jump operations
	3.7 Fine-tuning operation

	4 Experimental study
	4.1 Parameter settings and performance metrics
	4.2 Case study I: unimodal and multi-modal benchmark problems
	4.2.1 Analysis of the delay and cost parameters
	4.2.2 Analysis of the number of particles
	4.2.3 Analysis of the contributions of each operation
	4.2.4 Analysis of the RLMPSO behaviour at run-time
	4.2.5 Sensitivity analysis of the RLMPSO control parameters
	4.2.6 RLMPSO diversity analysis

	4.3 Comparison with other PSO variants
	4.4 Case Study II: composite benchmark problems
	4.5 Case Study IIII: shifted and rotated benchmark problems
	4.5.1 Mean fitness value analysis
	4.5.2 Convergence curve analysis
	4.5.3 Computational time analysis
	4.5.4 Statistical evaluation measure

	4.6 Case Study IIII: real-world benchmark problems
	4.6.1 Gear design problem
	4.6.2 Pressure vessel design problem

	5 Summary
	References

