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a b s t r a c t

A variety of algorithms have been proposed for brain tumor segmentation from multi-channel sequences,
however, most of them require isotropic or pseudo-isotropic resolution of the MR images. Although co-
registration and interpolation of low-resolution sequences, such as T2-weighted images, onto the space
of the high-resolution image, such as T1-weighted image, can be performed prior to the segmentation,
the results are usually limited by partial volume effects due to interpolation of low-resolution images.
To improve the quality of tumor segmentation in clinical applications where low-resolution sequences
are commonly used together with high-resolution images, we propose the algorithm based on Spa-
tial accuracy-weighted Hidden Markov random field and Expectation maximization (SHE) approach for
both automated tumor and enhanced-tumor segmentation. SHE incorporates the spatial interpolation

accuracy of low-resolution images into the optimization procedure of the Hidden Markov Random Field
(HMRF) to segment tumor using multi-channel MR images with different resolutions, e.g., high-resolution
T1-weighted and low-resolution T2-weighted images. In experiments, we evaluated this algorithm using
a set of simulated multi-channel brain MR images with known ground-truth tissue segmentation and
also applied it to a dataset of MR images obtained during clinical trials of brain tumor chemotherapy.
The results show that more accurate tumor segmentation results can be obtained by comparing with
conventional multi-channel segmentation algorithms.
. Introduction

Malignant glioma is one of the common types of primary brain
umor, with an annual incidence of approximately five cases per
00,000 people per year [2,3]. Over 15,000 new cases are diagnosed
n the United States annually [2]. Although relatively uncommon
han other major diseases, they account for a disproportionate
mount of cancer-related mortality. Despite considerable ongo-
ng research and advances made in surgical and radiosurgical
echniques and chemotherapy, the overall prognosis of malig-
ant glioma remains poor: many new chemotherapy regimens

ork well in a small number of patients only. This is probably

elated to the extreme genetic, molecular, and tissue-level het-
rogeneity of brain tumors. Since different genetic mutations are
ikely responsible for different pathophysiologies, the treatments
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that exist work well in only a small fraction of patients. The
importance of this problem is expected to increase with the increas-
ing number of available chemotherapeutic agents, and hence
early evaluation of patients’ responses to therapy is extremely
important.

Reliable and sensitive methods of assessing the effectiveness of
various therapies in brain tumor patients are important for guiding
treatment decisions in individual patient, for determining opti-
mal therapy for specific patient groups, and for evaluating new
therapies. Brain tumor segmentation from Magnetic Resonance
Imaging (MRI) data is becoming increasingly common in clinical
evaluation of tumor response to such treatments [4–8]. In par-
ticular, when robust and reproducible methods are used, tumor
volume and shape measures have been reported to be the most

significant predictor of patient outcome to treatment [6–11]. Man-
ual segmentation of brain tumor images for volume measurement
has been a common practice in clinics, but it is time-consuming,
labor intensive, and subject to considerable variation in intra- and
inter-operator performance [12]. A consistent, accurate, automated

http://www.sciencedirect.com/science/journal/08956111
http://www.elsevier.com/locate/compmedimag
mailto:stwong@tmhs.org
dx.doi.org/10.1016/j.compmedimag.2009.04.006
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voxel misalignment can be illustrated as follows: assuming that
the task is to align an image I from one space onto another space
S′, we first globally rotate and scale the image so that the trans-
formed image I′ matches image I according to some image similarity
strategy. For different modality images, mutual information is com-
32 J. Nie et al. / Computerized Medical

egmentation method for clinical brain tumor segmentation and
easurement is much needed.
Because brain tumors vary greatly in size and shape, automated

umor segmentation remains challenging. Since some tumors are
est differentiated from adjacent normal tissue on gadolinium
nhanced sequences, and others on T2-weighted, FLAIR, diffusion
eighted or perfusion weighted sequences [13], multi-channel

egmentation methods that incorporate several different acquisi-
ion protocols/sequences and image contrasts have been widely
dopted.

A great variety of tumor segmentation methods have been pro-
osed in the literature, and they can be briefly classified into
wo groups: model-based methods [14–19] and deformation-based

ethods [20–22]. Multi-spectral histogram analysis of T1- and T2-
eighted MRI images was first adopted for tumor labeling in [19].

n this technique, the distributions of normal tissue, tumor, and
dema are estimated from the T1- and T2-weighted image chan-
els by applying an expectation-maximization (EM) scheme [14].
variation of the method segments tissue volumes into normal

nd abnormal, where abnormal tissues include both tumor and
dema while normal tissues consist of white and gray matters [15].
he algorithm constrains the normal tissue distribution within cer-
ain geometric and spatial boundaries and identifies the remaining
issue as the abnormal region (tumor and edema). A graph-based
pproach has been proposed in [16]. In this method, a Bayesian
ntegration model is applied to minimize the cost of graph cuts
hat segment tumor and edema. Alternative methods involving the
terative procedure of first applying a statistical tissue classifica-
ion and then performing a nonlinear registration to an anatomic
tlas have been reported in [17]. Another proposed framework uses
oxel intensities, neighborhood coherences, intra-structure prop-
rties, inter-structure relationships, and user inputs as the basis
f tumor segmentation [18]. On the other hand, deformable meth-
ds employing morphological operations [23], region growing [20],
nd level set deformations [21,22] have also been proposed for the
dentification of the boundaries of tumor volumes. It is worth not-
ng that most of the deformable tumor segmentation methods are
emi-automated, since the generation of initial points or surfaces
s still difficult to automate.

Despite the advances in computational methods of brain tumor
egmentation, a significant issue remaining is that, due to finan-
ial cost and scanning-time constraints, clinical MRI examinations
ypically consist of a high-resolution structural T1-weighted images
ombined with a couple of low-resolution images of other weighted
equences to allow accurate visual tumor diagnosis and evaluation
ia multi-channel images. While this is adequate for visual qual-
tative clinical interpretation, automated segmentation of tumor
rom such data is a challenge since the images acquired are
f different resolutions, especially when some sequences are of
ow-resolutions. Direct alignment and re-sampling of these low-
esolution images to match the structural T1-weighted image will
ause considerable misalignment and significant partial volume
ffects for low-resolution images. Directly extending the seg-
entation produced from the high-resolution data [24] to the
ulti-channel images will also decrease the segmentation accuracy

25].
To deal with these problems, we propose a Spatial accuracy-

eighted Hidden Markov random field and Expectation maximiza-
ion algorithm, called SHE for short. In this algorithm, a spatial
ccuracy, representing the spatial-resample accuracy of each voxel
f the re-sampled low-resolution images, is introduced and used

n the model updating and classification. Multi-channel brain
umor image segmentation is achieved by first aligning the low-
esolution images such as T2-weighted and FLAIR images onto the
1-weighted images and then applying the SHE algorithm to seg-
ent the tumor using the EM algorithm by introducing the spatial
g and Graphics 33 (2009) 431–441

accuracy-weighted Hidden Markov Random Field (HMRF). More
weights are given to the voxels with high-interpolation accuracy
and vice versa. In this way, the tumor segmentation results are more
accurate than treating the voxels equally. We evaluated and vali-
dated this algorithm using a set of simulated multi-channel brain
MR images with known ground-truth tissue segmentation and also
applied it to a dataset of MR images obtained during clinical trials
of brain tumor chemotherapy. The results show that more accurate
tumor segmentation results can be obtained compared with the
conventional multi-channel segmentation algorithm by using the
spatial accuracy-weighted HMRF algorithm.

2. Methods

The Hidden Markov Random Field (HMRF) has been widely
adopted in image segmentation and has been shown to be supe-
rior to other methods of single-channel human brain MR image
segmentation [25]. But when HMRF is applied to multi-channel MR
image segmentation, the performance has been demonstrated to be
inferior [25]. The reason is that the registration accuracy and spatial
re-sampling of multi-channel images (especially the re-sampling of
low-resolution channels) strongly affects segmentation results. In
this section, we propose to improve the performance of the HMRF
model by considering the spatial accuracy of each voxel in the HMRF
optimization using EM algorithm.

2.1. Spatial accuracy vector

A typical brain tumor MRI scan, as performed at our institu-
tion, may generate one high-resolution T1-weighted image (less
than 1.5 mm thickness) plus several low-resolution or thick sec-
tion datasets with other weightings, such as T2-weighted and
fluid-attenuated inversion recovery (FLAIR) images of 6 mm slice
thickness. Fig. 1 shows the example images of T2-weighted and
FLAIR images, and such images normally have low-resolution in
the z-direction.

Alignment of these low-resolution images to the high-resolution
T1-weighted image set, as is often done prior to multi-channel
segmentation, can result in voxel misalignment and interpolation
errors regardless of which of the methods is used. The process of
Fig. 1. T2-weighted and FLAIR images are generally with low-resolution in z-
direction.
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Fig. 2. Re-sampling of a low-resolution image (S) with large slice thickness onto the
space of the high-resolution image (S′). S represents the globally aligned image grids
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verlapping on image S′ , and the traditional re-sampling methods will interpolate
he intensity of S according to the grid of S′ . It can be seen that the corresponding
oxel A in S′ is close to the grid points of S and is of high-confidence level, however,
he point of voxel B in S is far from the grid points and is of low-confidence level.

only used. However, as shown in Fig. 2, after transformation we
ust interpolate image I′ according to the grids defined in S′ using

inear or Spline-based methods. If the voxel is far away from its
eighboring grid points, it is called a low-confidence voxel. In this
ituation the interpolated intensity for voxel i could be inaccurate,
s represented by voxel B in Fig. 2. Thus if a voxel is far away from
rids it is a low-confidence voxel, and vice versa. Treating low-
onfidence voxels equally with high-confidence voxels could cause
naccurate model updating and poor segmentation. For example, in
ig. 2, voxel A is closer to the grids of S than voxel B, it should be
iven higher weights when updating the class mean and variance
alues during segmentation than voxel B, and vice versa. For multi-
hannel tumor image segmentation, a similar situation applies to
ll the images of a given data-channel type: treating images from
ll channels equally could also be undesirable.

To deal with these issues, an accuracy vector for each voxel i is
efined as

i = [ai1, · · ·, aim]T , (1)

where m (m > 1) is the number of image channels used, and
he spatial accuracy level of voxel i for channel j (j = 1,. . .,m), aij,
s defined as,

ij = e−� Ni

√√√√ Ni∏
k=1

dij(k), (2)

where dij(k) is the Euclidean distance from voxel i to its neigh-
oring grid point k in the low-resolution image j, Ni is the number
f voxels within the neighborhood of voxel i, from which the inter-
olated intensity value of i is obtained, and � (�≥0) is the weighting
arameter that controls the strength of spatial accuracy vector. The
patial accuracy vector can be normalized by,

¯ i = ai

m

√√√√ m∏
j=1

aij

. (3)

.2. Spatial accuracy-weighted HMRF
Zhang et al. [24] proposed the HMRF-EM method of MRI seg-
entation. This method has been successfully applied to tissue

egmentation of multi-channel normal-brain MRI images, espe-
ially for T1- and T2-weighted images. In this paper, we report
g and Graphics 33 (2009) 431–441 433

improvement of this method by using spatial accuracy weighting
for multi-channel brain image segmentation in order to deal with
the problems mentioned in Section 2.1. In the proposed SHE algo-
rithm, integration of the spatial accuracy of each registered voxel
improves the update of the model parameters and thus improves
the final tissue classification. Suppose that yi = [yi1,. . .,yim]T is the
feature vector describing each voxel i in an image in terms of the
component data types, where m is the number of data channels
(number of MR images), xi∈L (L∈{1,2,. . .,lmax}) is the class label for
each voxel, and L is the class label set, according to the Maximum
a Posteriori (MAP) criterion [24], the segmentation problem can
be achieved by determining an estimate x̂ of the true class label
x∗ = [x1, · · ·, xn]T , (n is the number of voxels), which satisfies,

x̂ = argmax
x

{P(y|x)P(x)}, (4)

where P(x) is the prior distribution of the classification, and
P(y|x) is the conditional probability of the feature vectors y of all
the voxel of the images given the class label x. We assume that, for
a given class label xi = l, voxel i’s feature vector yi follows a Gaussian
distribution with parameter �={�l,

∑
l}. Thus, the Gaussian Hidden

Markov Random Field (GHMRF) model [24] can be written as,

P(yi|x) = P(yi|XNi
, �) =

∑
l ∈ L

g(yi; �l)P(l|XNi
), (5)

where XNi
represents the class labels of the neighboring voxels

of voxel i, and Ni means the neighboring voxels. P(l|XNi
) models the

conditional probability of label l given the labels of the neighboring
voxels, similar to [24], and g(yi;�l) is the m-dimensional Gaussian
function,

g(yi; �l) = 1√
2�

∣∣˙l

∣∣ e−1/2(yi−�l)˙
−1
l

(yi−�l)
T

. (6)

According to [26], the prior distribution of the labels can equiv-
alently be described by a Gibbs distribution,

P(x) = Z−1 exp(−U(x)), (7)

where Z is a normalizing constant and U(x) is the energy func-
tion,

U(x) =
∑
c ∈ C

Vc(x), (8)

where Vc(x) is one clique potential, and C represents all pos-
sible cliques. Here, a clique is defined as a voxel pair in which the
voxels are neighbors. A homogeneous and isotropic MRF model was
adopted in the GHMRF to generate the prior distribution with clique
potential [27]. In our method, we use a spatial accuracy-weighted
clique potential function,

Vc(x) = −ı(xi − xj)
m∏

k=1

aikajk, (9)

where i and j are a pair of voxel neighbors of a clique c, and
the products of accuracy levels are calculated over all the image
channels m. The clique-potential is weighted by the accuracy of
each data-channel’s contribution to the neighbor-pair in order to
reduce the influence of a potentially inaccurate neighborhood voxel
on the current voxel. If there were no re-sampling estimation in the

registration, Vc(x) becomes the original clique potential function
ı(xi–xj).

An EM algorithm [28] is used to determine the model parameter
� for each voxel and to solve the class label x. This EM algorithm con-
sists of two iterative steps: estimate the unobservable data needed
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o form a complete data set and then maximize the expected likeli-
ood function for this complete data set. The whole SHE algorithm
an be summarized as follows:

1. Initialize the segmentation/labeling x(0) and the model parame-
ter �(0)

.

. M-step: maximize the expected log-likelihood using Eq. (4),

x(t) = argmax
x

{
log P(y|x, �(t)) + log P(x)

}
, (10)

where P(y|x,�(t)) and P(x) are described in Eqs. (5) and (7). Since
solving this maximization problem directly is computationally
infeasible [24], the Iterated Conditional Modes (ICM) algorithm
[29] is adopted. The basic idea of the ICM algorithm is to use the

“greedy”’ strategy in the iterative local maximization, i.e., given
the images and the current labels of other voxels, the algorithm
sequentially updates the label of each voxel by assuming that this
label is dependent on the local neighborhood. Thus in this step,
we iterate through all the voxels and each time update the labels

Fig. 3. The framework of SHE segmentation of M
g and Graphics 33 (2009) 431–441

of one voxel. Notice that the newly updated labels are not imme-
diately used to calculate the labels of the subsequent voxels, and
the labels are updated after all the image voxels are iterated.

3. E-step: estimate the model parameter �(t+1) by calculating,

�(t+1)
l

=
[∑

i ∈ S′ P(t)(l|yi)(aikyik)∑
i ∈ S′ P(t)(l|yi)aik

]
k

, k = 1, ..., m; l ∈ L (11)

and

˙(t+1)
l

=
[∑

i ∈ S′ P(t)(l|yi)(aik(yik − uik))(aij(yij − uij))∑
i ∈ S′ P(t)(l|yi)(aikaij)

]
kj

,

k, j = 1, ..., m; l ∈ L (12)
where P(t)(l|yi) is the posterior distribution for voxel i,

P(t)(l|yi) = P(t)(yi|l, �)P(t)(l|XNi
)

P(yi)
(13)

R brain images for tumor segmentation.
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Table 1
Normal brain tissue segmentation using two channels.

Tissue HMRF-EM SHE

Sensitivity Specificity Sensitivity Specificity

CSF 0.804 0.861 0.837 0.867
GM 0.654 0.827 0.726 0.844
WM 0.812 0.858 0.824 0.915
Average 0.757 0.849 0.796 0.875

Table 2
Normal brain tissue segmentation using three channels.

Tissue HMRF-EM SHE

Sensitivity Specificity Sensitivity Specificity

CSF 0.843 0.858 0.867 0.878
G
W
A

p
i

in these two steps.
M 0.703 0.802 0.711 0.891
M 0.757 0.932 0.872 0.912

verage 0.768 0.864 0.817 0.894

It can be seen that in this EM formulation, the parameters �(t+1)
l

and ˙(t+1)
l

are calculated using the accuracy-weighting vector
a in the M step, and more weights are given to the voxels with
high-confidence, and vice versa.

Let t = t + 1 and repeat steps 2 and 3 until convergence, i.e. the
label change in two consequent iterations is smaller than a pre-
scribed threshold, or the maximal number of iterations has been
reached.
Notice that the potential bias field has been removed before
erforming SHE, by applying the bias-field correction method [30]

n order to deal with the intensity inhomogeneity that commonly

Fig. 4. Normal brain tissue segmentation results using two channels. Channel 1 an
g and Graphics 33 (2009) 431–441 435

exists in MRI images. In case that lack prior information, the
widely-used discriminate-measure threshold method [31] would
be used to estimate the initial segmentation. In this paper, we use
a similar initial-segmentation method that maximizes the inter-
class variances while minimizing the intra-class variances as used
in [24].

3. SHE for brain tumor segmentation

3.1. Brain tumor segmentation

The computational framework of SHE for brain tumor seg-
mentation is outlined in Fig. 3. In this framework, the FLAIR and
T2-weighted images are first co-registered onto the space of the
T1-weighted high-resolution images, and the accuracy-weightings
are calculated after the co-registration. In the co-registration, more
than 80% of the voxels in the transformed images have to be
interpolated from neighboring voxels that were more than 1 mm
away. After co-registration, skull stripping is performed on the T1-
weighted images [32].

By using the skull-stripped T1-weighted image as the mask, the
skull is removed from the T2-weighted and FLAIR images. As shown
in Fig. 3, the SHE algorithm is then applied to the multiple channels
for tumor segmentation. In our experiments, we used T1- and T2-
weighted images to segment the non-enhanced tumor, and used
T1-weighted and FLAIR images to segment the FLAIR enhanced
tumor. Similar procedures introduced in Section 2.2 were applied
In the experiment, we evaluated the performance of SHE in seg-
menting brain glioma from T1-weighted, T2-weighted, and FLAIR
images. Next subsection briefly summarize the datasets and evalu-
ation methods.

d 2 are axial and coronal T1-images with 10 mm slice thickness, respectively.
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Fig. 5. An example of the brain tumor and enhancement segmentation results. Blue: edema; Brown: tumor. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)

Fig. 6. Semi-automatic tumor segmentation using ITKSnap. (a) Preprocessing with selection of initial spots; (b) final segmentation result.
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.2. Evaluation of SHE using simulated and real MRI datasets

Simulated datasets: to validate the proposed SHE algorithm,
RI images with ground-truth tissue labels were obtained from

he BrainWeb [1], including T1-weighted normal brain images with
mm slice thickness, 5% noise and 20% intensity non-uniformity.
xial, sagittal, and coronal images, with 10 mm slice thickness
ere then extracted from the isotropic T1-weighted image set

y down-sampling the data in corresponding directions. Although
he low-resolution channels are simulated by down-sampling the

1-weighted images and there are no tumors in the images, the
imulated data is sufficient to test the performance using spatial
ccuracy-weighted HMRF in image segmentation.

Real datasets: MRI data from 15 patients with brain gliomas
ere used in this study. The dataset consisted of high-resolution

Fig. 7. Brain tumor segmentation results: visual comparison be
g and Graphics 33 (2009) 431–441 437

T1-weighted images acquired either pre or post-contrast with
0.94nm × 0.94mm × 1.5 mm voxel resolution and T2-weighted
and FLAIR images of 0.47mm × 0.47mm × 6 mm voxel resolution.
Contrast-enhanced T1-weighting provides high signal-intensity in
the tumor region but poor contrast between the enhanced tumor
and the gray matter. The regions of high-signal intensity in the FLAIR
images (corresponding to the “FLAIR volume” in [14]) include both
non-enhancing and enhancing tumor. The volume of abnormal high
signal-intensity in the T2-weighted images is similar, but FLAIR
images provide higher contrast between the abnormal volume and

the GM.

In addition to visual evaluation, quantitative measures are also
used to compare the segmentation results. There are several simi-
larity methods for quantitatively comparing binary segmentations,
including Jaccard [34], Tanimoto [35], Simple Matching [36], Vol-

tween manual (semiautomatic) and automatic methods.
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me Similarity [37], and Russel and Rao (RR) [38]. In this work,
e compared the segmentation results by measuring their Jac-

ard Similarities and their Volume Similarities. These two similarity
easurement methods can be understood by considering two

inary segmentations I1 and I2, which have been registered to the
ame grid space S. Let A = {a∈S,I1(a) = 1} and B = {b∈S,I2(b) = 1} rep-
esent the foregrounds of the two segmentations. Consequently, Ā
nd B̄ are the backgrounds of I1 and I2. In this study, the tumor and
nhanced-tumor volumes are relatively small. That is,

∣∣Ā∣∣ >>
∣∣A∣∣

nd
∣∣B̄∣∣ >>

∣∣B∣∣, where |.| represents the volume of the segmented
umors or the background (non-tumor regions). The Jaccard Simi-
arity (JC)
C =
∣∣A ∩ B

∣∣∣∣A ∪ B
∣∣ (15)

Fig. 8. Enhancement segmentation result: visual comparison betw
g and Graphics 33 (2009) 431–441

measures the overlay of two segmentations while Volume Similar-
ity (VS)

VS = 1 −
∣∣∣∣A∣∣ −

∣∣B∣∣∣∣∣∣A∣∣ +
∣∣B∣∣ (16)

compares the volumes of each segmentation without considering
their positions.

4. Results

4.1. Validation Results Using Simulated MR Brain Images
Both the original HMRF-EM method in [24] and the proposed
SHE method were applied to axial and coronal images for two-
channel image segmentation. Fig. 4 (top row) shows such simulated
low-resolution images in two channels. The first channel is the
images down-sampled in z-direction, and the second channel

een manual (semi-automatic) and automatic (SHE) methods.
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ig. 9. Similarity of segmentation results between semi-automated results by differe
he similarity between two semi-automated results of two raters, “rater 1 - SHE” rep
Rater 2 - SHE” is the similarity between semi-automated results by rater 2 and the

hows the image down-sampled in y-direction. The results are
hown in Fig. 4 (second and third rows). Compared to the original
MRF-EM method, the SHE method generated a better segmen-

ation. The red arrows in Fig. 4 illustrate the improvement in
issue-segmentation in white matter. The sensitivity and specificity
f these two segmentation methods are shown in Table 1. It can be
een that SHE increased the sensitivity of gray matter (GM) segmen-
ation from 65.4% to 72.6% and slightly improved the sensitivities of
n cerebral-spinal fluid (CSF) and white matter (WM) segmentation.

We also segmented the three channels, i.e., down sampled
mages in x-, y-, and z-directions. The result is shown in Table 2:
he sensitivity of WM segmentation increased from 75.7% to 87.2%
fter the integration of the spatial accuracy vector. These results
emonstrate that the proposed spatial spatial accuracy scheme
ignificantly improves the results of the SHE algorithm in brain tis-
ue segmentation. The underlying reason is that potential higher
eights are given to the voxels with high interpolation-confidence

cross all the channels and spatial relationship has been modeled

ffectively using the HMRF model. In this way, the SHE algorithm
educes the side effect caused by the blurry interpolated low-
esolution images, and thus yields more accurate segmentation
esults than HMRF-EM algorithm.

ig. 10. Similarity of segmentation results between semi-automated results by raters and
etween two semi-automated results of two raters, “Rater 1 - SHE” represents the simila
HE” is the similarity between semi-automated results by rater 2 and the automated resu
ers and the automated results for non-enhanced tumor. “rater 1–rater 2” represents
ts the similarity between semi-automated results by rater 1 and automated results;

ated results.

4.2. Brain tumor segmentation

We applied the proposed algorithm on the dataset of 15 patients,
and Fig. 5 shows typical segmentation results from four of them
(referred to as subject A, B, C, and D respectively). The segmentation
results have been overlaid on the original MRI images. High-
resolution T1-weighted images of subjects A and C were acquired
pre-Gadolinium and those of subjects B and D were acquired post-
Gadolinium. Although the non-enhancing and enhancing tumor
volumes vary significantly in size, shape, and position, SHE suc-
cessfully segmented both the non-enhancing and enhancing-tumor
volumes in both cases.

To evaluate SHE algorithm, we compared its automated seg-
mentation results with the results of semi-automated manual
segmentation performed under expert supervision. The semi-
automated segmentation was performed by two experts using
ITKSnap software [33]. As it is difficult for raters to distinguish
abnormal FLAIR volume from CSF on the T2-weighted images, the

raters segmented enhancing tumor volumes from post-Gadolinium
T1-weighted images and non-enhancing tumor volumes from
FLAIR images. On each image set, the raters drew several 3D spots
inside the volume of abnormality and used ITKSnap to create a

automated results for enhancing tumor. “Rater 1–Rater 2” represents the similarity
rity between semi-automated results by rater 1 and automated result s; “Rater 2 -
lts.
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oundary which was then revised as needed. This is illustrated
n Fig. 6. Segmentation of each FLAIR and post-Gadolinium T1-

eighted images took approximately 20 minutes per subject.
Examples of semi-automated segmentation results and SHE seg-

entation results are shown in Figs. 7 and 8. Fig. 7 shows the
egmentation results using T1-weighted and T2-weighted images,
nd Fig. 8 shows the segmentation results using contrast-enhanced
1- images and FLAIR images. The SHE segmentation results cor-
espond more closely to the boundaries of abnormality on the
ource images than the semi-automated segmentation results as
llustrated by the red arrows in Figs. 7 and 8, possibly due to oper-
tor fatigue during manual segmentation. For example, the SHE
esults match the intensities of T1-weighted or contrast-enhanced
1- images better than the semi-automated results, and also there
re some artificial lines/effect in the semi-automated results, which
ight be caused by some manual assignment of voxels to tumor

egions.
Quantitative comparisons between the semi-automated seg-

entation results by rater 1 and rater 2, and the automated SHE
egmentations of both non-enhancing and enhancing tumor are
hown in Figs. 9 and 10, respectively. For semi-automated seg-
entation, two raters manually mark the tumor with assistant of

he ITKSnap software, and automated segmentation is achieved
y applying the SHE algorithm. The high volume-similarity (over
.90) between the automated and semi-automated results for both
umor and enhanced-tumor segmentation indicates that the auto-

ated segmentation method is comparable to semi-automated
egmentation. Semi-automated segmentation provides reliable and
onsistent segmentation results between raters, as indicated by
he high volume-similarity between raters. The JC value between
he semi-automated and automated (SHE) results is comparable to
he JC value between the two semi-automated segmentation expert
perators. In summary, the automated SHE segmentation provide
omparable segmentation results as the semi-automated ones by
aters, and it provides a highly automated tool for tumor segmen-
ation using multi-channel images for clinical evaluation of tumor
esponse to treatment.

. Discussion and conclusion

In this paper, we proposed to use the spatial accuracy-weighted
idden Markov random field and expectation maximization for
rain image segmentation from multi-channel images. The algo-
ithm is an important improvement over the powerful HMRF-EM
egmentation algorithm in dealing with multi-channel images
ith different resolutions, and it is especially useful to clini-

al MRI datasets containing a combination of low-resolution and
igh-resolution images. Using the simulated datasets with known
round-truth, we have demonstrated that the proposed SHE algo-
ithm yields more accurate segmentation results than HMRF-EM.
oreover, the automated segmentation results from clinical MRI

ata obtained during a clinical trial demonstrate robust results
omparable to those obtained by manual assisted segmentation
ethods.
We are integrating the SHE method into a computerized sys-

em to aid the diagnosis and follow-up of glioblastoma multiforme
atients. Although this method does not completely eliminate the
roblem of inaccuracy resulting from registration of low-resolution

mage data to high-resolution data, the algorithm presented sug-
ests a promising research direction for automated segmentation

f clinical brain tumor images.

Currently, it takes similar amount of time for the SHE method to
egment tumor on a P4 3.0 GHz 2 GB memory PC (20–25 min). How-
ver, since the image process pipeline is fully automated, and the
uman operation time is greatly reduced (less than one minute per

[
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dataset), and this frees the human operators for other activities. Fur-
thermore, with the rapid advance of parallel computing techniques
and multi-core PC systems, as well as the optimization of the soft-
ware, the computation time of SHE will be reduced significantly in
the near future.

Finally, certain conditions affecting the results of SHE were
encountered in the current study. For example, the touching of
tumor voxels with the skull would cause the failure of automated
skull strip step (the FSL BET software). On the other hand, intensity
inhomogeneity in MR images would sometimes reduce the accu-
racy of segmentation as some parameters of the skull stripping and
inhomogeneity correction software need to be adjusted based on
individual image. In our current implementation, the skull strip-
ping images and the inhomogeneity corrected images are displayed
automatically after the preprocessing, and the SHE algorithm is
called only when the users are satisfied with the preprocessing
results. In our future work, we plan to address such conditions in
the SHE software to prevent from sinking into the skull areas and
to handle intensity inhomogeneity in the algorithm.
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