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Developing  an effective  memetic  algorithm  that integrates  the  Particle  Swarm  Optimization  (PSO)  algo-
rithm  and  a local  search  method  is  a difficult  task. The  challenging  issues  include  when  the  local  search
method  should  be called,  the frequency  of calling  the  local  search  method,  as well  as which  particle  should
undergo  the  local  search  operations.  Motivated  by  this  challenge,  we  introduce  a new  Reinforcement
Learning-based  Memetic  Particle  Swarm  Optimization  (RLMPSO)  model.  Each  particle  is  subject  to five
operations  under  the control  of  the Reinforcement  Learning  (RL) algorithm,  i.e. exploration,  convergence,
emetic algorithm
article Swarm Optimization
einforcement learning
ocal search

high-jump,  low-jump,  and  fine-tuning.  These  operations  are  executed  by  the particle  according  to  the
action  generated  by the  RL algorithm.  The  proposed  RLMPSO  model  is evaluated  using  four  uni-modal  and
multi-modal  benchmark  problems,  six  composite  benchmark  problems,  five  shifted  and  rotated  bench-
mark problems,  as well  as two  benchmark  application  problems.  The  experimental  results  show  that
RLMPSO  is  useful,  and  it  outperforms  a number  of state-of-the-art  PSO-based  algorithms.
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. Introduction

Memetic-based optimization algorithms have been used suc-
essfully in many applications, e.g. DNA sequence compression [1],
ow shop scheduling [2], multi-robot path planning [3], wireless
ensor networks [4], finance applications [5], image segmentation
6], and radar applications [7]. The main objective of developing

emetic-based algorithms is to exploit the benefits of both global
nd local search methods and combine them into a single model. As
n example, the Particle Swarm Optimization (PSO) algorithm is an
ffective global optimizer, and has been integrated with different
ocal search methods to produce a number of memetic PSO-based

odels [1,2,8–11]. The resulting models combine the global search
trength of PSO and the refinement capability of local search meth-
ds into a unified framework.

In the literature, many successful applications of memetic
SO-based models have been reported. In [1], a memetic model
ntegrating PSO and an Intelligent Single Particle Optimizer (ISPO)
12] to solve the DNA sequence compression problem was  pre-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ented. In [11], an adaptive memetic algorithm with PSO was
eveloped and applied to the Latin hypercube design problem.
pecifically, the standard PSO algorithm was adopted to perform
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the global search operations. It was integrated with a Lamarckian
algorithm to perform the refinement operations. A hybrid model of
PSO and a pattern-based local search method was  studied in [10].
The resulting model was  useful for parameter tuning of the Support
Vector Machine (SVM). On the other hand, some studies indicate
that PSO can be used for performing the local search operations in
memetic models [5,13,14]. In [5], a hybrid model of PSO and genetic
algorithm was  introduced, whereby the PSO algorithm acted as a
local search method. A hybrid shuffled frog-leaping algorithm and
modified quantum-based PSO local search method was described
in [13]. Recently, a hybrid model combining the differential evalu-
ation algorithm and PSO was  introduced. Again, PSO functioned as
a local search method [14].

There are a lot of challenges in developing an effective memetic-
based PSO model. The key challenges include when the local search
method should be called, the frequency of calling the local search
method, and which particle should undergo the local search opera-
tions. Indeed, the findings in [1] indicate that efficient management
of the local search method in terms of time and frequency of call-
ing has a significant impact on the performance. Besides these
challenges, the standard PSO algorithm also suffers from several
weaknesses, primarily the premature convergence and high com-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

putational cost problems. The first weakness is related to its fast
premature convergence condition [15,16]. As pointed in [15,16],
PSO can be trapped quickly in local optima at the beginning of the
search process. The second limitation of PSO comes from its high
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omputational cost. While a large particle population size gives a
etter swarm diversity capability, the computational cost becomes

ntensive too, e.g. each particle needs to undergo the fitness evalu-
tion in every search cycle. This limitation of PSO has been reported
n [17,18].

To mitigate the aforementioned problems, this study intro-
uces a new reinforcement learning-based memetic PSO (RLMPSO)
odel. RL has been employed with standard PSO and other evo-

utionary algorithms [3,19]. An integration of RL and PSO was
roposed by Grigoris [19]. Another recent study [3] employed RL for
arameter tuning a differential evolution algorithm. On the other
and, RL worked independently from PSO in [6], whereby it was
dopted to enhance the estimation of the objective function in noisy
roblems.

Comparing with the existing work in the literature, this study
iffers in the aspect that RL is embedded in RLMPSO to control the
peration of each particle during the search process. Each particle,
nder the control of RL, performs one of the five possible opera-
ions [20], i.e. exploration, convergence, high-jump, low-jump, and
ne-tuning. Moreover, each operation is given a reward or penalty
ccording to its achievement. The proposed RMLPSO model has the
ollowing advantages:

1) RLMPSO works with a small population size (typically 3
particles). It utilizes the ISPO (i.e. Intelligent Single Particle Opti-
mizer) algorithm [12]. Additionally, it is enhanced with a total of
five operations, i.e. exploration, convergence, high-jump, low-
jump, and fine-tuning.

2) The RL algorithm is embedded into RLMPSO to control the oper-
ation of each individual particle in the swarm. Specifically, RL
adaptively switches the particle from one operation to another
in accordance with the particle’s achievement. Positive rewards
are given to particles that have performed well, while penalties
are imposed to non-performing particles.

3) Each particle in RLMPSO evolves independently, e.g. one parti-
cle executes exploration, while others perform their respective
operations.

4) To minimize the computational cost of fine-tuning, two  param-
eters are introduced i.e. delay (D) and cost (C). The delay
parameter prevents fine-tuning (i.e., for local search) to be initi-
ated at the beginning of the search process. The cost parameter
controls the duration between each consecutive call of the fine-
tuning operation.

Similar to RL, the idea of selecting the best performing opera-
ors from a set of alternatives has been comprehensively studied
n the literature [21–24]. As an example, four PSO velocity updat-
ng strategies were used in [21]. A probability execution variable

as assigned for each strategy, and the best operation was  given a
igher probability of selection. An evolutionary-based optimization
lgorithm with an ensemble of mutation operators was introduced
n [22]. Each individual in the population would select a mutation
trategy according to a probability distribution. Improved results
ere achieved with the ensemble strategy as compared with the

ingle mutation strategy [25].
Differential Evolution (DE)-based methods with ensemble

trategies were studied in [23,24,26]. In [23], an evolving DE model
ith an ensemble mutation strategy was presented. During the

earch process, DE randomly selected a mutation strategy with a
andom set of parameters to generate a new offspring. If the pro-
uced vector was better than the parent, the strategy would be
etained; otherwise a new random mutation strategy with a new
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

et of parameters would be generated [23]. The multi-objective
E algorithm with a pool of Neighbourhood Size (NS) parameter
as presented in [24]. In particular, DE was developed using k
S candidates. The best NS value was adaptively selected from k
 PRESS
puting xxx (2016) xxx–xxx

candidates according to their historical performances. Improve-
ments were achieved using k NS candidates as compared with
only one candidate. Another DE-based model with an ensemble
mutation strategy was presented in [26]. In particular, the pop-
ulation was  randomly divided into three small sub-populations
and one large sub-population. The three small sub-populations
were executed for a specific number of Fitness Evaluations (FEs).
Each sub-population was executed with a different mutation strat-
egy, i.e. “current-to-pbest/1” and “current-to-rand/1”, and “rand/1”
[26]. A reward was  computed as the ratio of fitness improvement to
the total number of fitness calls consumed by each sub-population.
After that, the large sub-population was  executed with the set-
ting of the best performing small sub-population. This process was
repeated until the maximum number of FEs is met. In this case,
the best mutation strategy could be selected dynamically during
run time. The proposed model was able to outperform other DE
variants.

The rest of this paper is organized as follows. In Section 2, an
overview of PSO and its variants is given. The proposed RLMPSO
model is explained in Section 3. In Section 4, a series of experi-
ments to evaluate the effectiveness of RLMPSO using benchmark
optimization problems is described. A summary of the research
findings is presented in Section 5.

2. Particle Swarm Optimization and its variants

PSO was  introduced by Kennedy and Eberhart about two
decades ago [27]. The motivation of PSO is to mimic  social interac-
tion and search behaviours of animals, such as bird flocking and fish
schooling. In general, PSO is represented by a swarm of N particles.
Each particle in the swarm is associated with two vectors, i.e., the
velocity (V) and position (X) vectors, as follows:

Xi =
[
d1

i , d2
i , d3

i , . . .,  xD
i

]
(1)

Vi =
[
v1

i , v2
i , v3

i , . . .,  vD
i

]
(2)

where D represents the dimension of the optimization problem
and i denotes the particle number in the swarm. During the search
process, the velocity and position vectors are updated as follows:

Vi+1 = w ∗ Vi + c1 ∗ randuniform(pBest − Xi)

+ c2 ∗ randuniform(gBest − Xi) (3)

Xi+1 = Xi + Vi+1 (4)

where w is the inertia weight, c1 is the cognitive acceleration
coefficient, c2 is the social acceleration coefficient, randuniform is a
uniformly distributed random number within [0, 1], pBest is the
local best position achieved by a particular particle, and gBest is the
global best position achieved by the whole swarm.

As can be seen in Eq. (3), each particle’s movement is affected
by three components, namely its particle velocity (Vi), the distance
from its local best (pBest − Xi), and the distance from the global
best (gBest − Xi) in the swarm. Therefore, to control each compo-
nent in Eq. (3), three parameters are used, i.e., w, c1, and c2. The
suggested range of the inertia weight is w ∈ [0.4, 0.9] [27]. It has
been pointed out that w must be high in the exploration stage and
low in the convergence stage [20]. On the other hand, the settings
of c1 and c2 need to strike a balance between pBest and gBest. As
suggested in [20,21], c1 must be higher than c2 in the exploration
stage, and the opposite in the convergence stage.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Since the introduction of the original PSO algorithm, many
PSO variants have been put forward to improve its performance
[1,2,4–11,13,14,17,18,28–48]. The main PSO-based algorithms
available in the literature can be divided into five categories i.e.
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odified-based, hybrid-based, cooperative-based, micro-based,
nd memetic-based algorithms. A discussion of each category is
resented, as follows.

.1. Modified PSO-based algorithms

The main aim of this category is to enhance the performance of
SO by controlling its parameters [20,45,48], balancing between the
xploitation and exploration operations [46,49], or modifying the
warm topology connectivity [44,47,50–53]. An adaptive PSO algo-
ithm was introduced in [20]. The aim was to improve the search
erformance by efficiently controlling its parameters, i.e. the cog-
itive acceleration parameter, social acceleration parameter, and

nertia weight parameter. These parameters were adaptively tuned
y using fuzzy rules [20]. However, the method relied on the distri-
ution of the swarm particles at run time, which was not suitable
or PSO with small populations. The PSO variant proposed in [45]
ssigned independent parameters for each particle in the swarm.
pecifically, each particle was given its own parameters (i.e. cogni-
ive acceleration, social acceleration, and inertia weight), and they
ere tuned adaptively according to the behaviour of the particle
uring the search process [45]. However, managing these parame-
ers independently would increase the complexity of PSO. Inspired
y control theory, a new strategy for controlling the PSO parameters
as suggested in [48]. The strategy adopted the concept of the peak

ime and overshoot in its search process. Nevertheless, the strategy
orked with a large population size (i.e. 250 particles); therefore

ncreasing the computational cost owing to fitness evaluation for
ach particle during each search cycle.

Other researchers attempted to improve PSO by balancing
xploitation and exploration operations at run time [46,49].
ccording to [54], exploration was concerned with spreading the
warm particles to visit the whole search space of the optimization
roblem, while exploitation was concerned with searching around
hose visited regions found during the exploration process [54]. The
dea of evolving two concurrent swarms as a master–slave model

as presented in [46]. The master particles were responsible for
xploration while the slave particles performed exploitation. Again,
volving two swarms simultaneously increased the complexity of
he proposed model [46]. An intelligent scheme which divided the
hole swarm into two groups i.e. exploration and exploitation, was
roposed in [49]. Two metrics were developed to split the popula-
ion, i.e. population spatial diversity and population fitness spatial
iversity. Besides its model complexity, the reported results [48]
ere not competitive on difficult, complex benchmark problems

s compared with those from other PSO-based models.
Methods to modify the swarm topology were examined in

44,47,50–53]. The swarm topology is related to the information
ink between each particle and its neighbour. These links produce
ifferent types of topologies, such as fully connected topology [52],
ing topology [47], and wheels topology [50]. The dynamics of these
opologies can be either static or dynamic. In the former, the topol-
gy is fixed during the search process. The latter has dynamically
hanging topologies at run-time. The main advantage of a dynamic
opology over a static one is its ability to prevent the swarm
rom the premature convergence problem [51] at the beginning
f the search process. However, it increases the computational cost
equired to manage the swarm topology during the search process.
n [51], a dynamic topology was proposed. The connection between
articles started with one particle, i.e. each particle was connected
o another randomly selected particle in the swarm. Then, the con-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ection was linearly increased with time until it reached a fully
onnected topology, i.e. all particles in the swarm were connected
ogether so that learning from the global best particle in the swarm
ould take place [51].
 PRESS
puting xxx (2016) xxx–xxx 3

One of the drawbacks of modified PSO-based algorithms is the
lack of optimization refinement capabilities. In other words, these
methods cannot fine-tune the individual dimension of the particles
independently without affecting other dimensions.

2.2. Hybrid PSO-based algorithms

Enhancing the effectiveness of PSO by hybridization with other
meta-heuristic optimization algorithms has been studied in the
literature [34–39,55–58]. PSO has been used to form hybrid mod-
els with Ant Colony Optimization (ACO) [37,55,58], GA [34,35,56],
Artificial Bee Colony (ABC) [36], and Harmony Search (HS) [38,39].
The main aim of hybrid PSO-based algorithms is to combine the
strengths of the constituents into one integrated model. An inte-
gration of PSO and HS was proposed in [39]. The PSO swarm was
divided into several dynamic multi-swarm particle optimizers, and
each sub-swarm was managed by HS. The sub-swarms commu-
nicated with one another and exchanged their knowledge after a
pre-defined number of FEs. Nevertheless, the model [39] worked
with a large population size (i.e. 10 sub-swarms), and required the
FEs operation for each search iteration. Another hybrid model of
PSO and HS was proposed in [38]. The pitch adjustment operation
in HS was  replaced with the particle velocity addition operation.
The resulting model was  applied to dynamic load dispatch opti-
mization problems. As PSO and HS both performed global search
[38], the search refinement capabilities were inadequate.

Hybrid PSO and ACO models were studied in [37,55,58]. The
hybrid model in [58] comprised two sequential phases, i.e. the ant
colony phase and the PSO phase. In addition, a global best exchange
operation was added after each search cycle. The proposed model
[58] was  computational expensive owing to the execution of two
swarms simultaneously. Another hybrid PSO and ACO model was
developed in [55]. The model [55] comprised four hybridization
strategies, i.e., sequential, parallel, sequential with an enlarged
table, and a global best exchange strategy. It was proposed to tackle
data clustering problems, and the results [55] showed that the
hybrid PSO-ACO model outperformed its constituents (i.e. PSO and
ACO).

The main challenge of hybrid-based PSO algorithms is three-
fold: (i) simultaneous managing multiple swarms and exchanging
information between them; (ii) the computational cost of the FEs
operation for each swarm; (iii) hybrid-based PSO models mainly
comprise global search methods [59], and they lack the capability
of performing search refinement.

2.3. Cooperative PSO-based algorithms

Unlike the aforementioned categories where all dimensions
of the particle are evolved together, cooperative PSO-based algo-
rithms split the optimization process into several sub-problems.
This strategy was  examined in [28–33,43], in which the task was
split into K sub-problems for simultaneous optimization before
combining the results.

A cooperative PSO-based algorithm with application to large-
scale optimization problems was  proposed in [32]. A new position
update scheme was introduced to identify the sub-component size
in an optimal manner. Another cooperative PSO-based algorithm
was developed in [28] to tackle FPGA (Field Programmable Gate
Array) placement problems. The placement task was divided into
two sub-problems: logic blocks and I/O (Input/Output) blocks. A
cooperative-based algorithm was  proposed in [30], in which a new
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

statistical strategy was  used to decompose the optimization prob-
lem. The aim was to estimate the degree of inter-dependencies
pertaining to the optimization variables, and then to include the
dependent variables in the same sub-problem [30].
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In [43], where the original micro PSO algorithm [17] was  used
ith a new master–slave model. At the beginning of the search
rocess, the problem was decomposed into several sub-problems
ith small dimensions. Then, each sub-problem was solved by an

ndependent micro PSO population [17], and all sub-populations
ere executed in parallel. As such, the proposed model [43] could

e classified as a cooperative PSO-based model. The results in [43]
howed its effectiveness in tackling high dimension problems as
ompared with those from other PSO variants.

One of the key challenges of cooperative-based PSO algorithms
s identifying the best sub-problem size and finding the indepen-
ent variables to be placed in different sub-problems.

.4. Micro PSO-based algorithms

To minimize the computational cost of PSO with large pop-
lation sizes, i.e. the cost associated with the FEs operation of
ach particle during the search process, micro PSO-based algo-
ithms have been introduced [17,18,41–43]. A micro PSO algorithm
as introduced in [17] for tackling high dimension optimization
roblems. The results [17] showed the capability of the developed
ptimizer to achieve competitive performance as compared with
hose from the standard PSO algorithm. On the other hand, the
pplication of micro PSO to image reconstruction problems was
nvestigated in [18]. The limitations of the micro PSO algorithm in
17,18] included prevention from exploitation of possible promis-
ng search regions due to the repelling force, as well as the high
omputational cost of re-starting the whole micro swarm during
he search process.

The application of a micro PSO algorithm to real-world design
roblems was discussed in [41,42]. PSO with a small population size
as developed for tuning the parameters of power system stabi-

izers [42]. A re-generation scheme was used to improve diversity
f the micro PSO swarm, where the position and velocity vectors
ere randomized after a pre-defined number of FEs. The reported

esults [42] revealed the usefulness of the re-generation strategy
n enhancing the diversity property.

In summary, the main advantage of micro PSO-based algorithms
s the ability to overcome the high computational cost per each
article in a standard PSO algorithm. However, it lacks population
iversity due to the small number of particles employed. It also
uffers from the problem of premature convergence, i.e., the pop-
lation converges rapidly towards the global best particle at the
arly stage of the search process [17].

.5. Memetic PSO-based algorithms

As the PSO algorithm is generally a global search optimizer
1], it lacks the capability of refining its local search space. There-
ore, a number of investigations to integrate PSO with local search

ethods to produce memetic-based PSO models have been stud-
ed [1,2,4,5,7–11,13,14,60]. A memetic model of PSO and two local
earch methods, i.e. cognition-based search and random walk, was
ntroduced in [9]. The local search methods were able to enhance
he performance of the standard PSO algorithm. Another memetic-
ased PSO model was studied in [10]. In particular, a probabilistic
election scheme to determine which particle should undergo local
earch was developed [10]. Then, those particles with better fit-
ess were given a higher probability to be fine-tuned [10]. A
ierarchical-based memetic model was developed in [8]. The model
ontained two (top and bottom) layers. The bottom layer comprised

 swarms while the top layer comprised one swarm with M best
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

articles from the bottom layer. In addition, the search process con-
ecutively switched from the bottom layer to the top layer. A Latin
ypercube sampling optimizer was embedded for the fine-tuning
peration, which was triggered every ten search generations [8].
 PRESS
puting xxx (2016) xxx–xxx

Nevertheless, managing local search methods in terms of when to
call the local search method, as well as the frequency of calling
posed as a difficult problem in memetic-based PSO models.

Another memetic-based PSO algorithm was  reported in [13]. An
improved Quantum-based PSO optimizer was developed to act as a
global optimizer, while the shuffled complex evolution technique
was adopted for local search operations. The numerical results [13]
indicated that the local search method was able to improve the
PSO performance as compared with that from the standard PSO
algorithm. A recent study of a memetic-based PSO algorithm with
application to a large-scale Latin hypercube design problem was
presented in [11]. Specifically, PSO was  integrated with multiple
local search methods to tackle the hypercube design problem. How-
ever, incorporating multiple local search methods increased FEs in
each local refinement operation [11].

The synergy of PSO with local search methods was discussed
in [60]. In particular, an enhanced PSO algorithm was integrated
with gradient-based and derivative-free local search methods. The
gradient-based methods were used for numerical optimization
problems, while the derivative-free local search methods were
adopted for real-world problems. The reported results revealed that
the employed local search methods were able to improve the search
performance of PSO [61].

Real-world applications of memetic-based PSO algorithms were
reported in [1,2,4,5,7]. A memetic-based PSO model for undertak-
ing flow shop scheduling problems was described in [2]. Several
local search methods were developed, e.g. nawaz-enscore and
simulated-annealing, and they were embedded in the memetic-
based PSO model. A memetic PSO optimizer for tackling DNA
sequence compression problems was presented in [1]. The search
space was clustered into several regions for facilitating the local
search operations. The frequency of calling the local search method
was suggested to be low [1]. For financial applications, an integrated
model of GA and PSO was  developed in [5]. GA and PSO were used
as a global optimizer and a local search method, respectively. The
application of a memetic-based PSO algorithm to wireless sensor
networks was  described in [4]. Operating as a global search opti-
mizer, PSO was  integrated with an active-set local search method
[4]. The proposed model [4] was  used to maximize the quality of
transmitted video streams by visual sensors. A recent study of a
memetic-based PSO optimizer for radar applications was presented
in [7]. The combination of PSO as a global search optimizer and a
gradient-free local search method was  proposed [7]. A memetic-
based PSO optimizer for SVM parameter tuning was examined in
[10]. In particular, the standard PSO optimizer was  integrated with a
pattern-based local search method for refinement operations. The
results showed the effectiveness of the memetic-based model in
tuning SVM parameters, as compared with those from the standard
PSO as well as other optimizers reported in [10].

3. The proposed model

The proposed RLMSPO model integrates RL into the memetic
PSO operations. The detailed explanations are as follows.

3.1. Reinforcement learning

RL [62] stems from research in machine learning and artificial
intelligence. It has been widely studied in game theory [63,64]. The
main components of RL include a learning agent, an environment,
states, actions, and rewards. To implement RL in this study, the
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Q-learning algorithm [65] is adopted.
Let S = [S1, S2, . . .,  Sn] be a set of states of the learning agent,

A = [a1, a2, . . .,  an] be a set of actions that the learning agent can
execute, rt+1 be the immediate reward acquired from executing
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ction a, � be the discount factor within [0,1],  ̨ be the learning
ate within [0,1], Q(st, at) be the total cumulative reward that the
earning agent has gained at time t, and it is computed as follows:

t+1(st, at) = Q (st, at) + ˛[rt+1 + � maxaQ (st+1, a) − Q (st, at)] (5)

A numerical example is presented to clarify Eq. (5), as follows.
ssuming a learning agent with st has to perform one of the four
ossible actions, i.e. move up, move down, move left, or move right,
s shown in Fig. 1. After executing the “move right” action with a
eward of 1 (i.e., r = 1), the next state is st+1, as shown in Fig. 1(b).

Assume that the parameter settings are as follows: the pervious
alue stored in the Q-table for Q(st, at) is 10, i.e. Q(st, at) = 10; the
iscount factor is 0.1, i.e. � = 0.1; and the learning rate parameter is
.9, i.e.,  ̨ = 0.9. Then, the new value in the Q-table updated to

t+1(st, at)=10 + 0.9 ∗ [1 + 0.1 ∗ max(20, 30,  100, 90) − 10]=10.9

Then, update the state st → st+1
The search steps of the Q-learning algorithm are illustrated in

lgorithm 1. One of the main characteristics of Q-learning is how
he learning rate (i.e., ˛) determines the extent of which the newly
earned information overrides the existing, old information. As an
xample, when  ̨ is close to 1, this means that a higher priority is
iven to the newly gained information, and Q-learning performs
ore exploration for all defined states. On the other hand, a small

 value gives a higher priority for the existing information in the Q-
able to be exploited. This puts Q-learning in the exploitation mode.
or this reason,  ̨ normally is set to a high value at the beginning
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

f the search process, and is decreased at each time step, in order
o switch to the exploitation mode, as follows [3]:

(t) = 1 −
(

0.9 ∗ t

MaxFEs

)
(6)

(a)                                              (b) 

100  
30

90 
20 

Fig. 1. A numerical illustration of (a) the current state and (b) the next state.
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where, MaxFEs is the maximum number of FEs. The discount factor
� is responsible for penalizing the future reward. When � = 0, Q-
learning considers the current reward only. When � = 1, Q-learning
looks for a higher, long-term reward. It is suggested to set � = 0.8
[3].

3.2. The RLMPSO structure

Fig. 2 shows the overall RLMPSO structure that integrates RL
and PSO. The PSO particles acts as the RL agents. The environment
is characterized by the search space of the particles. The states
represent the current operation of each particle, i.e., exploration,
convergence, high-jump, low-jump, or fine-tuning. The action is
defined as it changes from one state to another. As can be seen in
Fig. 2, RL controls the operation of each particle in the PSO swarm.
Specifically, RL adaptively switches the particle from one operation
(state) to another according to the particle’s achievement. Posi-
tive rewards are given to particles that have performed well, while
penalties (negative rewards) are given to non-performing particles.

In a standard PSO algorithm, the exploration operation is ini-
tiated at the beginning for the whole swarm particles. Then, the
operation gradually switches to the convergence state towards the
end of the search process. In RLMPSO, the choice of the most suit-
able search operation for each particle is selected adaptively using
RL. Algorithm 2 illustrates the proposed RLMPSO search procedure.
The procedure is repeated until the maximum number of FEs is met.

The main interaction between Q-learning and the five possible
search operations can be summarized in three steps, as follows:

(i) Obtain the best operation to be executed based on the Q-table
value for the current particle.

(ii) Execute the selected operation and compute the fitness func-
tion. The immediate reward is computed, i.e.,

r =
{

1 if fitness is improved

−1 otherwise
(7)

(iii) Update the Q-table for the current particle using Eq. (5).
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

In Algorithm 2, after calling the fine-tuning operation, a cost
(i.e. a negative reward) is given to penalize the execution of this
operation, in order to give a higher priority for other operations to
be executed (as further clarified in Section 3.7).
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Fig. 2. The proposed RLMPSO structure.

.3. The Q-table and its contents

The Q-table is shown in Fig. 3. It is an M × M matrix, where M
s the number of states. In RLMPSO, each particle has its own Q-
able. Therefore, to minimize the computational cost of managing
he Q-tables, a micro PSO model with a small population size (i.e.,
-particles) has been used throughout this research.

To delay the execution of the fine-tuning operation (F) at the
eginning of the search process and to give a higher priority for
ther operations to be executed, the initial Q-table entry for state

 is set to a negative value, as indicated in Fig. 3. In addition,
LMPSO has to be executed N times (i.e., a minimum lapse of N
Es is required) before RL activates fine-tuning. Finally, the maxi-
um  negative value is considered as the initial value of F, as shown

n Fig. 4.
During the execution of RLMPSO, the best action for the current
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

tate is retrieved from the Q-table, as follows:

est action = Max[Q ( current state, all actions)]) (8)

                     ( a) FEs  (N=1)                           

         states / action 

      0           0         0            0         -inf  

      0           0         0            0         -inf  

      0           0         0            0         -inf  

      0           0         0            0         -inf  

      0           0         0            0         -inf  

E      C          H           L           F 

E  

C 

H 

L 

F 

         

    states / act ion 

  -9.9 0  -9.23

  -9.8 7  -9.88

  -9.8 4   -9.1

  -9.0 1   -9.7

     0            0   

E       

E  

C 

H 

L 

F 

(c) FE

Fig. 3. (a)–(c) computing the
        0          0        0            0   -10 .78   F 

Fig. 4. The initial values in the Q-table of particle 1.

A numerical example of the Q-table entries for Particle 1 is
shown in Fig. 5. Assuming that the current state of Particle 1 is
exploration (E). When Eq. (8) is applied, the next state is C, as
indicated in Fig. 6.

To update the content of the Q-table, Eqs. (5) and (6) are used.
The new content of the Q-table is shown in Fig. 6. As can be seen,
after executing the exploration (E) operation, Particle 1 receives a
penalty because it cannot improve the search process.

3.4. The boundary condition

In PSO, there are four possible boundary conditions, i.e. reflect-
ing wall, damping wall, invisible wall, and absorbing wall, as shown
in Fig. 7. The details are as follows:

(i) Reflecting wall: When a particle exceeds the limit of the search
space in any dimension Xi, the sign of its velocity (i.e., Vi) is
changed, and Xi is reflected back to the search space.

(ii) Damping wall: This case is similar to the reflecting wall except
that the particle is reflected with a small random value.

iii) Invisible wall: The particle is allowed to jump out of the pre-
defined search space; however, the fitness function is not
computed.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
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                                          (b) FEs  (N =100 ) 

states / action 

 -3.29   -5.2 9  -4.52  -4.52     - inf    

 -5.29   -5.9 9  -5.33  -5.29     - inf    

-3.40     -4.67  -5.05  -5.29      - inf    

-4.52     -3.34  -4.67  -5.29      - inf    

   0            0          0           0         - i nf   

E        C        H        L           F 

E  

C 

H 

L 

F 

  -10.78  -8.2      - inf   

  -10.44  -7.9 2   - inf   

8 -9.98     -8.3 4   - inf   

6 -10.14  -1 0.2   - inf   

      0            0         - in f 

 C         H          L        F 

s (N=1000)

 initial value of state F.

(iv) Absorbing wall: When the particle exceeds the limit of the
search space in any dimension Xi, its velocity Vi is set to zero,
and Xi is set to the boundary limit.
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states / action  

 -0.05      0.91    0         0     -10.78   

 -0.14       -0.9 9  -1.00   -0.9 9  -10.78  
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    0               0          0          0     -10.78    
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Fig. 5. The Q-table of particle 1 after five operations.
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Fig. 8. The exploration operation.
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Fig. 6. The Q-table values of particle 1 after six operations.

In this research, the damping wall, which has been used in a
umber of PSO variants [18,66], is adopted.

.5. Exploration and convergence operations

The exploration and convergence operations are normally exe-
uted at the beginning and towards the end of the search process,
espectively. However, some studies recommend switching adap-
ively at any time from exploration to convergence, and vice versa.

otivated by the findings in [20], RLMPSO can execute any state, i.e.
xploration, convergence, high-jump, low-jump, and fine-tuning,
t any time during the search process. RL is responsible to keep
rack of the best executed operation pertaining to each particle.

As stated earlier, particle Xi moves in the search space guided
y the global best particle, gBest, its current velocity, Vi and the
Please cite this article in press as: H. Samma, et al., A new Reinforcement Learning-based Memetic Particle Swarm Optimizer, Appl. Soft
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ocal best particle, pBesti, as indicated in Eq. (3). Parameters w, c1
nd c2 control the direction and movement of particlei, as shown in
igs. 8 and 9. Therefore, in the exploration state, w should be high to
llow the particle to make a large movement to explore the search

Fig. 9. The convergence operation.

(d)  

(a)  
(b)  

(c)  

Fig. 7. The boundary conditions of PSO, (a) reflecting wall, (b) damping wall, and (c) invisible wall (d) absorbing wall.

dx.doi.org/10.1016/j.asoc.2016.01.006


 IN PRESSG Model
A

ft Computing xxx (2016) xxx–xxx 9

s
t
t

t
b
p
s
r
s

3

b
i
l
s

X

w
o
d
s
j

3

o
c

o
fi
a
r
v

V

w
c
d
V
s
i

ter is introduced to provide an internal delay between consecutive
fine-tuning operation calls, as shown in Fig. 11.
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pace. Moreover, as stated in [20], c1 should be higher than c2 in
he exploration mode, in order to move the particle far away from
he global best particle, as shown in Fig. 8.

The convergence operation is similar to the exploration opera-
ion, except that all particles converge slowly towards the global
est particle, gBest. Therefore, w should be low, in order to prevent
article Xi from oscillating around the gBest location. Moreover, the
ettings of c1 and c2 should be the opposite of those in the explo-
ation mode. In this study, c1 = 0.5 and c2 = 2.5, as used in [67]. Fig. 9
hows the location of particle Xi+1 after applying Eq. (3).

.6. High and low jump operations

The high and low jump operations have been used in many PSO-
ased variants [20,49–51]. The main idea of these jump operations

s to enable the local best particle, pBesti, to escape from possible
ocal optima. Specifically, a random value is added to each dimen-
ion of pBesti, as follows:

i = pBesti + randnormal(Rmax − Rmin) (9)

here Rmax, and Rmin are the maximum and minimum boundaries
f the search space, respectively, randnormal ∈ [0, 1] is a normal
istributed random number, i.e., N ∼ (u, �2) with mean u = 0 and
tandard deviation �. Note that � = 0.9 helps the escape with a high
ump while � = 0.1 helps the escape with a low jump.

.7. Fine-tuning operation

The fine-tuning operation aims to fine-tune each dimension, di,
f particle pbesti independently from other dimensions, as indi-
ated in Fig. 10.

In this study, the ISPO model [12] is adopted for the fine-tuning
peration. The details of fine-tuning are shown in Algorithm 3. The
ne-tuning operation iterates through all dimensions of pBesti,d,
nd it tunes each dimension independently. As indicated in Algo-
ithm 3, the search process continues for J times. In ISPO, the
elocity is computed as follows [12]:

i,d = a

jp
r + Li,d (10)

here a is the acceleration factor, p is the descent parameter that
ontrols the decay of the velocity, r is a uniformly distributed ran-
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

om number within [−0.5,0.5], and j is the current FEs number.
ariable Li,d represents the learning rate that controls the jumping
ize. Its value is doubled if the fitness value improves; otherwise it
s decreased. As such, Li,d is updated as follows:
Fig. 10. Fine-tuning operation.

Li,d =

⎧⎨
⎩

2Vi,d if fitness improved

Li,d

2
otherwise

(11)

The value of pBesti,d is updated as follows:

pBesti,d =
{

pBesti,d + Vi,d if fitness improved

pBesti,d otherwise
(12)

Fine-tuning is useful for exploiting promising search regions.
However, it has been given a low priority because it consumes a
high number of FEs as compared with other operations which take
only a single FEs per call, as indicated in Algorithm 2. The execu-
tion of fine-tuning must be delayed until the global operations i.e.
exploration operation, convergence operation, and jumping oper-
ations, have been performed. This allows the fine-tuning operation
to perform exploitation of the regions that have been explored by
the global search operations. Therefore, to prevent RLMPSO from
executing the fine-tuning operation at the beginning of the search
process, fine-tuning in the Q-table is initialized with a negative
value, in order to delay its execution (i.e. after a minimum lapse
of N FEs, as discussed in section 3.3). Moreover, a cost parame-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Time
tuning tunin g 

Fig. 11. Delay and cost parameters.
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Table 1
List of parameter settings used in this study.
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Table 3
Parameters and levels of the CCD experiment.

Parameter Level

Low (−1) Medium (0) High (+1)

D 10 100 1000

was delayed by a negative value of −10.78 (explained in Section
3.3). In other words, a minimum lapse of 1000 FEs was required
before fine-tuning could be executed.

Low (-) 

High (+ ) 

(+) 
(1) (5) 

(2) (4) 

Medium (3 ) 

D 

C 

T
U

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655
. Experimental study

Three benchmark optimization problems were investigated in
his experiment, i.e. unimodal, multi-modal, composite problems,
hifted, and rotated problems. In addition, two real-world problems
ere studied. The details are as follows.

.1. Parameter settings and performance metrics

Table 1 shows the parameter settings of RLMPSO. For perfor-
ance evaluation, the mean fitness value was computed from the

est fitness values obtained from different runs. The convergence
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

urve was computed during the RLMPSO search process.

able 2
nimodal and multi-modal benchmarks used in this study.

Test function Mathematical formula 

Sphere f1(x) =
N∑

n=1

x2
n

Schwefel 2.22 f2(x) =
N∑

n=1

|xn| +
N∏

n=1

|xn|

Ackley  f5(x) = 20 + e − 20 exp

(
−0.2
√

1
N

N∑
n=1

x2
n

)

Griewank f3(x) = 1 + 1
4000

N∑
n=1

x2
n −

N∏
n=1

cos
(

xn√
n

)

FEs FEs FEs
C  −2 −4 −8

4.2. Case study I: unimodal and multi-modal benchmark
problems

A total of four commonly used unimodal and multi-modal prob-
lems, i.e. Sphere, Schwefel, Ackely, and Griewank, were examined.
These benchmark problems were studied previously using PSO in
[1,68,69]. Table 2 shows the mathematical formula of each bench-
mark problem as well as the associated search range. The maximum
number of FEs was  set to FEmax = 2.5 × 105, as in [1].

4.2.1. Analysis of the delay and cost parameters
The Centre Composite Design (CCD), a useful design-of-

experiment method [70,71], was  employed to analyze the effects
of the delay (D) and cost (C) parameters pertaining to the RLMPSO
performance. During the experimental run, the value of each
parameter was set at three different levels, i.e. low, medium, and
high. The possible combinations of the experimental parameters
at each level were generated, in order to study the interaction
between these parameters. A total of 100 runs for each of the five
cases were carried out with different levels of both D and C sett-
ings. Table 3 and Fig. 12 show the detailed parameter settings and
experimental configurations.

As can be seen in Table 4, for Exp. 4 (D = 1000 FEs, and C = −2),
the cost (penalty) of executing fine-tuning was set at −2 by RL. On
the other hand, D = 1000 indicated that the fine-tuning operation
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

Fig. 12. A CCD experiment with two parameters and five points (i.e. one centre and
four  corners).

Search range

−100 ≤ xn ≤ 100

−10 ≤ xn ≤ 10

− exp

(
1
N

N∑
n=1

cos(2�xn)

)
−32 ≤ xn ≤ 32

−600 ≤ xn ≤ 600
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Table  4
Effects of delay and cost parameters on RLMSPO.

Function Sphere
(Std. dev.)

Schwefel
(Std. dev.)

Ackley
(Std. dev.)

Griewank
(Std. dev.)

Experiment 1 7.37e−54 2.67e−29 5.14e−14 4.32e−4
(D  = 10, and C = −2) (2.11e−53) (2.77e−29) (8.21e−15) (2.14e−05)

Experiment 2 8.52e−29 1.93e−17 3.89e−08 2.20 e−03
(D  = 100, and C = −4) (2.69e−28) (4.02e−17) (1.22e−07) (3.60 e−03)

Experiment 3 2.36e−08 4.02e−05 0.3051 2.0 e−03
(D  = 1000, and C = −8) (4.98e−08) (8.41e−05) (0.4880) (3.60 e−03)

Experiment 4 6.62e−56 2.25e−29 4.81e−14 1.54e−05
9.44e−30) (5.51e−15) (4.87e−05)

.98e−09 0.0025 2.0 e−03
3.06e−08) (0.0075) (3.20 e−03)
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Table 5
The RLMPSO performance with different population sizes.

Function 3 Particles
(Std. dev)

5 Particles
(Std. dev)

10 Particles
(Std. dev)

Sphere 6.62e−56 6.69e−55 6.74e−39
(1.64e−55) (1.60e−54) (1.27e−38)

Schwefel 2.25e−29 3.54e−29 4.45e−19
(9.44e−30) (2.96e−29) (7.83e−19)

Ackley 4.81e−14 5.17e−14 9.54e−10
(5.51e−15) (1.19e−14) (2.51e−09)
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(D = 1000, and C = −2) (1.64e−55) (

Experiment 5 4.12e−15 9
(D  = 10, and C = −8) (1.19e−14) (

For each benchmark problem, the experiment was repeated 100
imes. The averages and standard deviations are reported in Table 4.
etter results were achieved from two configurations, i.e., D = 1000
Es and C = −2 as well as D = 10 FEs and C = −2. This implied that
LMPSO could produce better results with small penalty values.
he worst result was produced with the highest cost value. On the
ther hand, the best result was produced by Exp. 4, where the delay
alue was the highest while the cost value was the lowest. The
esults in Table 4 reveal that it is better to delay the execution of
ne-tuning rather than calling it in the early stage, where it requires

 large computational cost for FEs especially in high-dimensional
roblems.

For further analysis, the average number of calls pertaining to
ach operation and the average number of FEs for each operation
ere computed. Fig. 13 shows the results plotted in the logarithm

cale. The fine-tuning operation accumulated the lowest number
f calls, owing to the restriction of the cost and delay parameters
mbedded in the RL algorithm. The minimum number of calls per-
aining to fine-tuning occurred in Exp. 3, in which the cost and delay
arameters were the highest. Other operations showed a similar
verage number of calls. Fig. 14 shows the average numbers of FEs
Please cite this article in press as: H. Samma, et al., A new Reinforceme
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or each operation. The fine-tuning operation showed the highest
alue. Exp. 1 and Exp. 4 required the highest FEs in all benchmark
roblems. This was because Exp. 1 and Exp. 4 had the minimum
ost (C = −2).

Fig. 13. Average calls of each RLMPSO operation for (a) Sph
Griewank 1.54e−05 5.33e−03 3.7e−03
(4.87e−05) (3.15e−02) (3.5e−03)

4.2.2. Analysis of the number of particles
The effect of the population size on the RLMPSO performance

was evaluated. Table 5 shows the results of varying the number of
particles. A larger population size degraded the results in all bench-
mark problems. This was  owing to the increase in complexity of
RLMPSO, i.e., the increase of the number of Q-tables and the FEs
pertaining to the fine-tuning operation.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

4.2.3. Analysis of the contributions of each operation
The importance of each individual operation in RLMPSO was

analyzed. RLMPSO was executed 100 times, each with one of its

ere, (b) Schwefel, (c), Ackley (d) Griewank functions.
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Fig. 14. Average FEs of each RLMPSO operation for (a) Sphere, (b) Schwefel, (c), Ackley (d) Griewank functions.

Table 6
Contribution of each RMPLSO operation.

Function Without exploration Without convergence Without high jump Without low jump Without fine-tuning

Sphere Mean 6.37e−49 1.89e−40 1.53e−48 2.15e−45 46.64
Std  (1.82e−48) (4.02e−40) (4.85e−48) (5.67e−45) (45.26)

Schwefel Mean  9.03e−29 1.15e−24 2.37e−29 5.64e−28 0.64
Std  (2.36e−25) (2.42e−24) (6.67e−28) (1.39e−27) (0.53)

Ackley Mean  4.53e−14 2.16e−12 1.57e−14 5.99e−14 3.65
Std  (1.02e−14) (4.69e−12) (4.81e−14) (1.85e−14) (0.44)
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Griewank Mean  2.50e−05 0.0039 

Std  (8.71e−04) (0.0031) 

perations omitted. As can be seen in Table 6, the most important
perations affecting RLMPSO were convergence and fine-tuning.
his was because of the nature of the benchmark problems, i.e.
mall numbers of local optima [1]. The least important operations
ere exploration and high jump. However, both operations would

e useful for complicated benchmark problems with high numbers
f local optima, such as the composite benchmark problems in Case
tudy II.

.2.4. Analysis of the RLMPSO behaviour at run-time
To trace the sequence of each RLMPSO operation at run time,

able 7 shows the detailed information of each particle as well as
he identification (denoted as ID) of the global best particle. The
ollowing abbreviations are used in the illustration:

(H) Particle executed the high jump operation, and improved the
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

local best value.
(h) Particle executed the high jump operation, and could not
improve the local best value.
(–) Particle was not selected.
5.25e−05 5.25e−04 0.0019
(3.57e−05) (1.16e−02) (0.0031)

• (L) Particle executed the low jump operation, and improved the
local best value.

• (l) Particle executed the low jump operation, and could not
improve the local best value.

• (C) Particle executed the convergence operation, and improved
the local best value.

• (c) Particle executed the convergence operation, and could not
improve the local best value.

• (E) Particle executed the exploration operation, and improved the
local best value.

• (e) Particle executed the exploration operation, and could not
improve the local best value.

• (F) Particle executed the fine-tuning operation, and improved the
local best value.

• (f) Particle executed the fine-tuning operation, and could not
improve the local best value.
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

As an example, at the fifth FEs, particle 2 successfully executed
the convergence operation, and became the global best particle.
On the other hand, particle 3 successfully executed the exploration
operation at FEs = 9. While its local best particle was  updated, it was
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Table  7
Analysis of the particle execution sequence.

Table 8
Control parameters of RLMPSO.

Parameter Number of setting levels

N (population size) −1 (3) 0 (5) +1 (10)
D  (minimum lapse of RLMPSO FEs) −1 (10) 0 (100) +1 (1000)
C  (cost of local search operation) −1 (−2) 0 (−4) +1 (−8)
J  (number of fine-tuning FEs) −1 (5) 0 (30) +1 (100)
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diversity curve decreased from high to low as the search process
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V  (the range of velocity [Vmin, Vmax]) −1 (0.2) 0 (0.5) +1 (0.8)

nferior to that of particle 2. However, particle 3 was  able to achieve
he best results at FEs = 14, and became the global best particle.

In addition, it can be concluded from Table 7 that when a particle
ad executed an operation successfully, the operation was  accorded

 higher priority to be executed in the next FEs. Notice that the fine-
uning operation was delayed until a minimum lapse of 1000 FEs,
s shown in Table 7.

.2.5. Sensitivity analysis of the RLMPSO control parameters
To investigate the effect of the key RLMPSO control parame-

ers, i.e., N (population size), D (minimum lapse of RLMPSO FEs
efore executing fine-tuning), C (cost of the local search opera-
ion), J (number of fine-tuning FEs), and V (the range of velocity),

 graphical sensitivity technique as used in [72] was  followed. The
ain idea was to measure the influence of each parameter inde-

endently with respect to the RLMPSO performance. The effects of
ve RLMPSO control parameters are shown in Table 8. During the
xperiment, the remaining RLMPSO parameters were set to those
n PSO and ISPO models recommended in the literature, i.e., [67],
20,49–51] and [12] as explained in Sections 3.5, 3.6, and 3.7.

During this experiment, each parameter was independently
hanged from low (i.e. −1) to high (i.e. +1) as shown in Table 8, and
he settings of the remaining parameters followed the suggested
alues in Table 1. As an example, when parameter N was studied,
ther parameters (i.e. D, C, J, and V) were set according to Table 1.
or each parameter analysis, RLMPSO was executed 100 times for
ach of the three levels (i.e. −1, 0, and +1). After that, the mean
tness value was computed, as shown in Fig. 15. The main benefit
f the sensitivity analysis is to show the change of each parameter
raphically, i.e., having an increasing effect, a decreasing effect, or
o effect with respect to the RLMPSO performance.

From the graphical plot in Fig. 15, it can be seen that the most
mportant parameter that affected the performance of RLMPSO in
ll benchmark problems was J (the fine-tuning FEs). By increasing
, the number of FEs calls consumed by the fine-tuning operation is
ncreased. As can be seen in Fig. 15, when J was high (i.e. at state +1

ith 100 FEs), the RLMPSO performance for the unimodal bench-
ark problems (i.e. Sphere and Schwefel) improved, but became
orse for the multimodal benchmark problems (i.e. Ackely and
Please cite this article in press as: H. Samma, et al., A new Reinforceme
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riewank). Because of many local optima in multimodal problems,
he fine-tuning operation was less effective, as compared with the
nimodal problems with only a single global solution. The least
important factor was V (the range of velocity) in all benchmark
problems, as shown in Fig. 15.

A further analysis has been carried on by evaluating the effect
and relative effect measures as defined in [72]:

relative effect = 100 × effect

global mean
(13)

effect = max
(

abs
(

log (f (x))0 − log (f (x))+1)
)

,

abs
(

log (f (x))0 − log (f (x))−1)
)

,

abs
(

log (f (x))+1 − log (f (x))−1)
))

(14)

where the global mean is the mean effect among all parameters,
log (f (x))0 is the log mean fitness function at parameter setting (0),
log (f (x))+ is the log mean fitness function at parameter setting
(+1), and log (f (x))− is the log mean fitness function at parameter
setting (−1).

The effect and relative effect measures are reported in Table 9.
Parameters C (the cost of local search) and J (the local search
FEs) showed the highest impact on the RLMPSO performance, as
compared with those from other parameters. This implied that
managing the local search method efficiently constituted one of the
most important issues in developing an effective memetic-based
algorithm.

4.2.6. RLMPSO diversity analysis
An analysis of the diversity curve generated by RLMPSO dur-

ing the execution time of a 2-D sphere optimization function was
conducted. The 2-D sphere optimization function is defined as:

Minimize f (x) = x2
1 + x2

2, xi ∈ [−10, 10] (15)

Following [69], the diversity analysis measure is defined as:

Diversity(t) = 1
N|L|

N∑
i=1

√√√√ D∑
j=1

(
X j

i
− Xj

)2
(16)

where t is the current search FEs, N is the total number of particles, L
is the longest diagonal length in the search space, D is the dimension
of the search space, Xj

i
is the value of particle i at dimension j, and

Xj is the mean value of the whole swarm particles at dimension j.
For comparison purpose, PSO [61] was employed with a total

of 30 particles, and the maximum number of FEs was set to 1000.
Fig. 16 shows the diversity measures for both PSO and RLMPSO.
The RLMPSO diversity curve moved up and down during the search
operation. This was  owing to the dynamic behaviour of RLMPSO,
where each particle evolved independently and could execute any
search operations under the control of RL. However, in general, the
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

progressed.
Further analyses were carried on by plotting the locations of

the particles at four different search FEs (i.e. FEs = 1, 200, 500, and
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Fig. 15. (a)–(d) Sensitivity analysis of the RLMPSO control parameters.
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Table  9
The effect and relative effect measure on RLMPSO performances.

N D C J V

Sphere Effect 6.74e−39 7.30e−54 2.36e−08 4.93e−17 6.45e−56
Relative effect 1.4280e−28 1.5466e−43 500.00 1.05e−06 1.37e−45

Schwefel Effect 4.45e−19 1.54e−05 4.02e−05 9.97e−09 1.5750e−28
Relative effect 4.00e−12 138.46 361.45 0.09 1.42e−21

Ackley Effect 9.54e−10 3.30e−15 0.31e−00 4.45e−09 3.10e−15
Relative  effect 1.54e−06 5.32e−12 500.00 7.18e−06 5.00e−12

Griewank Effect 0.10 e−01 4.17e−04 0.20 e−02 0.25 e−02 7.33e−05
Relative effect 333.55 13.91 66.71 83.39 2.44
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Fig. 16. Diversity curve o

00), as shown in Fig. 17. The particles started with the exploration
peration at the beginning of the search process and then shifted
radually to the convergence state, i.e., the swarm particles became
rowded around the global best particle.

.3. Comparison with other PSO variants

Table 10 reports the average fitness values from 100 runs of
LMPSO. For comparison purposes, the reported results in [1,68,69]
re included in Table 10. Note that the results in Table 10 were
enerated using the same number of FEs in [1], i.e. FEmax = 2.5 × 105,
nd the configuration for all benchmark problems were set at 30-D,
nd each experiment was repeated 100 times as in [1]. In [68,69],
he benchmark problems were set at the same dimension (i.e. 30-D)
hile the experimental runs were 30 times, and the FEs in [68,69]
ere 3 × 105 and 2 × 105, respectively.

Therefore, the maximum FEs of RLMPSO (i.e., FEmax = 2.5 × 105)
as the same as that in [1] (i.e., FEmax = 2.5 × 105), lower than

hat in [68] (i.e., FEmax = 3 × 105), but higher than that in [69] (i.e.,
Emax = 2 × 105).
Please cite this article in press as: H. Samma, et al., A new Reinforceme
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As can be seen in Table 10, RLMPSO outperformed the memetic-
ased PSO variant in [1] for all four benchmark problems and the
ethods in [68] and [69] for three benchmark problems. However,

LMPSO yielded inferior results than those reported in [68,69] for

able 10
omparison between the RLMPSO results and other reported results in the literature.

Function [68] Mean [69] Mean 

Sphere 2.78e−49 1.35e−30 

Schwefel 1.35e−26 – 

Ackley 3.47e−14 1.69e–14 

Griewank 2.06e−0 2.54e−2 
PSO and PSO algorithm.

the Ackley function. In addition, it should be noted that since the
method in [69] was  executed with fewer number of FEs as com-
pared with that of RLMPSO, it could outperform RLMPSO if it was
executed with FEmax = 2.5 × 105. As such, it was  not surprising that
the result from the method in [69] was  better than that in [68] for
the Ackley function, since more FEs were consumed [73].

To quantify the achieved results statistically, the 95% confidence
intervals of the RLMPSO results were computed using the bootstrap
method [74], as shown in parentheses in Table 10. Statistically,
RLMPSO significantly outperformed other methods, except the
Ackley benchmark problem. The refinement capability of RLMPSO
allowed it to outperform other methods studied in this comparison.

4.4. Case Study II: composite benchmark problems

In this case study, six composite functions in [1] were examined.
They constituted more challenging benchmark problems as com-
pared with the unimodal and multi-modal functions in Case Study
I. As an example, composite function five (cf5) is composed of ten
benchmark functions comprising two  rotated Rastrigin functions,
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

two rotated Weierstrass functions, two rotated Griewank functions,
two rotated Ackley functions, and two sphere functions.

The same benchmark composite problems were studied in [1]
with three PSO variants i.e., CLPSO [53], ISPO [12], and POMA

[1] Mean RLMPSO Mean (95% confidence interval)

1.04e−20 6.62e−56 (1.74e−55, 7.42e−57)

4.08e−10 2.25e−29 (1.68e−29, 2.81e−29)

0.415 4.81e−14 (4.49e−14, 5.13e−14)

1.807e−3 1.52e−05 (0, 1.54e−05)
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Fig. 17. Population distributions of RLMPSO as compared with PSO, i.e., (a)–(d) distribution of PSO at FEs = 1, 200, 500, and 900; (e)–(h) distribution of RLM PSO at FEs = 1,
200,  500, and 900, respectively.
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Table  11
Results for the composite problems.

Function CLPSO [53]
Mean

ISPO [12]
Mean

POMA [1]
Mean

RLMPSO
Mean (95% confidence
interval)

cf1 45.07 252.00 8.00 1.20e−01 (3.48 e−01,
6.5000e−04)

cf2  89.86 362.01 47.29 27.0757 (20.7540,
33.3975)

cf3  201.06 480.0 148.77 157.02 (143.96, 170.34)

cf4  356.04 671.23 377.85 320.91 (312.26, 329.96)
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cf5  62.49 435.99 

cf6  742.58 851.96 

1]. The results from [1] are included in Table 11 for comparison
urposes. The maximum number of FEs was set to FEmax = 2.5 × 105,
s used in [1], and the dimension of all benchmark problems was
0-D. The experiment was repeated 100 times. The mean fitness
alues are shown in Table 11.

RLMPSO yielded the best results as compared with those from
ther PSO variants, except POMA in cf3. One of the reasons pertain-
ng to the good performance of RLMPSO was because of fine-tuning,

hereby each particle in the micro swarm had the chance to
ndergo the refinement operation. In addition, the capability of
ach particle to change from convergence to exploration at any
ime provided RLMPSO a better chance to escape from local optima.
s a result, RLMPSO outperformed other methods in most of the
enchmark problems.

The 95% confidence intervals are shown in parentheses in
able 11. Note that the upper limit of the 95% bootstrapped con-
dence interval is smaller than the reported mean fitness values
f the related methods in all functions, except for cf3, whereby the
OMA result resides within the 95% confidence interval of RLMPSO.

.5. Case Study IIII: shifted and rotated benchmark problems

To investigate the effectives of RLMPSO in solving shifted and
otated benchmark problems, a total of ten functions from CEC
005 [75] were used. These problems have been widely studied

n the literature [50,68,76,77]. Four models were evaluated using
he same CEC 2005 functions, i.e., CLPSO [53], CPSO [31], ANS [78],
nd GWO  [79]. The settings of these models are shown in Table 12.
he mathematical formulae of the employed benchmark functions
re defined, as follows [75].

F1: Shifted sphere function

F (x) =
D∑

Z2 + f bias, Z = X-O, X = [x , x , . . .,  x ]
Please cite this article in press as: H. Samma, et al., A new Reinforceme
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1

i=1

i 1 2 D

D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . .,  oD]

able 12
arameter settings of RLMPSO and other algorithms.

Algorithm Dimension Population size Parameter settings

GWO  30 30 a: 2 –1
CPSO 30 30 c1 = c2 = 1.49, w:

0.9–0.5, group number
equals to
dimensionality

CLPSO 30 30 w: 0.9–0.4, c1 = c2 = 2,
m  = 7

ANS 30 30 � = 0.5, and n = 10
RLMSO 30 3 The same settings in

Table 1

910

911

912

913

914

915

916

917
39.74 23.47 (9.23, 48.94)

673.80 495.21 (475.77, 505.74)

f bias: the bias value
F2: Shifted Schwefel’s Problem 1.2

F2(x) =
D∑

i=1

⎛
⎝ i∑

j=1

Zj

⎞
⎠

2

+ f bias, Z = X-O,

X = [x1, x2, . . .,  xD]

D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . .,  oD]
F3: Shifted Schwefel’s Problem 1.2 with noise in fitness

F4(x) =

⎛
⎜⎝ D∑

i=1

⎛
⎝ i∑

j=1

Zj

⎞
⎠

2
⎞
⎟⎠ ∗ (1 + 0.4

∣∣N(0, 1)
∣∣) + f bias, Z =

X-O,
X = [x1, x2, . . .,  xD]
D: dimensions, X ∈ [−100, 100]D

O: the shifted global optima O = [o1, o2, . . .,  oD]
F4: Shifted rotated Weierstrass function

F9(x) =
D∑

i=1

(
kmax∑
k=0

[
ak cos

(
2�bk (Zi + 0.5)

)])
−

D

kmax∑
k=0

[
ak cos

(
2�bk (0.5)

)]
+ f bias

a = 0.5, b = 3, a = 0.5, b = 3, kmax = 20
Z = (X-O)*M, X = [x1, x2, . . .,  xD]
D: dimensions, X ∈ [−5, 5]D

O: the shifted global optima O = [o1, o2, . . .,  oD]
M:  linear transformation matrix for function rotation
F5: Shifted Rastrigin’s Function

F8(x) =
D∑

i=1

(Zi
2 − 10 cos (2�Zi) + 10) + f bias

Z = (X-O), X = [x1, x2, . . .,  xD]
D: dimensions, X ∈ [−5, 5]D

O: the shifted global optima O = [o1, o2, . . .,  oD]

4.5.1. Mean fitness value analysis
The mean fitness values achieved by RLMPSO and other meth-

ods for the rotated and shifted benchmark problems are shown
in Table 13. Each method was executed 30 times with a total of
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

30 × 104 FEs at 30-D using the parameter settings in Table 12. It
can be seen in Table 13 that RLMPSO compared favourably with
other methods. In particular, RLMPSO achieved the highest accu-
racy scores for F1, F2, and F5.

918

919

920

921
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Table 13
The mean fitness values for the rotated and shifted functions.

Algorithm F1 F2 F3 F4 F5

GWO  9.66E−05 ± 7.71E−05 1.06E+04 ± 9.14E+02 1.22E+04 ± 5.61E+03 1.25E+02 ± 3.94E+00 1.03E−04 ± 7.83E−05
CPSO  7.29E−05 ± 3.19E−05 0.57E−02 ± 0.50E−02 2.40E+04 ± 7.48E+03 1.07E+02 ± 4.43E+00 1.58E−04 ± 1.15E−04
CLPSO  2.50E−11 ± 4.78E−12 2.04E−12 ± 4.30E−12 4.50E+03 ± 6.14E+02 1.14E+02 ± 2.34E+00 1.98E−12 ± 2.52E−12

1.1
3.7

4

s
a
R
m
c
w
t
R
t
e
A

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941
ANS  0.28E−02 ± 0.16E−02 0.11E−01 ± 0.21E−02 

RLMPSO 0.00E+00 ± 0.00E+00 0.00E+00 ± 0.00E+00 

.5.2. Convergence curve analysis
To investigate the characteristics of RLMPSO at run time for the

hifted and rotated benchmark problems, a graphical comparison
nalysis technique was used by plotting the convergence curves of
LMPSO and other methods. Specifically, the base-10 logarithmic
ean values of the fitness function from a total of 30 runs were

omputed, as shown in Fig. 18. The convergence speed of RLMPSO
as slower than those from other models. This was  because of

he small population size (i.e. 3 particles) of RLMPSO. However,
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

LMPSO could escape from local optima owing to the benefit of
he jumping operations, as well as its capability of changing from
xploration to convergence at any time during the search process.
s an example, RLMPSO started with a slow convergence rate in

Fig. 18. The convergence curves of RLMPSO and other
5E+02 ± 1.26E+02 1.12E+02 ± 1.06E+00 4.70E−04 ± 1.88E-04
3E+04 ± 7.85E+03 1.21E+02 ± 3.71E+00 0.00E+00 ± 0.00E+00

Fig. 18(a), (b), and (e), but was able to converge rapidly once the
global optima regions were identified.

4.5.3. Computational time analysis
To analyze the computational time, the evaluation criteria in

[75] were adopted. The general steps of the criteria are explained,
as follows:

Step 1: Run and compute the time consumed by the code seg-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

ment in Fig. 19. This code segment was  suggested in [75] to measure
the time required for executing different mathematical operations
such as summation division, multiplication operations. The time
consumed is represented by variable T0.

 methods (a) F1, (b) F2, (c) F3, (d) F4, (e) and F5.

942

943

944

945

dx.doi.org/10.1016/j.asoc.2016.01.006


ARTICLE IN PRESSG Model
ASOC 3409 1–22

H. Samma et al. / Applied Soft Computing xxx (2016) xxx–xxx 19

(5.55);

2

( ) ( ) ( )

Fig. 19. The code segment for evaluating T0.

Table 14
Results of computational complexity in seconds.

Algorithm T0 T1 T2 (T2 − T1)/T0

GWO

3.49e−05 12.23

25.67 3.85e+5
CPSO 42.78 8.75e+5
CLPSO 34.54 6.39e+5
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Table 16
The p-values of the statistical t-test.

Function F1 F2 F3 F4 F5

GWO  0.0042 0.0000 0.0014 0.0002 0.0235
CPSO 0.0011 0.0389 0.0002 0.0426 0.0195
CLPSO 0.0267 0.0298 0.0043 0.1675 0.0115
ANS  0.0025 0.0001 0.0001 0.0027 0.0017

Table 17
The results of the gear design problem.

Algorithm Mean 95% confidence interval

[51] 5.72E−09 –
[68] 2.22E−09 –

5

T
R

946

947

948

949

950

951

952
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954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012
ANS 302.1 8.31e+6
RLMPSO 21.89 2.77e+5

Step 2: Compute the time required to evaluate function F3 (i.e.
hifted Rotated High Conditioned Elliptic Function) from [75] with

 dimension of 50-D for 200,000 FEs according to [75]. The time
onsumed is represented by variable T1.

Step 3: Compute the time required by the entire model with
unction F3 at 50-D for 200,000 FEs according to [75]. This step is
onducted independently for each model, i.e. PSO, CLPSO, DE, BAT,
armony, GWO, and RLMPSO. The time consumed is represented
y variable T2.

Repeat Step 3 for five times and compute the mean of T2, i.e.,
2 = mean(T2). The time complexity is represented by T0,T1, T2,
nd (T2 − T1)/T2, as indicated in Table 14. The computational time
equired by each model (i.e. T2) was similar except RLMPSO which
equired a slightly shorter time (i.e. 21.89 s). This was  owing to the
mall population size of RLMPSO (i.e. 3 particles), as compared with
ther methods that worked with a large population size of 30. Addi-
ionally, RLMPSO with a large population size (i.e. 30 particles) was
xperimented, and the results are shown in Table 15. It should be
oted that the CPU time consumed by each method is affected by
everal factors such as programming language and programming
kill, as well as hardware configuration.

A detailed analysis was conducted to investigate the time con-
umed by the Q-table operations of RLMPSO, i.e. updating the
-table and obtaining the best action from the Q-table. The compu-

ational times required for both operations are reported in Table 15.
ith three particles, the time consumed was very small as com-

ared with the total time consumed by the entire model (i.e. T2).
ote that the Q-table size was small (i.e. 5 × 5) and was independent

rom the dimension of the problem. Moreover, a large popula-
ion size of RLMPSO (i.e. 30 particles) was experimented, with the

aximum FE set to 200,000. As can be seen in Table 15, the compu-
ational time of RLMPSO increased (i.e. T2 = 29.87 s) owing to extra

emory requirements.
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

.5.4. Statistical evaluation measure
The t-test [80] was conducted to statistically evaluate the

chieved results by RLMPSO as compared with other methods in

able 15
esults of the RLMPSO computational time in seconds.

Algorithm T0 T1 T2 (T2 −
RLMPSO with 3 particles

3.49e−05 12.23
21.89 2.77e

RLMPSO with 30 particles 29.87 5.12e
[49] 4.25E−09 –
RLMPSO 1.6300e−11 (2.0833e−11, 9.5000e−12)

solving the shifted and rotated functions of CEC 2005. For compar-
ing two methods (X and Y, where X = RLMPSO and Y = the compared
method), the null hypothesis H0 claimed that X and Y performed
equally well. The alternative hypothesis H1 assumed that X out-
performed Y. The significance level of p-value was  set at 0.05, i.e.,
the alternative hypothesis H1 would be accepted if the p-value was
less than 0.05 (i.e., 95% confidence level). Table 16 presents the p-
values from the paired t-test between RLMPSO and other methods.
All the p-values were smaller than 0.05, except for the test between
RMLPSO and CLPSO for F4.

4.6. Case Study IIII: real-world benchmark problems

Two  real-world engineering design optimization problems were
examined, i.e., train gear design and pressure vessel design, as fol-
lows.

4.6.1. Gear design problem
The problem of designing train gears was studied in [81], and

was further examined in [49,51,68]. The main objective of the
problem was to optimize the gear ratio of a compound train gear
containing three gears, as shown in Fig. 20. The optimization prob-
lem is defined as follows:

f (x) =
(

1
6.931

− AD

BC

)2

(17)

where A, B, C and D are the decision variables that represent the
number of gear teeth and their range, i.e., 12 =< A, B, C, and D ≤ 60,
as described in [81].

The main objective was  to find the optimal values of A, B, C and
D that could produce a gear ratio as close to 1/6.931 as possible. The
formulation of the gear ratio is as follows:

The gear ratio = angular velocity of output shaft

angular velocity of input shaft
(18)

In this study, the performance of RLMPSO was compared with
the reported results in [49,51,68]. The parameters used in this
experiment were the same as those in [49,51,68], where the max-
nt Learning-based Memetic Particle Swarm Optimizer, Appl. Soft

imum FEs was  fixed at FEmax = 3 × 10 . As indicated in Table 17,
RLMPSO achieved the best results. Again, the capability of per-
forming fine-tuning was  useful to tackle this train gear design
optimization problem. Furthermore, from the statistical point

 T1)/T0 Q-Table Update operation Q-Table Get best operation

+5 0.12 0.18
+5 0.86 1.2

1013

1014

1015
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Fig. 20. The gear design problem [82].
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Table 18
Results of the pressure vessel design problem.

Algorithm Mean 95% confidence interval

[85] 6064.34 –
[84] 6447.74 –
[83] 6410.09 –
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Fig. 21. The pressure vessel design problem.

f view, RLMPSO significantly outperformed other methods in
49,51,68], as indicated by the 95% confidence intervals.

.6.2. Pressure vessel design problem
The pressure vessel design problem [83–85] aimed to find the

inimum manufacturing cost of designing the cylindrical com-
ressed air storage with pre-defined conditions and constrains, as
hown in Fig. 21. The complexity of this design problem was higher
han that of the train gear design problem as a total of four design
onstraints (i.e. g1, g2, g3, and g4) were involved. The problem is
efined as follows.

onsider �x  = [Ts, Th, R, L]

inimize f (�x) = 0.6224 TsRL + 1.7781 ThR2

+ 3.1661T2
s L + 19.84 T2

s R (19)

ubject to g1(�x) = 0.0193R − Ts ≤ 0

2
(�x) = 0.00954R − Th ≤ 0

3
(�x) = 1296000 − �R2L − 4

3
�R3 ≤ 0

4
(�x) = L − 240 ≤ 0

here 0 ≤ Ts ≤ 99, 0 ≤ Th ≤ 99, 10 ≤ R ≤ 200, 10 ≤ L ≤ 200, and L is the
ength of the cylinder, R is the cylinder radius, Ts is the cylinder
hickness, and Th is the thickness of cylinder head, as shown in
ig. 21.

This experiment was conducted using the same settings in
85], where the maximum FEs was set to FEmax = 5 × 104, and the
xperimental run was repeated 30 times. The reported results in
83–85] are shown in Table 18 for comparison purposes. RLMPSO
Please cite this article in press as: H. Samma, et al., A new Reinforceme
Comput. J. (2016), http://dx.doi.org/10.1016/j.asoc.2016.01.006

ielded the best mean results as compared with those from other
ethods. From the statistical point of view, RLMPSO significantly

utperformed the methods in [83,84], as indicated by the 95% con-
dence intervals.

1085
RLMPSO 6028.50 (5.9577, 6.1251)

5. Summary

A new RLMPSO model has been presented in this paper. RLMPSO
operates with a micro population size, with only three particles. It
has five dedicated operations, i.e. exploration, convergence, high-
jump, low-jump, and fine-tuning. Each particle is able to switch
from one operation to another under the control of the RL algo-
rithm. The effectiveness of RLMPSO has been evaluated using four
unimodal and multi-modal benchmark problems, six composite
benchmark problems, five shifted and rotated benchmark prob-
lems, as well as two  real-world design problems. The bootstrap
confidence intervals as well as the statistical t-test have been used
to quantify the performance indicators. From the statistical analysis
of the results, the proposed RLMPSO model significantly outper-
forms a number of PSO variants reported in the literature.

There are a number of areas to be pursued as further work.
Firstly, the fine-tuning operation plays a vital role. As such, dif-
ferent local search methods can be incorporated into RLMPSO,
such as tabu search [86], simulated annealing [87], and reactive
search optimizer [88]. Secondly, the RL algorithm can be used to
manage different swarm optimization algorithms such as CLPSO
[53], GWO  [79], Bee Colony [89], and Harmony [90]. Thirdly, the
proposed RLMPSO model can be applied to different real-world
optimization problems such as DNA sequence compression [1],
flow shop scheduling [2], multi-robot path planning [3], wireless
sensor networks [4], and finance applications [5]. Finally, RLMPSO
can be used to design SVM-based pattern recognition model [10]
by performing simultaneous features selection, parameters tuning,
and training instances selection.
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