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Novel Blind Identification of LDPC Codes Using
Average LLR of Syndrome a Posteriori Probability
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Abstract—Blind signal processing methods have been very
popular recently since they can play crucial roles in the prevalent
cognitive radio research. Blind encoder identification has drawn
research interest lately. In this paper, we would like to tackle the
blind identification of binary low-density parity-check (LDPC)
codes for binary phase-shift keying (BPSK) signals. We propose
a novel blind identification system which consists of three compo-
nents, namely expectation-maximization (EM) estimator for signal
amplitude and noise variance, log-likelihood ratio (LLR) estimator
for syndrome a posteriori probabilities, and maximum average
LLR detector. Monte Carlo simulation results demonstrate that
our proposed blind LDPC encoder identification scheme is very
promising even for low signal-to-noise ratio conditions.

Index Terms—Blind signal processing, low-density parity-check
(LDPC) codes, expectation maximization (EM), cognitive radio.

I. INTRODUCTION

A DAPTIVEmodulation and coding (AMC) techniques can
adjust the quality of service for communication sessions

through time varying channels so as to seek the tradeoff between
data rate (throughput) and bit-error-rate performance. Based on
the feedback channel state information (CSI), the AMC trans-
mitter dynamically selects an appropriate combination of mod-
ulator and channel encoder from the predefined candidate pool
[1]–[6]. In conventional AMC techniques, a control channel is
necessary to be facilitated to coordinate the changes in modu-
lation/demodulation and coding/decoding mechanisms at both
transmitter and receiver. Although this strategy makes the re-
ceiver easy to synchronize with the transmitter changes, either
additional spectral resource or spectral efficiency reduction is
definitely required thereupon.
On the other hand, blind signal processing techniques would

be very useful for modern communication applications if the
training sequences or the aforementioned control channel is ab-
sent from any AMC transceiver. One example is blind equal-
ization for cognitive radio receivers [7]. Besides, receivers can
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rely on blind classification techniques to determine the mod-
ulation types of the transmitted signals directly from the re-
ceived signal data [8], [9]. Furthermore, blind identification of
channel encoders was also investigated in [10]–[15] at the prim-
itive stage lately. This paper will be dedicated to the study on
blind channel-encoder identification as well.
The blind encoder identification may play a significant role

in cognitive radio or wireless sensor networks (WSNs). In a
WSN, individual sensor nodes (transmitters) can adopt AMC
techniques to choose different encoders of different rates and
codeword-lengths. In order to reduce energy consumption, the
sensor nodes would prefer not to frequently transmit overheads
to specify these changes because the transmitting data rates of
the sensor nodes are already quite low. Sometimes, the overhead
transmission may not even be feasible since the sensor nodes
cannot be built upon sophisticated protocols. In this scenario,
the sink (receiver) with sufficient power supply and computa-
tional capacity has to blindly identify the encoder used by each
individual sensor node from time to time.
Since no a priori knowledge about the transmitted data is

given at the receiver, the receiver has to utilize the redundancy
introduced by the channel encoder of the transmitter to identify
which kind of encoder the transmitter actually employs. The sta-
tistical characteristics, say the log-likelihood ratios (LLRs) of
the received signals, are usually invoked to extract the essential
information in the existing blind channel-encoder identification
approaches [10]–[12]. In addition, for space-time block codes
(STBCs), which can be considered as a special kind of channel
codes, the space-time redundancy of the received signal sam-
ples is exploited to distinguish coding schemes [10]. For most
channel coding schemes involving parity-check symbols, the
mathematical structures inferred by the parity check symbols
over the Galois field are explored for identifying the original
encoder at the receiver [11].
Recently, a fast blind identification scheme of channel codes

was proposed in [11]. The parity-check relations inferred by
the syndrome former were investigated; the log-likelihood ratio
function arising from the syndrome a posteriori probability
(APP) was established and two detection algorithms were based
on the cumulative metric of LLRs [11]. The detection perfor-
mances were evaluated by the receiver-operating characteristics
for some commonly-used convolutional codes [11]. In [12],
a fast algorithm was proposed to detect an additional lonely
bit (ALB) by identifying two different linear codes. The idea
is that the value of the ALB (“0” or “1”) is used to determine
which encoder is adopted; thus identifying the encoder would
lead to the value of the ALB without decoding it. In [11], [12],
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the blind encoder detection was illustrated only for the binary
hypothesis (two encoder candidates were considered).
As blind channel-encoder identification recently emerges

as an important topic, we would like to dedicate research
endeavors to innovative methods in this field. We would like
to focus on blind identification of low-density parity-check
(LDPC) codes because there exists no detailed blind identifica-
tion scheme tailored for multiple LDPC encoders so far to the
best of our knowledge. LDPC codes, first introduced by pio-
neer Gallager (see [16]) and then revived after more than thirty
years of hibernation (see [17]), are believed to be capable of
approaching Shannon-capacity [18] and outperform prevalent
turbo codes when codeword block lengths get sufficiently large
[19]. Since the revivification of LDPC coding techniques, there
has been a considerable amount of research work dedicated
to the pertinent studies over the last two decades, including
[20]–[22]. Due to their superior error-correction performance
and high code-rates, LDPC codes are becoming more and more
favorable in the future wireless communication standards. For
example, IEEE 802.11n standard has specified the LDPC codes
as a forward error-correction (FEC) option for high-perfor-
mance, high-throughput networks [23].
In this paper, we extend and modify the idea in [11] to

blindly identify binary LDPC codes for binary phase-shift
keying (BPSK) signals over the additive white Gaussian noise
(AWGN) channel. The underlying assumption is that the re-
ceiver has the knowledge of the complete encoder candidate
set. The contributions of this paper can be highlighted as
follows. First, our new blind identification method incorporates
blind estimators for the received signal amplitude and the
noise variance. Specifically, two statistical signal processing
methods, namely the second-order/fourth-order moment
method ( ) (see [24]) and the expectation-maximiza-
tion (EM) algorithm (see [25]) are adopted and benchmarked
with the corresponding Cramer-Rao lower bounds (CRLBs).
Second, other than the cumulative LLRs used for threshold
detection in [11], we propose to use the average LLR metric
which is normalized by the number of parity-check bits so as to
improve the identification performance for the encoders with
different codeword lengths and different coding rates.
The rest of this paper is organized as follows. The basic

transceiver system diagram and the signal model are introduced
in Section II. The blind LDPC encoder identification problem
and our proposed solution are presented in Section III. How
to blindly estimate two crucial parameters, namely signal am-
plitude and noise variance, are discussed in Section IV, where
the corresponding Cramer-Rao lower bounds are also derived.
Monte Carlo simulation results are demonstrated in Section V
to evaluate the effectiveness of our proposed new scheme.
Conclusion will be drawn in Section VI.

A. Nomenclature

A vector is represented as a bold-face lower-case symbol such
as , while a matrix is represented as a bold-face upper-case
symbol such as . The superscript denotes the transpose of
a vector or a matrix. represents a cumulative distribution
function (CDF) where is the underlying event or condition,
while denotes the probability density function (PDF) of a

Fig. 1. The system diagram of a basic transceiver model.

random variable . stands for the statistical expectation.
The Galois field of an integer is denoted by . The set
of all integers is denoted by , the set of all positive integers
is denoted by , and the set of real numbers is denoted by .
If a set has a finite number of elements, then denotes the
total number of its elements. A zero matrix or zero vector has
all zero elements.

II. BASIC TRANSCEIVER MODEL

In this section, we will introduce the basic system model for
the transceivers involving LDPC coder/decoder. The block dia-
gram of the transceiver involving our proposed new blind LDPC
channel-encoder identification mechanism is depicted in Fig. 1.
Without loss of generality, let’s not consider source encoder/de-

coder here. Denote the sets and . At
the transmitter, original information bits are grouped in blocks,
each of which consists consecutive bits, say ,
where is the block index. This block of information bits
are passed to the “LDPC encoder ” to generate a corresponding
block of “codeword” or “coded bits”, say , where
denotes a particular type of LDPC encoder. Obviously the cor-
responding code rate is . Then, the codeword should
be modulated by BPSK modulator and the corresponding block
of modulated symbols are denoted by . These mod-
ulated BPSK symbols will undergo a “frequency up-converter”
to engender the pass-band signals for actual transmission.
The transmitted pass-band signals travel through the channel

and arrive at the receiver. They will go through the ”frequency
down-converter” first to come back to the baseband. In this
paper, we assume that both frequency and frame synchroniza-
tions are properly carried out prior to encoder identification. It
is possible that joint frequency synchronization, frame synchro-
nization, and encoder identification can be accomplished blindly
using the techniques in [26], [27] and the proposed encoder
identification scheme here in this paper. Nevertheless, we focus
on the new blind encoder identification scheme throughout this
paper. The received baseband signal symbols are also collected
in blocks, say , . Instead of passing to
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the “BPSK demodulator” as in the standard receivers, we pro-
pose to feed to our new “blind identification scheme” to iden-
tify , the unknown LDPC encoder adopted in the transmitter.
Once the encoder type is identified by our proposed scheme as
where the subscript means that it is estimated from the

block of received signal samples, then the appropriate LDPC
decoder can be employed to construct the information symbol
estimates .
Consider the AWGN channel here. Each element

of the block of received baseband signal samples,

, can be ex-
pressed as

(1)

where is the unknown signal amplitude accounting for the
processing gain and the channel gain, is the modulated
BPSK signal generated from the encoder , and is the zero-

mean AWGN with the variance for the
signal sample within the block. Consequently, the signal-to-
noise ratio (SNR) per coded bit for the block of modulated
signals is given by

(2)

On the other hand, according to (2), the SNR per uncoded bit
for the block of modulated signals is given by

(3)

where is the code rate.
According to Fig. 1, the receiver has no idea about the exact

encoder the transmitter adopts. Therefore, it needs to identify
the encoder before any received signal can be decoded. Often,
an LDPC encoder would have a very large parity-check matrix,
and it is impossible for any receiver to blindly reproduce the
exact parity-check matrix without any a priori knowledge. In
practice, the AMC transceivers would not change their modu-
lators and encoders arbitrarily. Therefore, one may restrict the
modulation/encoder options within a given set. In this paper,
we assume that a pre-determined LDPC encoder candidate set,
say , which contains multiple encoder candidates, is known to
both transmitter and receiver, and obviously . We also as-
sume that the encoders in are different from each other so that
the parity-check matrices of any two encoders do not have iden-
tical row(s). It is the usual constraint for AMC schemes. Thus,
we can pick up its estimate from this given set as well. We
will present a new method to blindly identify the LDPC encoder
adopted in the transmitter in the subsequent sections.

III. BLIND LDPC ENCODER IDENTIFICATION

Since each LDPC code has a unique parity-check matrix,
the encoder can be unambiguously identified if we can suc-
cessfully establish the corresponding underlying parity-check
relations directly from the received signal data samples. The
parity-check relations are manifested by that the sums of certain
coded bits in the codeword block over the Galois field
are zero. To achieve this, we first formulate the log-likelihood

ratio (LLR) of the syndrome a posteriori probability (APP) in
this section. The similar LLR metric was used for the iterative
convolutional decoder in [28]. Henceforth, we propose a novel
blind LDPC encoder identification scheme, which is based on
this feature, the average LLR of the LDPC syndrome APP. The
details are established in the following subsections.

A. Log-Likelihood Ratio

Since we need to rely on the LLR metric for the blind LDPC
encoder identification in this paper, a preliminary introduction
on the log-likelihood ratio formulation for a binary random
process is provided here. The log-likelihood ratio of a binary
random variable can be facilitated as

(4)

which is the natural logarithm of the ratio between the proba-
bilities of taking values 0 and 1, respectively. Given another
random variable, say , then the LLR of conditioned on
is given by

(5)

According to the Bayes’s Theorem, we get

(6)

Without any ambiguity, we hereafter simplify the notations
of , , and as , , and

, respectively. Let denote the addition over Galois
field (or exclusive-OR operation). A box-plus operation,
denoted by , can be formulated according to [28] as follows:

(7)

B. LDPC Codes Identification

Given an encoder , one can determine its parity-check
matrix , and obtain

(8)

where is the coded sequence from encoder with length ,
and is the 1 zero vector. The “only if” implication
in (8) holds because the encoders in the candidate set are
assumed to be different from each other as stated in the end of
Section II. That is, the candidate LDPC encoder is exactly
the encoder adopted at the transmitter within the block.
Equation (8) describes the so-called parity-check relations.
Denote the locations of the non-zero elements at the
row of the parity check matrix by a vector
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( ),
where is the total number of the non-zero elements in the

row of . Note that the location of the first element
in any row of is indexed as “0” instead of “1”. Denote

. Thus, we can rewrite (8) as

(9)

if and only if (the estimated encoder at the receiver is
exactly the encoder adopted at the transmitter).
According to (6), we can have

(10)

where because each bit in any LDPC codeword
is assumed to have equal probabilities of taking value 0 or 1.
Consider as the messages which are assumed to
be conditionally independent of each other [18]. If an encoder
candidate is picked at the receiver, according to (7) – (10), we
obtain the LLR of the syndrome a posteriori probability (APP)
for the parity check bit in the block
as follows:

(11)

According to the LLR definition given by (4) and the parity
check relations given by (9), the LLR of the syndrome APP,
, is expected to be a positive value when . One may

take the average over the individual LLRs , , for the entire
block , and the “positiveness” of the average LLRwill be more
substantial when . On the other hand, if , individual
LLRs within the same block may be sometimes positive
and sometimes negative and they often cancel each other when
we calculate the corresponding average LLR. The average LLR
for the block of received signal data subject to the encoder
candidate is thus given by

(12)

Note that different encoders have different values of and
so that the values of (the number of parity-check bits)

appear different. Consequently, according to (11) and (12), the
underlying LDPC encoder for the block of received signals
can be identified as

(13)

where is the collection of all possible candidates for the LDPC
encoders adopted in the transmitter. Note that one needs to carry
out for every possible candidate in according to (12).
Alternatively, in order to facilitate the relationship between the

Fig. 2. The block diagram of our proposed new blind LDPC encoder identifi-
cation system.

average LLR and the number of parity-check bits, the average
LLR for the first parity-check bits of the block of received
signal samples subject to the encoder candidate is given by

(14)

It can be easily seen that (12) is a special case of (14) when
. According to the system model given by (1), we can

write

(15)
To carry out (13), one needs to calculate (15) first. However, the
receiver has no a priori knowledge of the signal amplitude
and the noise variance . Therefore, they need to be blindly
estimated prior to the calculation of the LLRs of syndrome APP
. We propose the blind estimators for and in the fol-

lowing section, which can serve as the frontend mechanism to
complete our new blind LDPC encoder identification system, as
depicted in Fig. 2.

IV. BLIND PARAMETER ESTIMATION

As discussed in Section III, signal amplitude and noise
variance are two parameters one needs to estimate first for
blind LDPC-encoder identification. Since we focus on the blind
scheme, the corresponding estimators have to be blind as well.
There exist several non-data aided methods to estimate signal
amplitude and noise variance, such as the estimator
[24] and the EM (expectation maximization) estimator [25],
[29]. The method works well for constant modulus
modulations such as phase-shift keying (PSK). The received
signals formulated by (1) constitute a Gaussian mixture where
the EM algorithm can be used to estimate the associated es-
sential parameters. Therefore, we propose to use these two
methods to estimate the signal amplitude and the noise
variance , and then compare their performances with the
corresponding CRLBs. In the next subsection, we will present
the formulae for the CRLBs of and , respectively.

A. CRLBs

It is well known that for any underlying statistical parameter
to be estimated, among all unbiased estimators, the CRLB fa-
cilitates the minimum variance. Hence we can use the CRLB
as the benchmark to evaluate any estimator. As mentioned in
Section III-B, LDPC coded bits can take either 0 or 1 with equal
probability and they are assumed statistically independent of
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each other. According to (1), the PDF of a received signal block
can thus be represented by

(16)

The associated log-likelihood function is thus given by

(17)

Denote the vector of the unknown parameters.
According to [30], the inverse of the Fisher information matrix
can thus be expressed as

(18)

where is defined by (2),

(19)

and

(20)

The CRLBs for the signal amplitude and the noise variance
are found as the diagonal elements of such that

(21)

(22)

The corresponding normalized CRLBs are defined as

(23)

and

(24)

respectively.

B. The Estimator

From (1), the second-order moment of the received signal
sample is given by

(25)

while the fourth-order moment of is given by

(26)

Solving both (25) and (26) together with respect to the two vari-
ables and , one can get

(27)

and

(28)

where is assumed to be non-negative. In practice, and
have to be estimated by the sample averages over the

block such that

(29)

and

(30)

Substituting (29) and (30) into (27) and (28), we can obtain the
estimators for and .

C. The EM Estimator

EM estimators have recently been applied for the parameter
estimation in wireless communication systems [31], [32]. Here
we will establish a EM estimator for determining the signal am-
plitude and the noise variance . According to the system
model given by (1), it is obvious that the received signal sym-
bols constitute a double-modal Gaussian mixture. Upon re-
ceiving , our proposed EM algorithm is
presented below.
First, initialize the parameters and using -means clus-

tering method for a few iterations. The weight of each Gaussian
mode is fixed to 1/2 as we assume that each bit in any LDPC
codeword has equal probability for taking value of either 0 or 1.
At the E-step, compute

(31)

where

where , for , 2.
At the M-step, compute the new estimates

(32)

(33)
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Take several iterations of E-step and M-step recursively until
the pre-determined convergence criterion is satisfied.

D. Normalized Mean-Square-Error

To evaluate the performances of the above-mentioned esti-
mators in Sections IV-B and IV-C, one may use the normalized
mean-square-error (NMSE) as the measure. The NMSEs for
and are given by

(34)
and

(35)
where the superscript indicates the trial index; is the total
number of Monte Carlo trials; and are true values; and
are the corresponding estimates, respectively.

V. SIMULATION

The performance of our new blind LDPC-encoder iden-
tification scheme is evaluated by computer simulations in
this section. The performance metric we choose is the prob-
ability of detection. It is the probability that the receiver
can correctly identify the types of the LDPC encoders the
transmitter adopts, i.e., . The LDPC
parity-check matrices defined in the IEEE 802.11n standard
are used in our simulations [23]. Accordingly, three codeword
block lengths are defined therein.
For each block length , four different parity-check ma-
trices are specified corresponding to four different code-rates

. Hence, there are totally twelve
types of LDPC encoders defined in [23]. The corresponding
encoding techniques can refer to [33] for details. The simulation
results will be presented in the following subsections.

A. Comparative Study on Blind Parameter Estimators

In this subsection, at first, we need to evaluate different
estimators for signal amplitude and noise variance stated in
Section IV. Ten thousand Monte Carlo trials ( )
are taken for statistical average. In each trial, we consider only
a single signal block. We fix the LDPC encoder
and across all different trials. The modulated BPSK
symbols have constant amplitudes, while varies subject
to a uni-variance AWGN so as to change the SNR .
For each trial , we obtain the estimates and using
either or EM method (executed for five iterations) as
described in Section IV. Then we carry out the NMSEmeasures
for these estimates over 10,000 trials. Besides, we calculate the
normalized CRLBs as given by Section IV-A.
The NMSEs for the signal amplitude and the noise vari-

ance together with the corresponding normalized CRLBs are
depicted in Figs. 3 and 4, respectively. It is obvious that the

estimators can achieve reasonably good performances
only when . If , the term

Fig. 3. The NMSEs of and EM estimates of and the corresponding
CRLBs with respect to .

Fig. 4. The NMSEs of and EM estimates of and the corresponding
CRLBs with respect to .

substituted in (27) is not necessarily always positive so that the
resultant estimates would appear to be complex values, which
cannot be used as legitimate parameters. Besides, the EM esti-
mates provide us the lower NMSEs than the estimators
when .
Note that the NMSEs of the EM estimates sometimes fall

below the NCRLBs when . Similar phenomenon was
also observed in [25], [29]. As a matter of fact, the estimates
produced by the EM algorithm may not always be unbiased. To
study the average biases of the EM estimates, we have carried
out 10,000 Monte Carlo simulations to measure their normal-
ized biases, which are

(36)

(37)

Fig. 5 demonstrates that the normalized biases and
are not negligible when . This explains

why the NMSEs of the EM estimates can be lower than the
NCRLBs in poor signal quality. Similar trends can be found
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Fig. 5. The normalized biases for the EM estimates of and with respect
to .

when different encoders are applied for Monte Carlo
simulations.

B. Average LLRs

According to the discussion in Section V-A, we choose
the EM estimators in our blind LDPC encoder identification
scheme. Based on the estimates and resulting from
the EM method, the LLRs of syndrome APP are calculated
and the corresponding average LLRs can be investigated.
The signals and noises are generated in a similar manner to
Section V-A subject to a fixed SNR . For illustration,
we just fix the codeword block length to and examine
the average LLRs for four different code-rates ,

, , and . Thus, we have four encoder
candidates, i.e., . For each received signal block ,
the receiver calculates the average LLR for each candidate

.
To investigate the variations of the average LLRs , each

of which is constructed from the first parity-check bits of the
block of received signal samples subject to the encoder

candidate , as given by (14), we delineate Fig. 6. Each sub-
figure consists of the average LLRs for four different candi-
dates, namely , , ,
and . For different code-rates , the numbers of
parity check bits, , are surely different.
According to Fig. 6, the average LLRs for reach the

maximum and always stay positive among all candidates
, that is, a correct encoder identification can be undertaken.

On the contrary, for , the average LLRs fluctuate around
zero and tend to be close to 0 as increases. In addition, one
may desire to use as many parity-check bits (large ) as possible
to reach a satisfactory encoder identification performance. If we
may collect the entire received signal block to build the LLRs,
the average LLR formula given by (12) is used for blind
encoder identification instead. The average LLRs for the block
lengths and have also been investigated
and similar phenomena can be observed.

C. Probability of Detection per Block

The evaluation of the probability of detection per block is
carried out in the same simulation set-up as Section V-B. Once

Fig. 6. The average LLRs with respect to when and
for (a) the true LDPC encoder , (b) the true LDPC

encoder , (c) the true LDPC encoder , and (d) the
true LDPC encoder .

Fig. 7. The probabilities of detection with respect to for the codeword
block length and different code-rates .

the average LLRs are computed, the blind identification can be
performed using (13).
Fig. 7 demonstrates per block versus for four different

code-rates when the codeword length is fixed as . We
also investigate the effect of the EM estimators for signal ampli-
tude and noise variance on by comparing the identification
results from the estimates (denoted by “EM” in the figure) and
the true values of parameters (denoted by “True” in the figure).
According to Fig. 7, the EM estimators perform very well and
hence they lead to very similar identification performances to
those from the true values of parameters. Moreover, the lower
the code-rate, the higher the probability of detection. For ex-
ample, when , can reach close to 100% for the
code-rate , while can only attain about 50% for the
code-rate .
On the other hand, we fix the code-rate and change

the codeword block length to depict Fig. 8. According to the
results shown in Fig. 7, we use the EM estimators here to fa-
cilitate a completely blind encoder identification scheme since
they can lead to outstanding performances. Fig. 8 exhibits
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Fig. 8. The probabilities of detection with respect to for the code-rate
and different codeword block lengths .

per block versus for three different codeword block lengths
( ) for the code-rate . The larger the code-

word block length, the higher the probability of detection .
Note that for the codeword block length depicted
in Fig. 8 is different from for the same code rate
shown in Fig. 7. The reason is simply because these two figures
are based on different candidate sets and the encoder identifi-
cation performance highly depends on the particular candidate
set .

D. Probability of Detection for Multiple Blocks

Both Figs. 7 and 8 demonstrate the fact that the more parity-
check bits one uses to construct the average LLRs, the better

performance one can expect. Therefore, it is expected that
would be yet higher if we collect multiple blocks jointly for

blind encoder identification. In practice, the transmitter is likely
to retain the same encoder for a while spanning over several
consecutive codeword blocks. Assume that each encoder lasts
for consecutive blocks ( ). It yields

(38)

where denotes the “integer rounding-down” operation. For
instance, when , one gets .
According to (38), one can compute a single average LLR
over s for consecutive blocks, which is given by

(39)

where specifies the very first block of these consecutive
blocks. Consequently, the encoder can be blindly identified as

(40)

Since the signal amplitude and the noise variance change
with the block index , the average SNR per uncoded bit over
received signal blocks, , is defined as

(41)

Fig. 9. The probabilities of detection with respect to for the code-
word block length and different code-rates when different numbers
of blocks, , are collected jointly for blind encoder identifi-
cation.

We retain the same simulation set-up as Fig. 7 except that we use
the new identification method given by (40) to depict the results
in Fig. 9. Fig. 9 shows versus for .
The more the number of blocks , the higher one can ex-
pect from the blind identification results.

VI. CONCLUSION

In this paper, we propose a novel blind identification method
for binary LDPC encoders. Our proposed scheme is based on the
log-likelihood ratios (LLRs) of the syndrome a posteriori prob-
ability. The average LLRs over the entire block of parity-check
bits are used as the essential features to dynamically identify the
LDPC encoder adopted at the transmitter. Signal amplitude and
noise variance involved in the construction of the LLRs need to
be blindly estimated first. Besides, we establish the Cramer-Rao
lower bounds for these two parameters and compare two corre-
sponding blind estimators, namely and EM techniques.
Monte Carlo simulation results in compliance with the IEEE
802.11n standard are provided to evaluate the effectiveness of
our proposed scheme. The simulation results show that the prob-
ability of detection for a single block can achieve 100% when
the signal-to-noise ratio per uncoded-bit is larger than 8 dB. In
addition, we also design a blind encoder identification method
using multiple consecutive signal blocks jointly and the prob-
ability of detection can reach 100% when the signal-to-noise
ratio per uncoded-bit is as low as 3 dB for a collection of twenty
blocks. As the proposed scheme focuses on BPSK signals, fu-
ture research can be undertaken to extend this scheme to higher-
order modulations.
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