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A Semantic Approach to Host-Based Intrusion
Detection Systems Using Contiguous
and Discontiguous System Call Patterns
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Abstract—Host-based anomaly intrusion detection system design is very challenging due to the notoriously high false alarm rate. This
paper introduces a new host-based anomaly intrusion detection methodology using discontiguous system call patterns, in an attempt to
increase detection rates whilst reducing false alarm rates. The key concept is to apply a semantic structure to kernel level system calls
in order to reflect intrinsic activities hidden in high-level programming languages, which can help understand program anomaly
behaviour. Excellent results were demonstrated using a variety of decision engines, evaluating the KDD98 and UNM data sets, and a
new, modern data set. The ADFA Linux data set was created as part of this research using a modern operating system and
contemporary hacking methods, and is now publicly available. Furthermore, the new semantic method possesses an inherent
resilience to mimicry attacks, and demonstrated a high level of portability between different operating system versions.

Index Terms—Intrusion detection, anomaly detection, computer security, system calls, host-based IDS, ADFA-LD

1 INTRODUCTION

NTRUSION detection systems (IDS) represent an increas-

ingly important component of computer security. The
last 10 years have seen a marked increase in the number of
intrusion events across the world, ranging from relatively
benign one-off minor hacking activities through to interna-
tional events such as the Stuxnet virus [1], [2], Flame epi-
demic [3] and 2011 Sony PlayStation Network data theft [4].

Hardening computer systems to resist attacks such as
these is a complex process, with a multitude of advice
and suggestions available in academic literature, open
source documents and popular writing. Throughout all
of these sources, it is rare to find cyber security advice
that does not include a recommendation for some form
of intrusion detection system. Indeed, government agen-
cies charged with providing advice on computer security
often make specific mention of IDSs, with the Australian
Defence Signals Directorate listing a host-based IDS
(HIDS) as fifth in its list of the top 35 recommended
strategies to mitigate cyber intrusions [5].

This paper introduces a new semantic based algorithm,
which performs significantly better than the existing meth-
ods. Two key research focusses fuelled this development,
namely the search for increased core performance and the
need to produce a robust and portable system capable of
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withstanding changes to the system baseline whilst degrad-
ing gracefully as the systemic noise levels increase. Three
different data sets were used to evaluate this new algorithm;
core performance was tested using the KDD98 data set and
the new ADFA Linux data set (ADFA-LD), with portability
and robustness testing conducted using the UNM data set.

Whilst increasingly criticised by articles such as [6], [7],
[8], [9], [10], [11], the KDD98 is still used as a common
benchmark for performance, though with a warranted level
of scepticism about its applicability to the modern environ-
ment. Recent publications such as [12], [13], [14] are exam-
ples of the continued use of this publicly available data set,
largely due to the absence of a readily accessible alternative.
In an attempt to address the issues raised with the KDD98
data set, the new ADFA-LD was developed, using a modern
operating system and contemporary attacks, for further
evaluation of the semantic algorithm. This new data set is
available for public use without restriction, and can be
obtained by emailing j. hu@adfa.edu.au.

Numerous different decision engines (DEs) were trialled
in various configurations throughout the experiments
detailed in this paper, with a clear superiority shown by
those DEs which used the new semantic feature as the basis
for their classification. Whilst the main innovation of this
paper is the semantic feature itself, a new type of artificial
neural network, the extreme learning machine (ELM) [15],
demonstrated superior performance against all data sets,
and is discussed further in the body of the paper.

The rest of this paper is organised as follows: Section 2
presents a brief background and literature review of the
field. Section 3 outlines central algorithms and theories
which underpin the innovations presented in this paper.
Section 4 discusses the key semantic concepts used to pro-
duce this paper’s algorithm, and presents the core theory as
a mathematical equation. Section 5 details the experimental
methodology used in this research, while Section 6 contains
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the results from these experiments. Sections 7 and 8 provide
a discussion of the experimental results and concluding
remarks respectively.

2 BACKGROUND AND LITERATURE REVIEW

There are two broad classifiers which can be applied to
an IDS. First, an IDS can be considered as either a host-
based or network-based system. Host-based systems are
designed to protect a single computer, and to prevent
the execution of malicious code on that single system.
Network-based IDS (NIDS) provide a different form of
protection by examining network traffic in an attempt to
detect intrusions.

Intrusion detection systems can be further classified as
anomaly centric or signature-based. An anomaly IDS
operates by first establishing a robust baseline of normal
behaviour for the protected system. Theoretically, if this
baseline is sufficiently accurate and extensive then any
divergence from the baseline would be considered as an
intrusion alarm. Signature-based systems, on the other
hand, compare observed behaviour against a database of
templates representing identifiable features from previ-
ously seen attacks. If behaviour matches a template then
an alert is raised, but otherwise all activity is deemed
legitimate.

Anomaly centric IDS suffer from high false alarm rates
due to the difficulty of creating a robust and pervasive
baseline. Computer activity is very dynamic within mod-
ern systems, and the high level of variation that results
from this dynamism greatly increases the difficulty of dis-
tilling an effective and accurate baseline from which to
measure anomalous divergences. The great advantage of
the anomaly-based approach, however, is that no prior
knowledge of the attack is necessary to raise an alarm; in
other words, anomaly centric systems are capable of
detecting completely new ‘zero-day’ attacks. Signature-
based systems generally have lower false alarm rates and
better detection rates for attacks which match a template
within the database, but have no capability whatsoever to
detect a previously unseen attack. This represents a criti-
cal weakness in the signature-based approach, and conse-
quently increases the attractiveness of a robust anomaly
centric system, provided that the traditionally high false
alarm rates can be reduced to manageable levels.

Host-based IDS are usually implemented by selecting
a metric present in the host and using this metric as the
input to a decision engine. One family of techniques
relies on information from the various log files present
in a computer to provide this feature, with research such

s [16], [17] presenting examples of solutions using this
approach. The use of log files, however, suffers from sev-
eral weaknesses. First, and most fundamentally, log files
represent interpreted data. Log files are generated by
daemon programs monitoring system activity, and inher-
ently and irrevocably provide a diluted data source. Sec-
ond, as discussed in [18], [19], the production of log files
is not a seamless process, with a large amount of poten-
tially irrelevant data given equivalent priority to critical
data, accompanied by the mechanical problems of man-
aging and creating log files.
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The alternative to a log file-based approach is to use
system calls as the raw data from which to formulate a
decision feature. This approach was first suggested by
Forrest [20], whose seminal work resulted in numerous
subsequent research. The main advantage of a system
call approach is that it allows the IDS access to raw data,
providing insight into the interactions between programs
and the kernel itself. This, in turn, allows for the best
data granularity achieved in the IDS field to date, with a
corresponding improvement in decision engine results.
Additionally, system calls can be sampled in real-time
without the issues which log file management can intro-
duce into an IDS algorithm.

The performance of IDSs is usually measured by con-
sidering the attack detection rate plotted against the false
alarm rate. This method of evaluation takes into account
the base rate fallacy, and provides a true indication of the
positive and negative impacts of deploying a given IDS.
A low detection rate usually means a lower false alarm
rate, which reduces the burden on a system administrator
but consequently increases the chance of success for
attackers. Conversely, a high detection rate will provide
better protection but at the expense of numerous false
alarms, accompanied by an increase in the required
involvement from administration staff and a decrease in
the actual effectiveness of the system. Numerous techni-
ques have been suggested as ways to overcome this base
rate fallacy, such as decision engine fusion [21], [22], the
use of multiple decision engines [23] and the use of
hybrid methodologies [24]. At heart, however, all these
methods still rely on the same raw data, and use similar
ways of interpreting this data. The research outlined in
this paper introduces a completely novel way of inter-
preting the raw system call traces, utilising a true seman-
tic interpretation to drastically improve results.

Having discussed the data options available to IDS
designers, the next key ingredient is the decision engine. A
decision engine, as the name suggests, is the algorithmic
process by which a preprocessed feature extracted from the
raw data discussed above is converted into an output which
can be used to classify samples. Put simply, a DE assesses
kernel activity and labels it as either normal or anomalous.
Many different types of DE have been applied to the IDS
problem. Some are quite simple, such as the easily imple-
mented yet still powerful STIDE process [20], [25], [26],
which uses a calculated ratio to classify system call patterns,
but some DEs can become extremely complex, introducing
large training burdens and consuming non-trivial amounts
of system resources.

One of the major areas in which performance gains can
be made in an IDS is the decision engine, and as such, sig-
nificant effort has been expended in refining the perfor-
mance of the DE. One technique which has been soundly
investigated in search of performance gains is the Hidden
Markov model [26], [27], [28], [29]. Hidden Markov mod-
els provide an extremely strong sequence recognition
capability, and hence are well-suited to a system call anal-
ysis. Artificial neural networks, including self organising
maps [30], radial basis function (RBF) networks [31], and
multilayer perceptrons (MLPs) [32], have also been used
as the DE for HIDS, capitalising on their strong pattern
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recognition capability. Statistical methods, such as
described in [33], provide an alternative approach, and
are well suited to offline processing and handling large
amounts of training data.

All the decision-making methodologies discussed above,
as well as the many other DEs which have been used in an
IDS setting, rely on appropriate training to reach their full
effectiveness. Training data selected for this purpose must
be representative of the system to be protected. This intro-
duces a new consideration into the training process; each
host is significantly different in function and behaviour, and
hence almost certainly will require bespoke training data.
The problem is further complicated by the dynamic nature
of host behaviour, with baselines changing over time, neces-
sitating periodic retraining. Ideally, the majority of training
should be able to be conducted offline in a centralised man-
ner, and then distributed to the individual hosts as required.
Whilst a level of tuning will always be necessary, a robust
feature and good initial training data will reduce the proc-
essing load on the eventual host. As the robustness of the
feature used by the DE increases, so too does the portability
of the trained IDS. In this paper, a semantic theory of intru-
sion detection, based on established natural language meth-
ods [34], [35] has been introduced to create novel semantic
features for decision engines. As demonstrated by this
paper’s research, a semantic feature allows for a previously
unseen level of portability and hence offers significant effi-
ciency gains when large-scale deployments are considered.

The new method presented in this paper centres on using
a full semantic feature as the input to a neural network. The
semantic feature is derived by analysing discontiguous sys-
tem call patterns, and has been demonstrated to be
extremely powerful by this research. It is well suited to the
extreme learning machine artificial neural network, with
the synergies between this DE and the new feature leading
to much better performance in sustained deployments. The
semantic feature represents the core of this research and can
be applied to any decision engine, albeit with some modifi-
cation. Artificial neural networks, such as the ELM, are able
to apply the new semantic feature simply and rapidly by
counting occurrences of semantic phrases, as discussed in
Section 5. Similarly, Hidden Markov models are also easily
able to apply a semantic feature by searching for token
sequences consisting of allowable semantic units. Given the
strong demonstrated results outlined in Section 6, the use of
more complicated DEs, accompanied by a greater process-
ing overhead, is not warranted for single host deployments.
DEs which are unable to apply the feature simply are better
suited to a decision fusion application, such as in a distrib-
uted IDS arrangement, where the more complex threat is
better defeated with broader detection methodologies.

This research has produced an algorithm suitable for the
monitoring of a full system, evaluating all processes concur-
rently. By contrast, other methods use a per-process evalua-
tion approach whereby each individual process is examined
for deviances from the normal state defined for that particu-
lar process. This latter method has the potential to achieve a
good level of accuracy, more so than for a whole-of-system
approach. The source of this accuracy lies in reducing the
decision horizon, limiting the scope of analysis to a single
process. The undisputed benefit of this method is an

increase in accuracy, and this is a powerful feature of the
per-process method.

The major criticism of the per-process approach is that
this method does not scale well. Separate evaluation for
each process must be conducted, which in a busy system
imposes a significant processing burden. Additionally, spe-
cific training data for each monitored process must be pro-
vided, and the IDS trained individually for each process.
The semantic approach can also be incorporated easily into
a per-process IDS. Extra security could then be provided by
including a per-process IDS for specific high-risk attack vec-
tors, such as the notorious SMB/Samba service.

A recent development in IDS theory is the mimicry
attack, whereby an attacker obfuscates their malicious pay-
load at the system call level in an attempt to bypass the
system’s HIDS. This technique, introduced by [36], is partic-
ularly important for sequence based IDS, such as the
research proposed in this paper. Various methods have
been proposed in an attempt to address this type of attack,
ranging from the obfuscation of the system baseline in order
to complicate the mimicry process [37], through increased
DE performance to produce a tighter decision envelope
[38], to the consideration of system call arguments in an
attempt to increase the amount of data available for DE
training [39], [40].

No public data is available for the evaluation of mimicry
attacks, but some papers propose a method of generating
such data using genetic algorithms [41], [42]. A semantic
algorithm, such as that proposed by this research, should
have a natural resilience to mimicry attacks, but further test-
ing is infeasible at this time due to the absence of publicly
available data. The inferred resilience is discussed more
fully in Section 5.3.

3 PRELIMINARIES

3.1 The System Call Approach to IDS

The system call approach to intrusion detection was first
suggested by Forrest [20], based on the hypothesis that only
running code will affect a system. As such, all anomalies
should leave relics in the system calls executed by the ker-
nel. Root processes were prioritised by this seminal
research, with a risk assessment between the damage
caused by super user actions and normal user actions form-
ing the base of this decision.

Forrest used this core hypothesis as the basis for an artifi-
cial immune system approach to intrusion detection, build-
ing up a collection of normal system call traces for each
program and using this as a self/non-self classifier. Of sig-
nificance, only the system calls themselves are examined
under this methodology, with the arguments to the individ-
ual instructions having no weight.

The richness of data contained in system call patterns is
unrivalled. System calls represent the rawest interaction
between a program and the host system, and have virtually
no abstraction of data. Other methods such as log file analy-
sis introduce an unavoidable level of obfuscation as they
rely on data which has already been interpreted and format-
ted to produce the logs; decisions, classifications and clus-
tering made on the basis of this data automatically inherits
all assumptions made in parsing the raw source data to
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form the log files and similar interpreted data collections.
Therefore, the best granularity in intrusion detection sys-
tems should be seen in those algorithms which use raw sys-
tem call data.

The analysis of system call patterns is usually performed
without considering the arguments passed to each system
call. This process loses some inherent information, but still
allows for accurate classifications based on the positional
relationships between system call sequences. Research such
as [43], by contrast, actively considers the arguments passed
to each system call, producing a different kind of semantic
analysis. This form of semantic analysis is distinct to
the structure proposed by this paper, as our work considers
the semantic patterns in system call traces, rather than the
semantic meaning of the arguments in each system call.

3.2 An Overview of the Extreme Learning Machine

The extreme learning machine methodology, [15], is an
extremely powerful decision engine in the artificial neural
network family. Neural networks have been thoroughly
researched, with a general consensus as to their strong pat-
tern recognition capabilities. Like many types of decision
engine, however, neural networks suffer from a high train-
ing overhead, traditionally requiring extensive resources
and many iterations to reach an effective level of training.

The key characteristic of an ELM is that it conducts its
training in one pass, using the Moore-Penrose pseudo-
inverse to solve a least-squares equation, hence avoiding
much of the traditional training problem associated with
neural networks. The expedited training speed comes with
a high processing overhead, but the impact of this require-
ment is small, as HIDS have access to the CPU of the host
itself. Alternatively, offline training is possible as well,
allowing for a large proportion of the processing load to be
completed prior to end-user deployment.

When training an ELM, only the weights between the
hidden layer and output nodes are adjusted; indeed, the
weights between the input nodes and the hidden layer,
along with any bias values, can be randomly and statically
assigned, provided that all resultant weights and biases
belong to the same continuous probability density function
[15]. This central feature has two key effects, namely:

1. An ELM completes its training much faster than a
traditional MLP, and avoids local minima concerns.
2. The processing requirement for this faster training is
significantly greater than for a comparably sized tra-
ditional MLP.
The first point makes the ELM approach extremely attrac-
tive for use as part of a HIDS deployment. The more rapid
training and smaller on-going footprint of an ELM reduces
the long term burden imposed by the IDS, without unduly
affecting decision granularity. The higher processing load
when conducting initial training is concentrated temporally
at the start of deployment, and can be performed offline to
minimise system impact.

3.2.1 The Use of the ELM as an IDS DE

The ELM is a relatively new innovation in the machine
learning field. It has many attractive characteristics, as it is
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an extremely lightweight but accurate MLP implementa-
tion. In our earlier work [44], we demonstrate that the ELM
is a suitable DE for NIDS applications. Cheng et al. [45] pro-
vide a detailed analysis of the benefits of the ELM in a
NIDS, concluding that it is a rapid training and high per-
forming DE option. Interestingly, the authors of [45] were
forced to use the ageing KDD data set for similar reasons to
this paper’s research.

Both these works, [44], [45] focus on the NIDS area,
rather than the HIDS area; whilst closely related, the two
families of IDS are quite distinct, and hence results cannot
be directly compared. Furthermore, the research in [45] uses
a signature based methodology, classifying into multiple
classes. This approach is not directly comparable with the
anomaly based system proposed by this paper. The ELM is
a novel DE, but provides an identical functionality to a tra-
ditional MLP. The rapid training is highly attractive for the
dynamic world of computer systems, but the innovation of
this paper lies in the new semantic analysis rather than the
evaluating DE. Indeed, as shown in Section 6, Fig. 1, the
ELM performs better with the new semantic feature than
the existing syntactic features, underscoring the strength of
this new semantic approach.

4 CONTIGUOUS AND DISCONTIGUOUS SEMANTIC
ANALYSIS

Semantic theory has been used in computer science for
some time. This branch of study provides various meth-
ods for parsing programming languages, and allows for a
robust approach to computer system design. Importantly,
semantic theory does not have to be forced to fit a com-
puter science application; rather, programming languages
and system architectures naturally share a similar logic
and structure to natural language, and hence can be ana-
lysed and modelled by semantic tools.

The application of semantic principles to a computer envi-
ronment centres on defining a scalable set of rules governing
the combination of terminating units. These rules conse-
quently allow complicated concepts to be expressed in terms
of simple components. The translation of highly abstract
user actions to low-level kernel events is an involved process,
and the formal structure provided by semantically inspired
rules greatly assists in producing an effective interface. This
relationship between user activity and kernel events has
inherently underpinned all programming for some time,
and certainly throughout the modern era.

The syntax required by programming languages is a
reflection of the underlying semantic principles, and allow
for efficient compiling and interpretation of user-produced
code. It also suggests that the system call traces which result
from the execution of programs written with these lan-
guages can be subjected to a semantic analysis.

Based on the core principles above, this paper proposed
that a context-free grammar (CFG) could be applied to the
system call traces as well as to the language structure used
in creating the multitude of high-level programs present in
any operating system. The mechanics and rules of a CFG
are detailed in Sections 4.1 and 4.2, with the original seman-
tic feature proposed by this paper defined mathematically
in Section 4.3.
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Fig. 1. ROC curves for assorted methodologies when assessing the KDD 98 data set.

The application of a true semantic analysis to system call
patterns differs from current thinking significantly. Current
methods analyse contiguous patterns of system calls and
use these patterns as the basis for the decision engine’s clas-
sification. Whilst good results have been produced, this is
merely a syntactic analysis and does not represent the full
richness of the underlying semantic structure. This paper
proposes and verifies that a grouping of discontiguous sys-
tem calls provide a much more powerful and robust feature
for intrusion detection.

Under this new approach, system calls can be viewed
as ‘letters’, with a string of contiguous system calls thus
forming a ‘word’. By applying a CFG, the resulting word
lists can now be combined to form ‘phrases’. It should
be noted that when compiling the multi-word lists, the
eventual phrases may not in fact have occurred in the
training data under consideration. This does not invali-
date these phrases from a full system perspective, how-

ever, and the algorithm is inherently able to function
with smaller volumes of training data by allowing these
phrases to persist within the language structure. Addi-
tionally, by not requiring each allowable phrase to be
specifically seen during training, marked efficiency and
accuracy gains are possible.

As discussed in Section 1, the training process for host-
based intrusion Detection systems is lengthy, intensive, and
specific to each particular host. The sensitivity of detection
and false alarm rates means that a complete retraining pro-
cess is often required when an IDS is deployed to a new
host, or when the host’s function changes significantly. The
semantic feature proposed in this paper mitigates this sensi-
tivity markedly, with an unprecedented level of portability
present in the new IDS. The results presented in Section 6
clearly show that the feature proposed in this paper is easily

transferable between operating systems, even without
allowing for retraining.

4.1 Definitions

1. Let7 = {architecture specific system calls}.

2. Let N={3z €T :y=u,zj,z4...}, or in other
words, N/ = {all possible sequences of system calls}.
3. Let G represent a known normal trace, and A repre-

sent a known anomalous trace.

4.2 Syntactic Development

From the definitions above, 7 represents terminating
syntactic units, and N represents non-terminating syn-
tactic units. As discussed in [34] and assuming context
free grammar, the syntax of a system call trace can be
defined as follows:

JreT:G— 2G. (1)

Using Production 1, a sequence of training data [Gy,
Gi,...,Gn] yields a new set

) gV}}
(2)

B={3z;,zj,zp,...:x € T|(z5,zj,...) € [Go,G1,. ..

This new set B has elements which represent the phrases
made up by sequences of system calls. Whilst B C /, there
is no guarantee that any specific element of B, denoted b,
has been observed in the training data [Gy,Gi,...,Gn].
Indeed, b,, being made up of disparate system calls, may
not occur in the corpus at all. Rather, it represents the
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TABLE 1
Full Feature Format

Phrase Length

| Sample Number 1 ‘ 2 | 3 | 4 [ 5
Raw value: ig € T Dict. 1 Count Dict. 2 Count Dict. 3 Count Dict. 4 Count Dict. 5 Count
Sample 1 (Raw) 1014 1118 713 397 130
Sample 2 (Raw) 345 145 4 0 0

Normalised value iy € Ty | igr[l]/max(Zr)

ip[4Jmax(Zr)

Sample 1 (Normalised) 0.0412

ir[2]/max(Zr)
0.0454

ir[3]/max(Zr) ir[5]/max(Zr)
0.0289 0.005

0.0140

Sample 2 (Normalised)

0.0059

0.0002 0.000 0.000

possibility of that call sequence occurring, noting the
observed calls from 7 in [Gy, G, - . ., Gn].

4.3 Semantic Hypothesis
Of note, an anomalous trace A will exhibit a very similar
syntactic pattern to a normal trace G. Semantically, however,
a strong difference is evident.

The following inequality was hypothesised as the core
element of this paper’s innovation, where G, represents a
previously unseen normal trace:

{3z eB:G, =20} >{FxreB: A—zA}. (3)

Equation (3) indicates that the occurrence of valid seman-
tic units extracted from the training data in a new normal
trace should be significantly greater that the occurrence of
these semantic units in a new anomalous trace. The set 5 is
generated from the training data, and consists of the
observed semantic units in this data. Of note, B C N. By
reducing the allowed set of semantic units to those observed
in the training data, it is then possible to use this reduced set
as the basis for a decision feature by calculating the occur-
rence counts proposed in Equation (3). The implementation
of this theory is detailed in Section 5.

In summary, semantic analysis, as opposed to syntactic
analysis, suggests that a corpus of phrases can be general-
ised from known normal system traces, and will include all
normal semantic units in its membership, irrespective of
whether a specific phrase has been observed in the training
data, presupposing the initial training set is expansive, but
not necessarily exhaustive. Equation (3) represents a deci-
sion method suitable for use as the basis for a decision
engine, with the decision engine feature generated by con-
structing a vector of the valid phrase counts for varying
lengths. The hypothesis presented as Equation (3) was veri-
fied by the experiments and results detailed in Sections 5
and 6, performing extremely strongly.

5 NMETHOD

5.1 Algorithm

Given the semantic approach discussed above, especially
Equation (3), several steps are required to apply this concept
to intrusion detection systems. First, the training data must
be processed to extract a dictionary containing every contig-
uous system call trace present in the training samples. This
step is equivalent to using multiple window lengths under
Forrest’s methodology [20], [25], [26], [46] and [47], where
the maximum window length allowed is in fact the length

of each trace. Each dictionary entry extracted at this stage
forms a conceptual ‘word’, or a “phrase’ of length 1.

Second, these words are then used to construct further
dictionaries consisting of every possible combination of the
words up to a specified phrase length. The experiments in
this paper used phrases of lengths ranging from one word
to five words. The upper limit of length 5 was applied
as the number of phrases detected in each trace of the
KDD98 training data at this length started to drop signifi-
cantly, indicating that longer phrases would not be repre-
sentative of the true nature of the corpus. In a real-time
deployment, traces would consist of more system call ele-
ments, and hence longer phrases could also be used, thus
further increasing the richness of the feature. It is important
to note that there is no requirement for the derived phrases
to have been observed in the training data. At this stage, it
is sufficient that their presence is theoretically possible
based on a combination of observed words. This is a key dif-
ference of this new method when compared to existing
approaches.

Having these dictionaries themselves does not provide
a usable feature per se; second pass processing is required
to extract occurrence counts of these different length
phrases. In this step, the training data is re-examined and
the system call patterns compared against the theoreti-
cally possible phrase lists. This resulting numerical data
represents the number of phrases consisting of discontig-
uous words occurring in each training data sample.

Again, this differs from a contiguous approach as more
weight is inherently given to longer phrases of discontigu-
ous words. After normalisation and standard data treat-
ment routines, this information is used to train a decision
engine. Table 1 shows the structure of the 5-element feature
used in these experiments. When new data is received, it is
compared against existing phrase dictionaries, with the dis-
contiguous word phrase-count again used as the input to
the decision engine. The now trained decision engine is
then able to classify this new sample based on this feature
alone. Pseudocode for the entire process is provided below:

5.2 Training Overhead

Building the phrase dictionaries for a semantic IDS is, at
present, a lengthy task. Even given the reduction of 7 by
the creation of B from the training data, the resulting
phrase dictionaries in their native form are large. As the
phrase length increases, so too does the size of the dictio-
nary; as the length of phrase is directly proportional to
the information content and relevance of the feature, this
means that the most valuable phrase dictionaries take
the longest to produce. In one sense, the design tradeoff
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required by a semantic IDS is longer data processing for
greatly increased accuracy.

1: function GETWORDS(traces)

2 for all traces do

3 counter < 1

4 for system calls in trace do

5: word =systemcall+nextcountercalls
6 if word in wordDictionary then

7 Increment count of word

8

9

else
: Add word to wordDictionary
10 end if
11: counter + =1
12: end for
13: end for
14: return wordDictionary

15: end function
16: function GENPHRASES(word dictionary, length)

17: Create new phrase dictionary for phrases of \
18: given length

19: for all words in word dictionary do

20: while current phrase length < length do
21: currentPhrase <+ currentWord

22: for currentWord do

23: currentPhrase + = next dictionary\
24: word

25: end for

26: end while

27: Add phrase to phraseDictionary

28: word list start position++

29: end for

30: return phraseDictionary

31: end function
32: function GETPHRASECOUNT(trace)

33: featureVector = new array with \

34: length=number of dictionaries

35: for all Phrase Dictionaries do

36: i < phrase length for dictionary
37: phraseCount < 0

38: for all Phrases in Dictionary do
39: if phrase present in trace then
40: phraseCount-++

41: end if

42: featureVector[i] <—phrase count
43: end for

44: end for

45: return featureVector

46: end function
47: function EVALUATESYSTEMCALLTRACE(newTrace)

48: newFeature < getPhraseCount(newTrace)
49: normalise newFeature

50: feature — trained decision engine

51: deResult < decision engine output

52: if deResult > global threshold then

53: classification +— anomalous

54: else

55: classification + normal

56: end if

57: return classification

58: end function

Fortunately, once the phrase dictionaries have been
created, feature extraction and DE training takes no lon-
ger than for syntactic methods. As such, the current

semantic harvesting process should be viewed as a
mostly offline task, which consequently has little impact.
Compilation of the phrase dictionaries is only required
once, however, and can be accomplished in days. As
such, the one-off processing burden is easily affordable
within the lifetime of the IDS.

5.3 Theoretical Resilience to Mimicry Attacks

The semantic theory proposed by this research has an inher-
ent theoretical resilience to mimicry attacks. This type of
attack, as defined by [36], describes the process followed by
skilled attackers of modifying the system call footprint of
their payload to prevent detection by an IDS. This is done
by the insertion of virtual NOPs, or no-operation functions,
or through the creation of convoluted system call patterns
which obfuscate the intent of the payload sequence.

The semantic algorithm proposed here has a natural
resilience to this class of attacks. The semantic evaluation
process assigns significant weight to long semantic
phrases; if a semantic phrase is broken by the inclusion
of an attacker’s system call then the long semantic
phrase no longer counts towards the assessment of that
trace as normal. Inclusion of multiple attacking system
calls in the trace will have the effect of fracturing all
long semantic chains, which in turn means the trace is
likely to be classified as anomalous once more. As such,
even if an attacker includes similar semantic phrases in
their obfuscation attempts, the longer natural phrases
will still have been broken, resulting in the classification
of the activity as anomalous.

5.4 Validating Experiments
5.4.1 KDD98 Data Set

To validate the core theory and algorithm presented above,
several experiments were conducted using the KDD98 data
set. Four different combinations of IDS feature were tested
on this data set, thus allowing direct comparison between
the benefits of each approach. These trials were:

1. The standard STIDE approach proposed by Forrest
[20].

2. The use of contiguous syntactic units of varying win-
dow sizes as the input to an ELM.

3. The use of different length contiguous syntactic units
as the input to an HMM.

4.  The use of the new feature proposed in this paper as
the input to an ELM, representing a true semantic
analysis of the system call corpus.

Each trial used the same data from the KDD98 data set
[48]. The training data for each combination consisted of
500 known normal traces, and the validation data consisted
of 4,500 previously unseen known normal traces. Each
trace was collected from the Solaris BSM data extracted
from the host Pascal, running Solaris 2.5.1 [48]. The result-
ing data files after formatting consisted of the system call
traces for each process running on the host during the sam-
pling period. The attack traces comprised a total of 37
attacks belonging to 10 attack families. This represents all
attacks present in the data set with detectable relics in the
BSM files.
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TABLE 2
ELM Feature Format for Trial 2
Word Length
Sample Number 3 4 | 5 | 6 [ 7
Raw value: ig € I Dict. 1 Count Dict. 1 Count Dict. 1 Count Dict. 1 Count Dict. 1 Count
Sample 1 (Raw) 10 10 10 9 7
Sample 2 (Raw) 9 6 6 5 4
Normalised value iy € Zys | ig[l]/max(Zr) | ir[2]/max(Zr) | ir[3]/max(Zr) | ir[4lmax(Zr) | ir[5]/max(Zr)
Sample 1 (Normalised) 0.1538 0.1538 0.1538 0.1384 0.1077
Sample 2 (Normalised) 0.1384 0.0923 0.0923 0.0769 0.0615

For evaluation purposes, detection rate, D, and false
alarm rate, F' were defined as:

D number of detected attacks

x 100%
number of attacks present o

ber of false alerts
number of false alerts « 100%.

number of traces in validation data

Trial 1 was implemented by applying the STIDE
method detailed in [20], [25], [26], [46]. Different length
window sizes were applied under the same experimental
conditions as the other trials, with the minor difference
that a complete system call list was provided to the
STIDE algorithm as it was compiling its initial sequence
databases. This is an important consideration, as there is
no guarantee that all system calls are present in the train-
ing data. The STIDE algorithm is particularly sensitive to
any omitted calls, and pays an unrealistically stark false
alarm rate penalty if a complete system call list is not pro-
vided. This allowance was also made for the Hidden Mar-
kov model trial for similar reasons, but was not required
for the ELM trials due to the increased robustness of the
feature proposed in this paper. ROC curves were gener-
ated by varying the decision threshold and plotting the
resultant detection rate and false alarm rate. This, in turn,
allowed an evaluation of the merit of each algorithm by
considering the area under the curve [49]. As discussed
in [49], the performance of an algorithm is effectively pro-
filed by this method, with greater area under the ROC
curve equating to superior performance.

Trial 2 used the basic word, or phrase-length 1, dictio-
nary to provide an input source for an ELM. This repre-
sents the most simplistic application of the novel feature
introduced in this paper. After training, each incoming
trace was assessed against the basic word dictionary,
with the counts of each window length used as the neural
network input, as shown in Table 2. This is similar to the
full feature used in Trial 4, and starts to take advantage
of the robustness inherently present in a full semantic
approach. By applying this method, even though only a
syntactic assessment, the decision engine is able to simul-
taneously consider the underlying syntax of different
length words. For this experiment, words of length 3 to 7
were allowed, matching the five inputs used for the full
feature in Trial 4. The lower limit of length 3 was selected
to avoid unduly restricting this trial by requiring process-
ing of the trivial lengths 1 and 2, with the upper limit
selected to limit the outlier-effect of longer words, which
are low-count but high-impact. ROC curves in this case
were also generated by varying the decision threshold.

Trial 3 uses the strong sequence recognition capability of
Hidden Markov models to capitalise on the seminal system
call approach proposed by Forrest [20]. Under this method,
a level of abstraction is introduced and the state transition
which produces system call patterns becomes viewable as a
stochastic process. As such, HMMs are able to predict this
state transition with a high level of accuracy. The system
parameters used in this experiment are shown below:

e N =2, with the state either being ‘Normal’ or
‘Anomalous’.
M = {all allowable system calls}.
T as specified by the individual experiment itera-
tions; equivalent to STIDE window length.
In applying HMMs for this experiment, the expedited training
schemes and general methodology outlined in [23], [27], [29],
[50] were used to craft the final implementation. ROC curves
for this experiment were plotted by using the Viterbi algorithm
[51] to predict the most likely state path through a sequence of
observations, and plotting the resulting D and F for different
sequence lengths.

Trial 4 represents the full implementation of the pro-
posed semantic feature and decision methodology. In this
experiment, a wholly semantic approach was adopted by
using phrases of lengths 1 to 5. These phrases were
extracted from the training data and have the structure
shown in Table 1. Each element of the training data was
condensed into five normalised numeric values, represent-
ing the phrase occurrence counts at each of the specified
depths. The resulting feature vectors were then used to train
an ELM prior to testing on the validation and attack data. To
determine whether a new trace represents an attack or not, a
threshold was applied to the neural network output with a
classification being made in response to this assessment.
ROC curves were generated by varying the threshold and
plotting the resultant detection and false alarm rates.

5.4.2 Portability Testing Using the UNM Data Set

As discussed in Section 1, portability of an IDS is a challeng-
ing task. In order to generate high-quality results, signifi-
cant effort, time and resources must be invested in the
training process for each intrusion Detection system. Fur-
thermore, this training is very specific, particularly for host-
based systems, meaning that the training cost must be borne
again for each individual deployment.

To some extent, this problem cannot be mitigated
completely, as each host will have peculiarities and idio-
syncrasies which must be accounted for in order to
avoid unacceptably high false alarm rates. Indeed, the
same host used in a different role, such as a web server
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being recast as a file server, will have a vastly different
baseline. Notwithstanding the persistent nature of some
aspects of this problem, any reduction in training time
when redeploying IDS is a significant benefit, and highly
desirable for real-world applications.

As part of this paper’s research, the portability prob-
lem was considered and investigated. Whilst a large
range of metrics can be used to quantify performance in
pursuit of this aim, this research simply used detection
and false alarm rate performance to quantify the trans-
ference factor of each algorithm. Future research effort
could be valuably expended in optimising the transfer-
ence process.

A new data set was selected to evaluate the portability of
the various IDS methods explored in the first phase of
experimentation, namely the UNM corpus [52]. This data
set has been widely used in IDS research, and represents a
collection of synthetic and live traces for various operating
systems. Importantly, one of the operating systems is the
SunOS 4.1.1, or Solaris 1, system. This system is the precur-
sor to the OS used in the KDD98 experiment, and as such
this data set provides a viable candidate for portability test-
ing, with the similarity of the operating system allowing cer-
tain assumptions to be made about the commonality of
system calls and underlying structure.

The Solaris traces provided as part of the UNM data set
consist of 618 known normal traces, and eight different
attack traces. To evaluate the portability of the IDS algo-
rithms specified in Trials 1-4, the trained decision engines
were applied to this new data. False alarm rate was calcu-
lated using the known normal traces, and detection rate cal-
culated by using the attack traces. Whilst not a particularly
large data sample, the subset of the UNM data set used is
sufficient to compare performance between the methodolo-
gies, with the semantic feature clearly outperforming the
other methods. No allowance was made for different system
calls in the second data set, which accounts for much of the
reduced performance seen across all methods. Notwith-
standing this, the semantic feature clearly provides a credi-
ble capability, and future research will focus on smoothing
the transference process further.

5.5 Evaluation against Modern Attacks Using the
ADFA Linux Data Set

To provide a modern perspective for performance evalua-
tion, the ADFA-LD was created. This data set uses a fully
patched Ubuntu Linux 11.04 [53] installation as the host OS.
Apache Version 2.2.17 [54] running PHP Version 5.3.5 [55]
were loaded to provide for web based attacks, with Tiki-
Wiki Version 8.1 [56] installed to provide a web-application
attack vector through the known vulnerability described in
[57]. This configuration represents a realistic modern target
with small security flaws which can be exploited incremen-
tally to provide a full system compromise.

The system was attacked by a certified penetration
tester [58] wusing current best-practice methodology.
Attacks used included web-based exploitation, simulated
social engineering, poisoned executables, remotely trig-
gered vulnerabilities, remote password brute force
attacks and system manipulation wusing the C100

webshell. Payloads included variably encoded command
shell and Meterpreter [59] shellcode delivered using a
wide range of vectors. Full details of the new data set
have been submitted for publication and are under
review at the time of writing, but are available in the
meantime by contacting the authors. The ADFA-LD con-
sists of 833 normal traces for training the IDS, 4,373 nor-
mal traces for evaluating FAR and 60 different attack
sets, each consisting of multiple traces.

6 RESULTS

6.1 Core Performance Using KDD98 and ADFA-LD

The first research question investigated centred on the
innate performance of the new semantic algorithm. Two
data sets were used for this evaluation, namely the
KDD98 data set and the new ADFA-LD. Whilst undeni-
ably dated, the KDD98 data set represents a benchmark
within the field and is still actively used by researchers,
for example [12], [13], [14]. Results were generated using
this data set to allow direct comparison with other
research, and whilst sub-optimal, use of a common data
set allows for independent verification of results. The
ADFA-LD, as discussed in Section 5.5, provides a mod-
ern challenge for the algorithm and gives a better indica-
tion of performance against contemporary attacks. Each
DE method was trained using the same set of normal
traces, with false alarm rates calculated by then process-
ing a separate set of normal traces and calculating the
number of alerts. The attack traces were then classified,
with detection rate calculated from the number of alerts
arising from this assessment.

No special consideration was given to selecting either
training data or validation data, with samples randomly
chosen. All traces represent the system calls from a single
process running on the host over the selected time interval.
Fig. 1 shows the ROC curves for each trial, with saturated
performance for the new semantic algorithm achieved with
100 percent DR for 0.6 percent FAR, which is significantly
better than the results produced by competing algorithms.

The ADFA-LD is a much harder data set, and absolute
performance was significantly worse for all algorithms
when compared to the accuracy produced classifying
legacy KDD98 data. ROC curves are shown in Fig. 2.
Despite the worse overall performance, the performance
of the semantic based ELM is again clearly superior to
all other algorithms as it maximises the area under the
curve [49]. An additional DE, the single-state SVM, was
included in this trial to demonstrate that the observed
superior performance originates from the semantic fea-
ture itself, rather than the DE. This point is further rein-
forced by considering the performance of the ELM with
a semantic feature and without the semantic feature,
shown in Fig. 1, with a clear performance benefit demon-
strated when the new semantic feature is used.

6.2 Portability and Robustness of the Algorithm

The second key research question addressed by this paper is
the comparative resilience of the new algorithm to changes
in the baseline, coupled with the portability of the semantic
dictionaries between similar operating systems. This
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Fig. 2. ROC curves for assorted methodologies when assessing the
ADFA-LD.

research question was investigated by taking systems
trained using KDD98 data and using them to classify the
UNM data set. Only a section of the whole data set is appro-
priate for this phase, namely those traces which belong to
the same operating system type, but of a different version.

Six hundred and eighteen normal traces from this data
set were used for validation and false alarm rate calculation,
with the eight attack traces used to calculate detection rate.
The key difference between the UNM data set and the
KDD?98 data set is that the UNM traces are grouped by spe-
cific program, whilst the KDD98 traces reflect all activity on
a host at a given time. As such, the UNM data set can be
viewed as more specific, whilst the KDD98 data set contrib-
utes much greater breadth to the assessment problem.

The ROC curves for this phase of experimentation are
shown in Fig. 3. Trial 1, the standard STIDE approach, was
not applied to the UNM data as the different system call
sets between the two versions of the operating system
unduly disadvantages this method, producing low detec-
tion rate and high false alarm rates.

7 DiISCUSSION

These results clearly show the superiority of a semantic
approach, with comparative results from other algorithms
show in Table 3. The ROC curve for the full semantic feature
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Fig. 3. ROC curves when assessing the UNM data set after training on
the KDD98 data set.

on KDD98 is excellent, and is functionally very close to a
theoretically perfect system. The benefit of using multiple
length syntactic features has also being clearly demon-
strated in both Trials 2 and 3. By simultaneously consider-
ing five different window lengths, the accuracy of the ELM
is close to that of the full semantic feature. Hidden Markov
model performance using a syntactic feature is also good,
performing better than many of the implementations
detailed in Table 3.

The STIDE method used in Trial 1 did not perform as
well as the other algorithms, which is initially surprising.
This feature represents the seminal work in system call
based IDS [20], and performs well in many applications;
the key difference in this set of experiments is that the
STIDE algorithm is required to process at a full kernel

TABLE 3
Comparison between Contemporary IDS Algorithms

. Detection Rate False Alarm Rate

Algorithm [%] [%]
Data mining of audit files [60] 80.2 Not cited
Multivariate statistical analysis of audit data [33] 90 40
HMM and entropy analysis of system calls [61] 91.7 10.0
System call n-gram sliding window (assorted decision engines) [46] 95.3 < DR < 96.9 ~ 6.0
RBF ANN analysing system calls [31] 96 mean 5.4 mean
MLP ANN on subset of KDD98 [62] 99.2 4.94
SVM on subset of KDD98 [62] 99.6 4.17
kNN with Smooth Binary Weighted RBF [63] 96.3 6.2
Rough Set Clustering [64] 95.9 7.2
ELM using original semantic feature proposed in this paper 100.0 0.6
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level, rather than being allowed to evaluate individual
programs. Trial 1 represents a real-world application of
the STIDE concept, where host-based intrusion detection
systems are expected to monitor all programs concur-
rently. STIDE can be applied effectively on a program
level, but as demonstrated in these experiments does not
translate well to a full-system deployment.

This algorithm was not applied in the second phase of
experimentation as it is extremely sensitive to the initial sys-
tem call databases, which are extracted from the training
data. As there is a non-trivial difference in the system call
sets between Solaris 1 and Solaris 4, STIDE did not perform
well and does not demonstrate portability. Notwithstanding
this, STIDE is an effective IDS solution for single programs,
and represents the earliest work in this field. It is a powerful
algorithm, simply implemented, and produces good results
within its design constraints. The purpose of including it in
these trials was to demonstrate the significant difference
between the problem of monitoring a single program, and
monitoring the kernel as a single entity.

The portability of the full semantic feature was demon-
strated during the second phase of trials. As can be seen
from Fig. 3, this feature performed much better than either
of the other two alternatives. By way of a broader compari-
son, the snapshot of contemporary algorithms included in
Table 3 shows that all three trials used in this second phase
perform much better than other approaches when in their
primary training environment, in this case the KDD98 data
set (see Fig. 1).

Despite this clearly superior performance of the new
method, the usable data in the UNM data set was not
substantial enough to draw definitive and permanent
conclusions. With only 618 normal traces for validation
and eight attack traces, these results should be viewed
as an indication of potential only. Regardless, there is a
clear performance difference between the various algo-
rithms, with the semantic feature performing far better
than its competitors. Further research is required to
extend this initial finding, and to improve the transfer-
ence process.

Portability between versions of the same OS, such as
tested here, is a challenging task. Changes in system
architecture from version to version result in a myriad of
small differences, with a pronounced cumulative effect.
In the applications considered in this paper, these differ-
ences manifest in a different set of systems calls, which
is in effect, a different set of terminating semantic units,
7. In turn, this has the effect of forcing the transferred
algorithm to function with only a subset of the potential
system baseline. This factor is responsible for the signifi-
cantly worse performance when assessing the UNM data
set, and is not easily avoided.

Capitalising on the portability of the semantic feature is
not an inherently simple task, but has many applications
throughout the computer security sphere. On one hand, the
generalisability of the semantic rules mean that much more
offline training can be conducted, and in a more centralised
manner when a good initial condition can be generated
across different environments. This in turn means that the
tuning process required at each host is less intensive, allow-
ing for more expeditious deployment and more accurate

results. Additionally, the use of a central semantic dictio-
nary facilitates collaboration between distributed HIDS, as
this approach provides a common and intuitive communi-
cation protocol.

Furthermore, a semantic approach greatly degrades the
ability of an attacker to bypass security systems. Any such
attempt has a clear semantic pattern, as shown by the
results presented in this paper, and will thus be thwarted
by the guardian IDS. This concept can be extended to
include misuse detection, efficiency profiling, and network-
centric analysis.

By reducing the false alarm rate to such a low level, this
new feature elevates anomaly-based IDS to the accuracy
levels normally only seen in signature-based IDS. Impor-
tantly, however, this new feature presents a true zero-day
attack detection capability. As an anomaly-based HIDS,
each attack which this system encounters is, effectively, a
new attack. Hence, true protection is provided against pre-
viously unseen attacks, without the high false alarm rates
traditionally associated with the anomaly-based approach.

The ELM neural network performed well throughout the
experiments, as expected. This decision engine is, in effect,
a standard MLP, which, along with other neural network
types, has been extensively applied to IDS as seen in
research such as [30], [31], [65], [66], [67]. Whist an innova-
tion in its own field, the ELM is not a significantly different
engine within the IDS context; notwithstanding this, the
rapid training of this decision engine coupled with the
robustness of the semantic feature opens up areas such as
dynamically updating baselines as a viable possibility. The
processing overhead of the ELM is offset to some extent by
the robustness of the semantic feature, reducing re-training
events to the bare minimum and consequently reducing the
drain on the host system.

8 CONCLUSION

This paper has clearly demonstrated the superior results
possible when using a full semantic analysis of system calls
to derive a new feature. The ELM methodology has been
verified as applicable to the IDS problem, with potential
synergies uncovered due to the rapidity of decision engine
training possible using this scheme. Portability between dif-
ferent versions of the same operating system has been inves-
tigated, and promising results suggest that the semantic
approach introduced by this paper is extremely applicable
to the task.

Public data sets were used for evaluation of the new algo-
rithm proposed in this paper in order to allow comparison
with existing approaches. Given the strong results obtained,
further development will be conducted using contemporary
data generated specifically for this purpose, in order to fully
profile the strengths and weaknesses of the semantic
approach and the transference process. The data generated
during this experimentation will be made publicly available
in due course, with the first portion already available as the
ADFA-LD.

Future research will investigate the transference process
further, along with attempts to reduce the training overhead
and enhance the inherent resilience of the new semantic fea-
ture to mimicry attacks.
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