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A Stabilizing Model Predictive Controller for Voltage Regulation
of a DC/DC Boost Converter

Seok-Kyoon Kim, Chang Reung Park, Jung-Su Kim, and Young Il Lee

Abstract— This brief proposes a cascade voltage control strat-
egy for the dc/dc converter utilizing a model predictive control
(MPC) in the inner loop. The proposed MPC minimizes a cost
function at each time step in the receding horizon manner and
the corresponding optimal solution is obtained from a predefined
function not relying on a numeric algorithm. It is shown that
the MPC makes the capacitor voltage and the inductor current
globally convergent in the presence of input constraints. State
constraints also can be taken into account in the proposed MPC.
Following the conventional cascade voltage control scheme, a
Proportional-Integral (PI) controller is adopted in the outer loop.
The experimental results show that the closed-loop performance
is superior to the classical cascade PI control scheme.

Index Terms— Bilinear model, cascade control, dc/dc converter,
global stability, input/state constraints, model predictive control
(MPC).

I. INTRODUCTION

W ITH the advent of the smart grid and the renewable
energy era, electronic power converters can be used

extensively in various types of voltage regulation, such as solar
photovoltaic systems, personal computers, computer peripher-
als, and adapters of consumer electronic devices to provide
dc voltages by the switching action [2], [3]. Therefore, it is
necessary to design the switching action logic such that the
capacitor voltage closely follows its reference. By averaging
the two different models corresponding to the cases in which
a switch is ON and OFF, the power converter dynamics can be
expressed as a bilinear model with a continuous control input.
In addition, because the duty ratio for the switching action is
treated as the control input, it is inherently constrained in a
set determined by the minimum and maximum duty ratio.

Conventionally, because of the simplicity of the controller
structure, the Proportional-Integral (PI) controllers [3]–[6]
have been popular for stabilizing power converters under the
cascade control strategy, which has the inner-loop current con-
troller and the outer-loop voltage controller. However, the non-
linearity of the converter limits the closed-loop performance
because the controllers were developed by using a linearized
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model of the converter. In addition, they did not consider input
constraints. In [7] and [8], a deadbeat controller and a predic-
tive controller were devised for the inner loop to enhance the
closed-loop performance. They linearized the nonlinear con-
verter model and did not take input constraints into account.
In order to handle the nonlinearity of the dc/dc converter,
a sliding model controller [9]–[14] for the inner loop were
presented without considering the physical input constraints.

Recently, there have been several nonlinear controllers
[15]–[18], optimization-based linear feedback controllers
[19]–[23] without use of the extra outer loop. Sliding mode
controllers [15], [16] and feedback linearization controllers
[17], [18] were developed with stability analysis. They also,
however, did not consider input constraints and did not
optimize the closed-loop performance. On the other hand,
in [19]–[23], the stabilization of a nonlinear converter was
attempted by using linear state feedback controllers. These
controllers optimize a performance index under the linear
matrix inequality constraints on the control input. However,
they only ensure local asymptotic stability.

Model predictive control (MPC) is a receding horizon
method in which the control input is calculated through an
optimization procedure over finite numbers of future time steps
at every time step. Consequently, physical constraints on the
input and/or state variables can be handled effectively. Various
MPC schemes have been developed to stabilize the power con-
verters [24]–[30], taking the physical constraints into account.
In [24], an MPC scheme was proposed without the use of
pulsewidth modulation (PWM) techniques. With cost hori-
zon 1, this MPC scheme optimizes a cost function including
the error states on the finite set of all possible controls via the
exhaustive search method. Although this control system is very
simple to implement, the analysis of stability is not provided,
and a high sampling frequency is required. The nonlinear
MPCs [25]–[27] perform numerical online optimization with
cost horizon 1 or 2, guaranteeing local asymptotic stability.
In particular, the cost function includes the error states and the
control input, and the corresponding solution was given by a
numerical method, such as dual simplex linear programming,
sequential quadratic programming, or the nonlinear extended
predictive self-adaptive control algorithm [31]. On the other
hand, explicit MPC schemes [28]–[30] were suggested using
the multiparametric programming method proposed in [32]
and [33]. Since the explicit MPC is given in the form of a
lookup table, which is the analytical solution of the associated
optimization problem, it allows to compute the MPC without
any online optimization and makes it possible for the MPC
to be used in electrical applications. However, since the
explicit MPC is computed using the linearized or piecewise
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Fig. 1. Boost dc/dc converter.

affine models [28]–[30], [34], the explicit MPC may not
work properly if there are model or parameters uncertainties.
Note that these uncertainties are inevitable in practice and
that, in particular, parameters variations can be severe in
power converter models because of uncertainties in circuit
elements. Hence, in order to control power converters modeled
as bilinear systems, it would be nice to devise a tracking
MPC scheme, which can be computed without any demanding
online computation and provides a zero steady-state error
systematically even in presence of parameter variations.

Under the classical cascade voltage control strategy, this
brief proposes another type of MPC for the inner-loop current
controller. The proposed MPC optimizes the cost function
comprising the sum of the error states and deviation of
the control based on the nonlinear converter model and the
corresponding optimal solution is given explicitly without any
online numerical optimization. It is proven that the capacitor
voltage and the inductor current globally converge to their
references in the presence of input constraints. In addition,
it is seen that state constraints can be taken into account
by the proposed MPC. Following the conventional cascade
voltage control strategy, a PI controller is utilized in the outer
loop. It is experimentally demonstrated that the proposed MPC
provides better closed-loop performance and robustness than
the classical cascade PI control scheme.

II. DC/DC BOOST CONVERTER MODEL

In this brief, a dc/dc boost converter is analyzed. The circuit
topology is shown in [35, Fig. 1].

Here, the PWM of the switching action is considered, i.e.,
if the duty ratio is D ∈ [0, 1], the switch turns on for a period
of DT and turns off for a period of (1 − D)T , where T is
the PWM period. Therefore, the averaged model is obtained
as follows:

ẋ(t) = (u(t)Ac,1 + (1 − u(t))Ac,2)x(t)

+(u(t)Bc,1 + (1 − u(t))Bc,2)v (1)

where u(t) := D ∈ [Dmin, Dmax]

x(t) :=
[

iL(t)
vc(t)

]T

, v :=
[

vg

vD

]

Ac,1 :=
[ −RON/L 0

0 − 1/RC

]

Ac,2 :=
[

0 − 1/L
1/C − 1/RC

]

Fig. 2. Entire control system.

Bc,1 :=
[

1/L 0
0 0

]
, Bc,2 :=

[
1/L − 1/L

0 0

]

where R represents a load resistance, RON is the ON-resistance
of MOSFET Q1, and vD is the diode voltage. Note that Dmin
and Dmax could be 0 and 1, respectively. However, these
constants can be utilized as design parameters to adjust the
conservativeness of the stability condition in later derivations.
For simplicity, define

Bc := (Bc,1 − Bc,2)v, Gc := Ac,1 − Ac,2.

Then, the state equation (1) can be compactly written as

ẋ(t) = Ac,2x(t) + (Bc + Gcx(t))u(t) + Bc,2v. (2)

A discrete-time version of the continuous-time system (2) can
be obtained via the forward Euler approximation to yield

x(k + 1) = A2x(k) + (B + Gx(k))u(k) + B2v (3)

where

A2 := h Ac,2 + I, B := h Bc, G := hGc, B2 := h Bc,2 (4)

and h is the sampling period. Many types of dc/dc convert-
ers, such as buck, boost, buck-boost, and flyback (including
multiswitch converters) can be described by a bilinear state
equation, such as (1) [19], [35], [36]. For the rest of this
brief, we devise an MPC for a boost converter. However,
this controller design methodology can also be used for other
dc/dc converters. Based on this discrete-time model and with
a given current reference rI , an MPC strategy is designed to
drive the inductor current to its reference rI in the presence
of input constraints.

III. STABILIZING MPC DESIGN FOR INNER LOOP

In this section, an MPC scheme, which requires a very
simple online optimization procedure, is presented for the
inner-loop current controller in the cascade control system
(Fig. 2). The objective of the inner-loop current controller is
to track its current reference signal rI . Thus, an MPC scheme
is designed for the inner loop so that

lim
k→∞ iL(k) = rI . (5)

First, a steady-state condition is derived in Section III-A.
In Section III-B, we consider a cost function containing terms
for the error states and deviation of the input. An online
solution is derived in the presence of input constraints without
any use of numerical methods. Section III-C proves that the
MPC makes the capacitor voltage and inductor current globally
convergent. Section III-D presents an MPC solution in the
presence of state constraints.
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A. Steady-State Condition

In this section, a steady-state condition for the inner-loop
controller is presented for a given inductor current refer-
ence, rI . For this purpose, let x0 := [

x0
1 x0

2

]T and u0 be
the steady state of state x(k) and input u(k) satisfying

x0 = A2x0 + (B + Gx0)u0 + B2v (6)

x0
1 = rI , u0 ∈ [Dmin, Dmax] (7)

where x0
1 is the steady state of the inductor current. Then,

inserting x0
1 = rI into (6) and through algebraic calculations,

steady state x0 and corresponding steady-state control u0 are
calculated as

x0(r) =
[

x0
1(rI )

x0
2(rI )

]
=

[
rI

−α1(rI )±
√

α1(rI )2−4α0(rI )α2
2α2

]
(8)

u0(rI ) = (1 − a2,1)rI − a2,2x0
2 (rI ) − b2,1vg − b2,2vD

b1 + g1rI + g2x0
2(rI )

(9)

where

α0(rI ) := −(a2,3rI + b2,3vg + b2,4vD)(b1 + g1rI )

−((1 − a2,1)rI − b2,1vg − b2,2vD)(b2 + g3rI )

α1(rI ) := (b1 + g1rI )(1 − a2,4)

−(a2,3rI + b2,3vg + b2,4vD)g2 + a2,2(b2 + g3rI )

−((1 − a2,1)rI − b2,1vg − b2,2vD)g4

α2 := ((1 − a2,4)g2 + a2,2g4)

a2,i , b j , b2,i , gi , i = 1, 2, 3, 4, j = 1, 2, are the elements of
matrices A2, B , B2, and G. Hence, it turns out that inductor
current reference rI must be selected so that the capacitor
voltage steady state, x0

2(rI ), is real and the steady-state control,
u0(rI ), in (9) belongs to set [Dmin, Dmax] in order to make
the control objective meaningful. For the rest of this brief,
the inductor current reference rI is called admissible when it
meets these two conditions.

In view of (8), there can be two possible solutions for
the steady state of the inductor current x0

2 (rI ) for a given
reference, rI . When there are two solutions, one of the two
is chosen such that the corresponding steady-state control,
u0(rI ), belongs to set [Dmin, Dmax].
B. MPC Design

This section presents an MPC method for a discrete-time
system (3). For this purpose, define the error state as ex (k) :=
x(k) − x0(rI ). Then, subtracting (6) from (3), the following
error dynamics is obtained:

ex(k + 1) = A2ex(k) + Gex (k)u(k) + T ũ(k) (10)

where T := B + Gx0(rI ) and ũ(k) := u(k) − u0(rI ). We
construct the cost function in terms of the error state and
deviation of the input from u0(r) ũ(k) := u(k) − u0(rI ) as
follows:

J (ex (k), u(k)) := eT
x (k + 1)Pcex(k + 1) + ρũ2(k) (11)

where Pc = PT
c > 0 and ρ ≥ 0 are the design parameters.

Now consider the following optimization problem:
min

u(k)∈[Dmin,Dmax]
J (ex (k), u(k)) ∀k ≥ 0. (12)

It is observed that the optimizer of this optimization problem
at time k minimizes the one-step future error state as well as
deviation of the input while satisfying the input constraint. In
order to derive the optimizer of the optimization problem (12),
rewrite the cost function (11) as

J (ex (k), u(k)) = c2(ex(k))u(k)2 + c1(ex(k))u(k)

+ c0(ex (k)) + ρũ2(k) (13)

where ci (ex (k)), i = 0, 1, 2, are coefficients of u(k) given by

c0(ex(k)) := (A2ex(k) − T u0(rI ))
T Pc(A2ex(k) − T u0(rI ))

c1(ex(k)) := 2(T + Gex (k))T Pc(A2ex (k) − T u0(rI ))

c2(ex(k)) := (T + Gex (k))T Pc(T + Gex(k)).

Let u∗
uc(ex (k)) be the unconstrained solution of the optimiza-

tion problem (12). Then, the solution of (13) can be obtained
by solving (∂ J (ex(k), u(k)))/(∂u(k)) = 0

u∗
uc(ex(k)) = −c1(ex (k)) + 2ρu0(rI )

2(c2(ex(k)) + ρ)
. (14)

Hence, it is obvious that optimizer u∗(ex(k)) of the constrained
problem (12) is the same as u∗

uc(ex (k)) if Dmin ≤ u∗
uc(ex (k)) ≤

Dmax. On the contrary, if u∗
uc(ex(k)) < Dmin, the constrained

optimizer u∗(ex (k)) is Dmin, and if u∗
uc(ex (k)) > Dmax, the

constrained optimizer u∗(ex(k)) is Dmax. In conclusion, the
MPC algorithm u∗(ex(k)) is established by

u∗(ex (k)) =

⎧⎪⎪⎨
⎪⎪⎩

u∗
uc(ex (k))(of (14)),

if Dmin ≤ u∗
uc(ex(k)) ≤ Dmax

Dmin, if u∗
uc(ex (k)) < Dmin

Dmax, if u∗
uc(ex(k)) > Dmax.

(15)

C. Stability Analysis

In this section, it will be shown that the MPC given as
(15) makes the error state globally convergent provided that
the matrix Pc of the cost function (11) is properly chosen.
Here, we assume that the current reference rI is admissible
and consider the cost function (11) at time k. The closed-loop
stability can be obtained in two steps. First, the monotonicity
of J (ex(k), u(k)) will be checked under the use of the steady-
state input, i.e., u(k) = u0(rI ). Then, the monotonicity of
J (ex (k), u(k)) under the use of the MPC (15) can be obtained
in comparison with the case of u(k) = u0(rI ). To this end, for
a given error state ex(k) generated by ex(k − 1) and u(k − 1),
let e0

x (k + 1) and e∗
x(k + 1) represent the error states in the

next time step obtained by the use of the steady-state input
u(k) = u0(rI ) and the MPC u(k) = u∗(ex (k)), respectively.
With these notations, write J (ex(k), u0(rI )) as

J (ex (k), u0(rI )) = e0
x (k + 1)T Pce0

x(k + 1)

= eT
x (k)�T (u0(rI ))Pc�(u0(rI ))ex (k) (16)

for all k, where �(u0(rI )) := A2 + Gu0(rI ). Considering the
difference J (ex (k), u0(r)) − J (ex (k − 1), u(k − 1)), it is easy
to see that the following inequality:

�T (u0(rI ))Pc�(u0(rI )) − Pc < 0 (17)
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ensures that

J (ex(k), u0(r))− J (ex(k − 1), u(k − 1)) =
−eT

x (k)Qcex (k) − ρũ2(k − 1) < 0 ∀k (18)

where Qc := Pc − �T (u0(rI ))Pc�(u0(rI ))(> 0). From the
optimality of the MPC (15) with respect to the problem (12),
we have

J (ex(k), u∗(ex (k))) ≤ J (ex(k), u0(rI )). (19)

Thus, it follows from (18) and (19) that

J (ex(k), u∗(ex(k))) − J (ex (k − 1), u(k − 1)) ≤
−eT

x (k)Qcex (k) − ρũ2(k − 1) < 0 ∀k (20)

provided that the matrix Pc meets the inequality (17). Together
with this result and the positive definiteness of the cost
function J (ex(k), u(k)) in terms of ex(k) and ũ(k), it is
concluded that

lim
k→∞ ex(k) = 0 ∀ex(0) 
= 0. (21)

This analysis is summarized as Theorem 1.
Theorem 1: Suppose that matrix Pc of the cost function

(11) is chosen to be a solution of (17). Then, the proposed
MPC (15) ensures the property (21). ♦

Note that, summing up both sides of the inequality (20)
from k = 1 to ∞, we have

J (ex(k), u(k))

≥
∞∑

i=0

(
eT

x (k + 1 + i)Qcex (k + 1 + i) + ρũ2(k + i)

)
.

(22)

It implies that the proposed method actually minimizes the
upper bound on the infinite horizon cost index in receding
horizon manner as it was done in the well known MPC
method [37]. It can be shown that matrix �(u0(rI )) becomes
stable for short enough time. It means that this sampling time
ensures the solvability of the inequality (17) in terms of Pc.
Thus, with this sampling time, if matrix Pc is chosen for the
MPC to satisfy (17), the result of Theorem 1 is guaranteed.
The inequality (17) can be equivalently rewritten, using the
Shur complement [38], as follows:[

Pc Pc�(u0(rI ))

�T (u0(rI ))Pc Pc

]
> 0. (23)

Note that inequality (23) is affine in terms of u0(r). Thus, it
is easy to see that a solution of[

Pc Pc�(Dmin)

�T (Dmin)Pc Pc

]
> 0

[
Pc Pc�(Dmax)

�T (Dmax)Pc Pc

]
> 0 (24)

satisfies inequality (23) for any admissible rI . Therefore, the
result of Theorem 1 is also valid if matrix Pc is chosen to
satisfy the two inequalities in (24). There might exist many
solutions to the two inequalities in (24). For example, matrix
Pc can be selected with the minimum trace as long as Pc > γ I
for some γ > 0.

D. Use of State Constraints

This section describes how state constraints can be handled
in the proposed MPC method. Consider state constraints
given by

i L ≤ iL(k) ≤ ī L , vc ≤ vc(k) ≤ v̄c ∀k. (25)

Then, the optimization problem (12) should be solved under
additional constraints that the predicted state x(k + 1) =
[ iL(k + 1) vc(k + 1) ]T satisfies the state constraints (25).
Based on the state equation (3), the constraint (25) can be
applied to the predicted state

x(k + 1) = A2x(k) + (B + Gx(k))u(k) + B2v

to yield the following constraints on input u(k):
ciL

(k) ≤ u(k) ≤ c̄iL (k) ∀k (26)

cvc
(k) ≤ u(k) ≤ c̄vc(k) ∀k (27)

where ciL
(k), c̄iL (k), cvc

(k), and c̄vc(k) can be obtained by
manipulating the conditions i L ≤ iL(k + 1) ≤ ī L and vc ≤
vc(k + 1) ≤ v̄c. Including these constraints (26) and (27), the
MPC problem (12) can be modified as

min
u(k)∈[D′

min(k),D′
max(k)]

J (ex (k), u(k)) ∀k ≥ 0 (28)

where

D′
min(k) := max{Dmin, ciL

(k), cvc
(k)}

D′
max(k) := min{Dmax, c̄iL (k)c̄vc(k)}.

The solution of (28) is obtained through the same way as
Section III-B

u∗(ex (k)) =

⎧⎪⎪⎨
⎪⎪⎩

u∗
uc(ex(k))(of (14)),

if D′
min(k) ≤ u∗

uc(ex (k)) ≤ D′
max(k)

D′
min(k), if u∗

uc(ex (k)) < D′
min(k)

D′
max(k), if u∗

uc(ex (k)) > D′
max(k).

(29)

Note that the constrained optimization problem (28) is fea-
sible when the set [D′

min(k), D′
max(k)] := [Dmin, Dmax] ∩

[ciL
(k), c̄iL (k)] ∩ [cvc

(k), c̄vc(k)] is not empty.

Remark 1: The property of Theorem 1 cannot be applied
to MPC (29) since the use of steady-state input u0(rI ) does
not guarantee that the state at the next time step satisfies the
state constraint (25). In order to avoid this problem, consider
another type of state constraint defined as

eT
x (k)Pcex (k) = (x(k) − x0(rI ))

T Pc(x(k) − x0(rI )) ≤ c (30)

where c is the adjustable constant. It is easy to see that the
set

�(Pc, c) := {
ex | eT

x Pcex ≤ c
}

is invariant with respect to the steady-state input u(k) = u0(rI )
for any c > 0 provided that matrix Pc of the cost function is
chosen to satisfy the inequality (17). Taking the state constraint
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Fig. 3. Hardware configuration.

Fig. 4. Voltage tracking performance and corresponding load current behavior
with the reference transition from 67 to 100 V.

(30) into account, we modify the optimization problem (12)
as follows:

min
u(k)∈[Dmin,Dmax]

J (ex(k), u(k))

subject to ex(k + 1) ∈ �(Pc, c∗) ∀k ≥ 0 (31)

where the positive constant c∗ is properly chosen by consider-
ing allowable state ranges. Note that the constraint ex (k +1) ∈
�(Pc, c∗) can be written as

eT
x (k + 1)Pcex (k + 1) = J (ex(k), u(k)) − ρũ2(k)

= c2(ex(k))u(k)2 + c1(ex(k))u(k)

+c0(ex(k)) ≤ c∗

where c2(ex (k)) > 0, ∀k. Let u(k) and ū(k) be the roots
of the equation eT

x (k + 1)Pcex (k + 1) = c2(ex (k))u(k)2 +
c1(ex (k))u(k) + c0(ex(k)) = 0 where u(k) ≤ ū(k). Then, the
solution of MPC (29) can be used after redefining D′

min(k)
and D′

max(k) as D′
min(k) = max{Dmin, u(k)} and D′

max(k) =
min{Dmax, ū(k)}, respectively. From the invariance of the set
�(Pc, c∗), the optimization problem (31) remains feasible for
all k > 0 and the property of Theorem holds if the optimization
problem (31) is feasible at k = 0. The state constraint of (30),
however, is centered at x0(rI ) and it could be too conservative
to cover the region defined as (25). ♦

IV. VOLTAGE CONTROLLER DESIGN IN OUTER LOOP

This section presents a guideline for choosing PI gains of
the outer-loop voltage control. To this end, suppose that the
inner-loop control system with the MPC is sufficiently fast so

Fig. 5. Behavior of control input after the reference transition over 120 ms.

Fig. 6. Voltage tracking performance and corresponding load current behavior
with the reference r = 100 V (magnified) with the state constraint.

that it can be assumed that

iL(k) ≈ rI (k) (32)

where rI (k) is a slowly time-varying signal. Since the inner-
loop MPC (15) is a deadbeat-type controller, it is reasonable
to assume that the inner loop is much faster than the outer
loop. In addition, this kind of assumption is also used in [39]
and [40]. Let signal rI (k) be the output of the outer-loop
PI controller as follows:

rI (k) = kP(r − vc(k)) + kI

k∑
j=0

(r − vc( j)) ∀k (33)

where r denotes a reference for vc(k) such that there exists an
admissible inductor current reference rI satisfying r = x0

2 (rI ).
Then, through algebraic manipulations with the assumption
(32), it follows that

evc(k + 2) + η1(kP, kI )evc(k + 1) + η0(kP)evc(k) = 0 ∀k

(34)

where

evc(k) := r − vc(k)

η1(kP , kI ) := 1

C
(kP + kI ) + 1

RC
− 2

η0(kP) := 1 − 1

C

(
1

R
+ kP

)
.
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Fig. 7. Voltage tracking performance and corresponding load current behavior
with the reference r = 100 V (magnified) without the state constraint.

Fig. 8. Voltage tracking performance and corresponding load current behavior
with the reference r = 120 V.

Fig. 9. Voltage regulation performance and corresponding load current under
input voltage change.

Since it is possible to arbitrarily assign the pole of the
characteristic equation (34) by the PI gains, the capacitor
voltage regulation of limk→∞ vc(k) = r can be achieved
through the outer loop PI controller. Note that this analysis
is justified if the inner-loop control system is sufficiently fast
such that signal c(k) generated by the outer-loop PI controller
can be treated as a constant.

V. EXPERIMENTAL RESULT

In this section, we consider a 3-kW boost converter shown
in Fig. 1 in which the switch is the IGBT (IKW50N60T) and

Fig. 10. Voltage regulation performance and corresponding load current
under load resistance change from 75 to 37.5 �.

Fig. 11. Tracking performance of the proposed MPC.

Fig. 12. Tracking performance of the classical cascade PI control scheme.

the parameters are given by

R = 50 �, C = 1880 μF, L = 3 mH

RON = 0.08 �, vg = 67 V, vD = 0.67 V.

For PWM, the switching frequency is chosen as 20 kHz.
The MPC algorithm (29) is implemented by using the digital
signal processor TMS320F28335 with a sampling time of
h = 0.1 ms. The inductor current and capacitor voltage
are measured by the CT-type Hall sensor and the PT-type
voltage sensor, respectively. The minimum and maximum duty
cycles are set to be Dmin = 0.2 and Dmax = 0.95 so that
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[Dmin, Dmax] is the largest interval contained in the interval
[0, 1], ensuring the existence of Pc satisfying inequality (24).
If the interval of [Dmin, Dmax] were set to be small, the closed-
loop performance would be degraded. On the basis of matrices
�(Dmin) and �(Dmax) calculated by these parameters, matrix
Pc satisfying the inequality (24) is chosen as

Pc =
[

0.0016 0
0 0.001

]

in such a way that Pc has the minimum trace as long as Pc >
0.001I . The control weight ρ of the cost function (11) is set to
be 0.01. The admissible ranges of the steady-state control and
the capacitor voltage reference with these parameters found to
be [1.4, 250] and the corresponding capacitor voltage range is
[84, 950]. For the outer loop, the PI gains are tuned as

kout,P = 0.1 kout,I = 3

so that the all poles of the characteristic equation (34) are
within the unit circle and the capacitor voltage response is
as fast as possible while there is no overshoot. Fig. 3 shows
the hardware configuration for this experiment. The following
state constraints are used in the design of the proposed
MPC:

0 A ≤ iL(k) ≤ 5 A, 0 V ≤ vc(k) ≤ 150 V ∀k. (35)

Figs. 4 and 5 show that the MPC successfully forces the
capacitor voltage to track the reference voltage r = 100 V
while satisfying the input constraint when the initial capacitor
voltage is 67 V.

Fig. 6 magnifies the transition of Fig. 4. Fig. 7 shows that the
state constraint is violated when the MPC is designed without
the state constraint (35). It can be seen in Fig. 8 that the MPC
also provides a satisfactory voltage tracking performance when
the reference voltage is changed from 100 to 120 V. The next
experiments are carried out to show the regulation performance
when the input voltage and the load resistance is changed.
Figs. 9 and 10 show that the proposed MPC robustly regulates
the capacitor voltage despite the changes of the input voltage
(from 67 to 57 V) and load variations (from 75 to 37.5 �),
respectively.

Now, we compare the tracking performances of the pro-
posed MPC scheme with the classical cascade PI control
scheme. The outer-loop PI gains are chosen to be same
with the MPC, and the inner-loop PI gains are tuned to be
kin,P = 0.2, kin,I = 0 so that the capacitor voltage response
is as fast as possible, while there is no overshoot. Note that,
for fair comparison, the integrator gain of the inner loop is
set to be zero since the MPC does not include the integrator.
Figs. 11 and 12 show that the proposed MPC consider-
ably enhances the tracking performance as compared with
the classical one. It is observed that a higher propor-
tional gain kin,P = 0.22 makes the closed-loop system
unstable.

VI. CONCLUSION

On the basis of the classical cascade voltage control scheme,
utilizing a nonlinear dc/dc converter model, an MPC scheme is

proposed for the inner loop with closed-loop stability analysis.
The online solution of the MPC is given analytically by
minimizing a cost function without the use of numerical meth-
ods. Following the classical cascade voltage control scheme,
a PI controller is used in the outer loop. Finally, it is observed
that the closed-loop performance is considerably enhanced as
compared with the classical cascade PI control scheme through
the experiments.
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