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Abstract— Active learning techniques have gained popularity
to reduce human effort in labeling data instances for inducing a
classifier. When faced with large amounts of unlabeled data, such
algorithms automatically identify the exemplar and representa-
tive instances to be selected for manual annotation. More recently,
there have been attempts toward a batch mode form of active
learning, where a batch of data points is simultaneously selected
from an unlabeled set. Real-world applications require adaptive
approaches for batch selection in active learning, depending
on the complexity of the data stream in question. However,
the existing work in this field has primarily focused on static
or heuristic batch size selection. In this paper, we propose
two novel optimization-based frameworks for adaptive batch
mode active learning (BMAL), where the batch size as well
as the selection criteria are combined in a single formulation.
We exploit gradient-descent-based optimization strategies as well
as properties of submodular functions to derive the adaptive
BMAL algorithms. The solution procedures have the same com-
putational complexity as existing state-of-the-art static BMAL
techniques. Our empirical results on the widely used VidTIMIT
and the mobile biometric (MOBIO) data sets portray the efficacy
of the proposed frameworks and also certify the potential of these
approaches in being used for real-world biometric recognition
applications.

Index Terms— Batch mode active learning (BMAL), biometric
recognition, numerical optimization, submodular functions.

I. INTRODUCTION

THE rapid escalation of technology and the widespread
emergence of modern technological equipments have

resulted in the generation of humongous amounts of digital
data (in the form of images, videos, and text). This has
expanded the possibilities of solving real-world problems
using computational learning frameworks. However, while
gathering large amounts of digital data is cheap and easy,
annotating them with class labels (to train a classifier) is
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an expensive process in terms of time, labor, and human
expertise. This has paved the way for research in the field
of active learning. Active learning algorithms automatically
select the salient and promising instances from large quantities
of unlabeled data. This tremendously reduces the human
annotation effort as only a few examples, which are identified
by the algorithm, need to be labeled manually.

Conventional active learning techniques select only a single
data instance at a time for manual labeling and retrain the
classifier after every individual query. This results in frequent
model retraining; also, it utilizes only a single labeling oracle
at a time. With the advent of technologies like the Amazon
Mechanical Turk [1], it is now possible to leverage the intel-
ligence of multiple human users simultaneously in labeling
data instances to train a classification model. To this end, batch
mode active learning (BMAL) techniques have been proposed
in recent years. Such algorithms attempt to select a batch of
unlabeled data points simultaneously from an unlabeled set
instead of a single instance at a time. Sample applications
of such a scheme include content-based image retrieval [2],
medical image classification [3], and text classification [4].
BMAL algorithms are of paramount importance in applica-
tions involving video data. Modern video cameras have a
high frame rate, and consequently, the captured data have
high redundancy. Selecting batches of relevant frames from
a superfluous frame sequence in captured videos is therefore
a significant and valuable challenge.

An ideal BMAL system can be conceptualized as consisting
of two main steps: 1) deciding the batch size (the number
of image frames to be queried from a given unlabeled video
stream) and 2) selecting the most appropriate images from
the unlabeled video once the batch size has been determined.
Both these steps are critical in ensuring maximum generaliza-
tion capability of the learner with minimum human labeling
effort, which is the primary objective in any active learning
application. However, the existing few efforts on BMAL focus
only on the second step of identifying a criteria for selecting
informative batches of data samples and require the batch size
to be specified in advance by the user [5], [6]. In a real-
world application, deciding on the batch size (the number of
relevant instances in a data stream) in advance and without
any knowledge of the data stream being analyzed may not
lead to a good generalization accuracy. The batch size should
depend on the quality and complexity of the samples in the
unlabeled stream and also on the level of confidence of the
current classifier on the unlabeled data instances. In other
words, there is a strong need for dynamic batch selection in
BMAL algorithms.
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In this paper, we propose two novel BMAL algorithms
that adaptively select samples for manual annotation based
on the complexity of the data stream being analyzed and the
cost of labeling each unlabeled data sample. We develop one
formulation for dynamic batch selection that directly optimizes
the performance of the updated learner (the learner trained on
the current training set together with the newly selected batch).
The batch selection problem is solved using the stochastic
gradient-descent (SGD) algorithm to simultaneously decide
the batch size and identify the specific points that need to be
queried for manual annotation, through a single framework.
We also derive a second formulation for dynamic batch selec-
tion based on the uncertainty of the current learner. We exploit
the properties of submodular functions and propose an efficient
solution strategy for adaptive batch selection through a single
optimization framework. We validate the proposed methods
on challenging real-world data sets for face-based biometric
recognition, which is used as the exemplar application in this
paper. Although validated on biometric data, the proposed
frameworks are generic and can be used in any application
where it is required to select a batch of representative entities
simultaneously from redundant/repetitive data samples.

The rest of this paper is organized as follows: we present a
survey of the existing BMAL techniques in Section II, detail
the mathematical formulations of our algorithms in Section III,
present the results of our experiments in Section IV, and
conclude with discussion in Section V.

II. LITERATURE SURVEY

Active learning is a well-studied problem in machine learn-
ing literature [7], [8]. Most of the existing active learning
algorithms have focused on selecting a single informative
unlabeled instance to query each time, an approach called
pool-based active learning. Such techniques can be broadly
categorized into four groups:

1) Support Vector Machines (SVM)-based approaches,
which decide the next point to be queried based on its
distance from the hyperplane in the feature space [9];

2) statistical approaches, which query data instances such
that some statistical property of the future learner
(e.g., the learner variance) is optimized [10], [11];

3) query by committee, which chooses points to be queried
based on the level of disagreement among an ensemble
of classifiers [12], [13];

4) information theoretic approaches, which exploit the
discriminative partition information contained in the
unlabeled data and queries the instance that provides
the maximum conditional mutual information about the
labels of the unlabeled instances, given the labeled data,
in an optimistic way [14].

To avoid frequent classifier retraining and to utilize the
presence of parallel labeling oracles, BMAL schemes, which
select multiple unlabeled points simultaneously for manual
annotation, have been proposed in recent years. Existing
approaches for BMAL have largely been based on extending
pool-based active learning methods to select multiple instances
simultaneously. They use greedy heuristics and select the

top k informative instances (k being the required batch size)
from the unlabeled set for manual annotation. Brinker [15]
extended the version space concept proposed in [9] to query
a diverse batch of points using SVMs, where diversity was
measured as the angle induced by the hyperplane of the
currently selected point to the hyperplanes of the already
selected points. Schohn and Cohn [16] proposed to query a
batch of points based on their distance from the separating
hyperplane of a linear SVM. Xu et al. [17] proposed an
SVM-based BMAL strategy that combined representativeness
and diversity measures for batch selection.

However, extending the pool-based setting to the batch
setting by considering the top k instances does not account for
other factors such as information overlap among the selected
points in a batch. More recently, this has led to newer efforts
that are specifically intended to select batches of points using
appropriate optimization strategies. Hoi et al. [2], [4] used the
Fisher information matrix as a measure of model uncertainty
and proposed to query the set of points that maximally reduced
the Fisher information. Hoi et al. [18] proposed a BMAL
scheme based on SVMs where a kernel function was first
learned from a mixture of labeled and unlabeled samples,
which was then used to identify the informative and diverse
examples through a min–max framework. They also exploited
submodular optimization for BMAL in the context of image
retrieval [19]. Guo and Schuurmans [5] proposed a discrimi-
native strategy that selected a batch of points that maximized
the log-likelihoods of the selected points with respect to their
optimistically assigned class labels and minimized the entropy
of the unselected points in the unlabeled pool. Very recently,
Guo [6] proposed a BMAL scheme that maximized the mutual
information between the labeled and unlabeled sets and was
independent of the classification model used. The methods
described in [5] and [6] have been shown to be the best
performing BMAL schemes till date.

All the aforementioned techniques of BMAL, including
[5] and [6], concentrate only on the design of a selection
criterion assuming that the batch size is chosen by the user in
advance. In most real-world problems, this is not a practical
assumption, as explained in Section I. We would expect the
number of relevant samples to be large when the active learner
is exposed to an unlabeled data stream of high complexity
(for example, one which contains data samples very different
from the current training set) and the number to be low
for unlabeled data streams that are similar in composition to
the current training set. Thus, there is a strong need for the
active learner to adapt to different contexts and dynamically
decide the batch size as well as the specific instances to be
queried. In this paper, we present two novel optimization-
based strategies to adaptively compute the batch size and
decide the specific instances for manual annotation through
a single framework. We now present the mathematical formu-
lations of our approaches.

III. DYNAMIC BMAL: MATHEMATICAL FORMULATION

In this section, we present the details of the proposed
dynamic BMAL formulations, which aim to simultaneously



CHAKRABORTY et al.: ADAPTIVE BMAL 1749

identify the batch size and the batch of samples itself with
the same computational complexity as existing static BMAL
approaches. To this end, we first pose the dynamic
BMAL problem as selecting a set of instances that maximizes
the performance of the future learner (the learner trained on
the current training set and the newly selected batch) and
solve the problem using SGD. We further propose a second
framework for dynamic BMAL using submodular optimiza-
tion, where the time complexity is significantly reduced by
avoiding the use of the future learner (i.e., we select the batch
of samples based on the learner trained on the current training
set alone). We also show later in this section on how these
two methods can be easily adapted to static BMAL (where
a batch size is prespecified), thus making this contribution a
generalizable BMAL framework.

A. Dynamic BMAL via SGD

Consider a BMAL setting that has a current labeled set
Lt and a current classifier wt trained on Lt . The classifier
is exposed to an unlabeled set Ut at time t . The objective
is to select a batch B from the unlabeled stream in such a
way that the classifier wt+1, at time t + 1, trained on Lt ∪ B
has maximum generalization capability (we refer to wt+1 as
the future model or future classifier). With unlabeled data
being available, semisupervised learning methods have been
proposed that train models by minimizing the uncertainty of
the labels for the unlabeled instances [20]. That is, to achieve
a classifier with good generalization performance, one can
minimize the entropy of the missing labels for the unlabeled
data. In our active learning framework, we attempt to min-
imize the entropy of the updated learner on the remaining
|Ut − B| samples after batch selection. Let C denote the total
number of classes. The entropy of the conditional distribution
P(y|x j , w

t+1) is given by

S(y|x j , w
t+1)=−

∑

y∈C

P(y|x j , w
t+1) log P(y|x j , w

t+1). (1)

Furthermore, to maximize the contribution of the selected
unlabeled samples, diversity-based selection criteria have been
proposed [21], which ensure that the selected samples are
less similar with the already available labeled data. In our
formulation, we quantify the diversity, ρ j , of an unlabeled
sample x j as its mean kernelized distance from all the labeled
points in the training set

ρ j = 1

nl

nl∑

i=1

φ(xi , x j ) (2)

where nl is the number of samples in the training set and
φ denotes the kernel function. Such a distance measure
is widely used in metrics like the maximum mean dis-
crepancy to quantify the difference between two probability
distributions [22], [23]. The two aforementioned criteria can
be combined by defining a score function as follows:

f (B) =
∑

j∈B

ρ j − λ1

∑

j∈Ut−B

S(y|x j , w
t+1). (3)

The first term denotes the sum of the average kernelized
distances of each selected unlabeled point from the labeled set
(to ensure selection from data densities with low representation
in the original training set), while the second term quantifies
the sum of the entropies of the updated learner on each
remaining point in the unlabeled stream (which is expected
to be low, if the selection is appropriate). λ1 is a tradeoff
parameter governing the relative importance of the two terms.

The problem therefore reduces to selecting a batch B of
unlabeled points, which produces the maximum score f (B).
Let the batch size (the number of samples to be selected for
annotation) be denoted by m, which is an unknown. Since
there is no restriction on the batch size m, the obvious intuitive
solution to this problem is to select all the samples in the
unlabeled set. Then, the entropy term becomes zero, and the
distance term attains its maximum value. Therefore, f (B) will
also attain its maximum score. However, querying all the
samples for their class labels is not an elegant solution and
defeats the basic purpose of active learning. To prevent this,
we modify the score function by enforcing a penalty on the
batch size as follows:

f̃ (B) =
∑

j∈B

ρ j − λ1

∑

j∈Ut−B

S(y|x j , w
t+1) − λ2m. (4)

The third term essentially reflects the cost associated with
labeling the data samples, as the value of the objective function
decreases with every single sample that needs to be labeled.
Defining the score function in this way ensures that any and
every sample is not queried for its class label; only samples for
which the distance and entropy terms outweigh the labeling
cost term get selected. The coefficient λ2 is the cost parameter
and denotes the cost associated with labeling one unlabeled
data sample. This parameter can be set based on the given
application. For instance, manually labeling a face image is
less tedious as compared with labeling a voicemail message
as urgent/nonurgent (as the human oracle has to listen to the
entire message for accurate annotation). Thus, λ2 will have a
smaller value in the case of a face recognition application,
as compared with a voicemail recognition system. In our
experiments, we assume λ2 to be one and also study the
effect of this parameter on the batch size and the accuracy
of recognition.

As per (4), we need to select a batch B of unlabeled points
so as to maximize f̃ (B). Since brute force search methods are
prohibitive, we employ numerical optimization techniques to
solve this problem. We define a binary vector M of size |Ut |
where each entry denotes whether the corresponding point
is to be queried for its class label. We rewrite the objective
function in (4) into an equivalent function in terms of the
defined vector M

max
M,m

∑

j∈Ut

ρ j M j − λ1

∑

j∈Ut

(1 − M j )S(y|x j , w
t+1) − λ2m (5)

s.t.

M j ∈ {0, 1} ∀ j. (6)

In this formulation, note that if an entry of M is 1, the
corresponding image will be selected for annotation, and if it
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is 0, the image will not be selected. The number of images to
be selected is therefore equal to the number of nonzero entries
in the vector M , or the zero-norm of M . Hence

m = ||M||0 ≈ ||M||1 =
∑

j

M j . (7)

Here, we have replaced the zero norm of M by its tightest
convex approximation, which is the one-norm of M (inspired
by the work in [24]). In addition, from (6), the one-norm is
simply the sum of the elements of the vector M . Substituting
m in terms of M , the formulation becomes

max
M

∑

j∈Ut

ρ j M j − λ1

∑

j∈Ut

(1−M j )S(y|x j , w
t+1) − λ2

∑

j

M j

(8)

s.t.

M j ∈ {0, 1} ∀ j.

The above optimization is an integer programming problem
and is NP-hard. We therefore relax the constraint to make it
a continuous optimization problem

max
M

∑

j∈Ut

ρ j M j − λ1

∑

j∈Ut

(1−M j )S(y|x j , w
t+1) − λ2

∑

j

M j

(9)

s.t.

0 ≤ M j ≤ 1 ∀ j.

1) Solving the Optimization Problem: We define an
objective function f (M) as (from 9)

f(M) =
∑

j∈Ut

ρ j M j − λ1

∑

j∈Ut

(1 − M j )S(y|x j , w
t+1)

−λ2

∑

j

M j . (10)

To solve the optimization problem, we use the quasi-Newton
method [25]. The first derivative of the function and the
Hessian matrix of second derivatives need to be computed as
part of the solution procedure. Assuming that wt+1 remains
constant with small iterative updates of M , the first-order
derivative vector is obtained by taking the partial of the
objective with respect to M

∇ f (M j ) = ρ j + λ1S(y|x j , w
t+1) − λ2. (11)

The Hessian starts as an identity matrix and is updated
according to the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [25]. The final value of M is used to govern the num-
ber of points and the specific points to be selected for the given
data stream (by greedily setting the top m entries in M as 1
to recover the integer solution, where m = ∑

j M j ). Hence,
solving a single optimization problem helps in dynamically
deciding the batch size as well as selecting the specific points
for manual annotation. It is to be noted that the objective
function is defined in terms of the future classifier wt+1,
which is unknown. To compute the entropy term using wt+1

Algorithm 1 Dynamic BMAL via SGD
Require: Training set Lt , Unlabeled set Ut , parameters λ1 and λ2,

initial random guess for M , a stopping threshold α

1: Initialize the Hessian matrix H as the identity matrix I
2: Evaluate the objective function f (M) (Equation 10) and the

derivative vector ∇ f (M) (Equation 11)
3: repeat
4: Solve the QP problem as required by Quasi-Newton:

QP(H ,∇ f (M),M) and let the solution be M∗
5: Compute the step size s from the Armijo Goldstein Equations.
6: Update M as Mnew = M + s(M∗ − M)
7: Evaluate the new objective f (Mnew) and the new derivative

vector ∇ f (Mnew) using Mnew
8: Calculate the difference in objective value: di f f = abs( f (M)

− f (Mnew))
9: Update the Hessian H using the BFGS Equations

10: Update the objective value: f (M) = f (Mnew)
11: Update the derivative vector: ∇ f (M) = ∇ f (Mnew)
12: Update the vector M: M = Mnew
13: until di f f ≤ α
14: Compute batch size m = ∑

M (Equation 7)
15: Greedily set the top m entries in M as 1 to recover the integer

solution.
16: Select m points accordingly

in the quasi-Newton iterations, we therefore need to estimate
the class labels of the currently selected batch of unlabeled
samples so as to intelligently approximate wt+1. We used the
semisupervised graph-based label propagation method, graph
transduction via alternating minimization (GTAM), proposed
in [26], to derive the labels of the selected unlabeled samples in
each quasi-Newton iteration. This method is efficient in terms
of accuracy and computational overhead [26]. We validate the
efficiency of this method in our empirical evaluations (please
refer to the supplemental file for the details of this algorithm).
The pseudocode of the complete dynamic BMAL algorithm is
outlined in Algorithm 1.

We also note that the specific terms in the objective
function can be modified based on the particular application
in question. For instance, one may want to design an
objective function that selects samples by minimizing the
uncertainty on the unselected examples and by maximizing
the representativeness between the selected and the unselected
samples in the unlabeled set. The same strategy based on a
penalty on the batch size can be used in the objective function
containing the relevant terms.

The proposed dynamic batch selection framework has the
computational complexity of O(n2) (where n is the number
of unlabeled data samples), which is the same as the state-
of-the-art static BMAL techniques [5], [6], where the batch
size needs to be prespecified (this complexity is due to the
quasi-Newton method, which has quadratic complexity [25]).
Thus, with the same computational complexity as state-of-
the-art static BMAL schemes, we solve for both the size and
the samples in a batch that needs to be queried from a given
unlabeled data stream.

In our experiments, we performed a single run of the quasi-
Newton method. We started with a random initial guess and
iteratively updated the solution until convergence. Performing
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multiple runs may help in finding better quality local optima;
however, it will also increase the computation time. Thus, in
applications where computation time is not a major concern,
one can perform multiple runs and select the best solution.

B. Dynamic BMAL via Submodular Optimization

Submodularity has been used for active learning in [19]
in the context of image retrieval; however, the research
was focused on static BMAL with a prespecified batch
size. We propose a novel dynamic BMAL scheme based
on submodular optimization. Similar to the previous problem,
we are given a training set Lt and an unlabeled set Ut for
adaptive batch selection. In this method, the uncertainty of an
unlabeled sample is computed as the entropy of the current
model wt on this sample (instead of the updated model wt+1,
as in the previous formulation). However, since the goal in
active learning is to select a batch of unlabeled samples that are
maximally informative for the updated model wt+1, we need
to consider a redundancy-based criterion (which quantifies the
similarity between a pair of samples) if we design the batch
selection condition based on the current model wt . This is
because, if two points separately furnish valuable information,
but they furnish the same/overlapping information, then both
of them together may not be maximally informative for wt+1.
The redundancy criterion is important in this formulation,
as the objective is to select a batch of useful samples for
wt+1 using only the current model wt. This was not necessary
in the previous formulation as the performance was directly
optimized with respect to the future model wt+1. In this paper,
redundancy was quantified as the minimum kernelized distance
of an unlabeled point from the already selected batch (other
measures of distance or similarity may be used based on
the application in question). A greater value of the minimum
distance denotes a more promising point from the redundancy
perspective. We would like to select a batch of points where
each point furnishes useful, but distinctly unique information.
For this purpose, we formulate an objective function denoting
the score of a set of points B as follows:

S(B) =
∑

xi∈B

[ρi + λ1 E(xi ) + λ2 D(xi )] (12)

where ρi is the average kernelized distance of the unlabeled
point xi from the training set, as defined in Section III-A,
E(xi ) is the entropy of xi based on the current model wt

E(xi) = −
∑

y∈C

P(y|xi , w
t ) log P(y|xi , w

t )

and

D(xi ) = min
x j ∈B: j 	=i

φ(xi , x j )

which quantifies the similarity of an unlabeled point from
the already selected set (φ denotes the kernelized distance).
Thus, while ρi ensures selection of samples diverse from the
training set, D(xi ) avoids selection of duplicate samples in the
batch. The tradeoff parameters λ1 and λ2 control the relative
importance of the distance and entropy terms. Since the goal
is to select a batch of points with high aggregate uncertainty

scores and high distance among them, the objective is to select
a set of points that maximizes the score S(B), as defined
in (12). This score function is monotonically nondecreasing
(will be proved later) and since there is no restriction on the
batch size, the obvious solution is to select all points in the
unlabeled set for manual annotation. Similar to the previous
formulation, we therefore impose a penalty on the batch size
and modify the score function as follows:

Snew(B) =
∑

xi∈B

[ρi + λ1 E(xi ) + λ2 D(xi )] − λ3|B|. (13)

The last term in (13) represents the cardinality of the set
B and increases as more points are queried in the batch. λ3
is the cost parameter, as discussed in the case of the first
BMAL method in Section III-A. The optimal batch selection
criterion can thus be expressed as

max
B⊆Ut

Snew(B). (14)

Due to the exponential nature of the search space, exhaustive
search techniques are not feasible. In the following sections,
we derive an efficient strategy to solve the above optimization
problem.

1) Submodularity of the Objective Function: The definition
of submodularity of a function is as follows.

Definition 1: Let Z be a finite set and let X and Y be two
subsets of Z such that X ⊆ Y ⊆ Z . Consider an element
x ∈ Z\Y . A function f : 2Z → � is submodular if

f (X ∪ {x}) − f (X) ≥ f (Y ∪ {x}) − f (Y ).
That is, a function is submodular if adding an element to a

set increases the functional value by at least as much as adding
the same element to its superset (also called the diminishing
returns property [27], [28]).

Lemma 1: The score function S(B), as defined in (12), is
a submodular set function.

Proof: Let B1 and B2 be two sets formed by selecting
unlabeled points from Ut , such that B1 ⊆ B2 ⊆ Ut and
consider an unselected instance x ∈ Ut\B2. The increment
in the value of the objective function achieved by appending
x to the set B1 is given by

S(B1 ∪ {x}) − S(B1) = ρx + λ1 E(x) + λ2 min
x j ∈B1

φ(x, x j ).

Similarly, the increment obtained by appending x to the set
B2 is

S(B2 ∪ {x}) − S(B2) = ρx + λ1 E(x) + λ2 min
x j ∈B2

φ(x, x j ).

Since B1 ⊆ B2, the minimum distance of a point x from the
other points will always be greater for the set B1 as there may
exist some point x j in the superset B2, which is closer to x
than any element in its subset B1. Hence

min
x j∈B1

φ(x, x j ) ≥ min
x j ∈B2

φ(x, x j ).

Thus, we have

S(B1 ∪ {x}) − S(B1) ≥ S(B2 ∪ {x}) − S(B2).

This completes the proof of the lemma. �
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Algorithm 2 Dynamic BMAL via Submodular Optimization
Require: Training set Lt and Unlabeled set Ut , parameters

λ1, λ2 and λ3

1: Train a classifier wt on the training set Lt

2: B = {φ}
3: for i = 1 → |Ut | do
4: for all x ∈ Ut\B do
5: Btemp = B ∪ {x}
6: Compute S(Btemp) as in Equation (12)
7: end for
8: Select the point xmax producing the largest gain in the

objective function (Equation 12)
9: B = B ∪ {xmax}

10: Ut = Ut\{xmax}
11: Evaluate the current score S(B)
12: Snew B(i) = S(B) − λ3 ∗ |B|
13: end for
14: Batch Size m = argmax(Snew(B))
15: Point Set P = B(1 : m)
16: return m and P

Lemma 2: The score function S(B) is a monotonically
nondecreasing function.

Proof: Let B1 denote the currently selected set of points
and consider an element x ∈ Ut\B1, Ut being the unlabeled
pool. If x is added to the current set, the value of the objective
function changes by ρx + λ1 E(x) + λ2 minx j ∈B1 φ(x, x j ).
Both the entropy and distance are nonnegative quantities, and
hence

S(B1 ∪ {x}) ≥ S(B1).

This completes the proof. �
2) Greedy Solution to the Optimization Problem: The

problem of maximizing a submodular function is NP-hard.
However, Nemhauser et al. [27] established that for a
function S, which is submodular and nondecreasing, with
S(�) = 0 (� being the null set), a greedy approach can
provide an efficient solution with near-optimal results [from
the definition of S in (12), it is obvious that S(�) = 0].
In our case, the suggested greedy approach incrementally
selects points from the unlabeled set by maximizing the gain
in the objective function in each iteration. It presents an
incremental ordering of the samples based on their degree
of usefulness. A single run of the algorithm over the unla-
beled set therefore provides an ordered set of the unlabeled
samples based on their information content. We then com-
pute the final objective value Snew(B) for every possible
batch size by subtracting the cost term λ3 ∗ |B| from the
corresponding score S(B). The maximal value of Snew(B)
represents the desired batch size |B| and the desired set
of points in the set B . The pseudocode is presented in
Algorithm 2.

Similar to the previous formulation, solving a single opti-
mization problem yields the size and the samples to be selected
for batch query. The time complexity is O(n2) (obtained from

lines 3 and 4 in the algorithm), similar to the state-of-the-art
static BMAL algorithms, where n is the number of unlabeled
instances.

C. Using the Proposed Frameworks for Static BMAL

It is to be noted that the proposed frameworks can be used
for BMAL in cases where the batch size is specified. If the
batch size is fixed, there is no need to balance the computation
cost against the classification performance. Thus, the penalty
terms from the objective functions are dropped and a constraint
is imposed on the batch size. For example, for the gradient-
descent-based method, the following problem is solved for
static BMAL with batch size m:

max
M

∑

j∈Ut

ρ j M j − λ1

∑

j∈Ut

(1 − M j )S(y|x j , w
t+1)

show that

0 ≤ M j ≤ 1 ∀ j and
|Ut |∑

j=1

M j = m.

An analogous strategy is applied for static BMAL using the
submodular optimization framework

max
B⊆Ut :|B|=m

S(B).

To achieve this, the outer loop in Algorithm 2 is run from 1
to the desired batch size m and the set B returns the optimum
set of points after the loop ends on line 13.

IV. EXPERIMENTS AND RESULTS

We conducted extensive experiments to study the efficacy
of the proposed dynamic BMAL algorithms. Due to its wide
usage and the need for BMAL in face recognition from video
streams, we focus on face-based biometric recognition as the
exemplar application in this paper. The cost parameters (λ2 for
the SGD algorithm and λ3 for the submodularity-based frame-
work) were selected to be one in our initial set of experiments,
and we study the effect of these parameters later in this section
empirically. The other weight parameters were selected to be 1
using cross validation. Gaussian mixture models were used as
the classifier in our experiments because of their success in
face recognition [29]. The parameters of each Gaussian were
trained using the expectation–maximization algorithm [30].
A Gaussian kernel with parameter one was used to compute
the kernelized distances. For the quasi-Newton solution, a
stopping threshold of 10−4 was used and a threshold of
200 was set on the number of iterations. Our experiments,
however, revealed that the latter threshold was never met
and the algorithm terminated in less than 10 iterations for
most experiments, based on the objective value threshold. The
algorithms were implemented in MATLAB on a quad-core
Intel processor with 2.66-GHz CPU and 8-GB RAM.

Our experiments are structured as follows.
1) Experiment 1 studies the overall objective of this paper,

i.e., it studies the accuracy obtained on an independent
test set using the proposed dynamic BMAL algorithms,
as compared against the use of the existing static
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Fig. 1. Sample images from VidTIMIT and MOBIO data sets.

BMAL algorithms (with a prespecified batch size).
Considering that static BMAL algorithms can perform
differently with different prespecified batch sizes, we
also compare the performances by changing the batch
size in static BMAL methods in Experiment 1 (described
further in Section 6.4 in the supplemental file).

2) Experiment 2 focuses on the static component of the
proposed methods, by studying the effectiveness of
the criteria chosen in the objective functions, given a
specific batch size.

3) Experiment 3 systematically investigates the dynamic
nature of the proposed BMAL algorithms, by studying
the batch sizes identified using these methods on video
streams with varying degrees of unknown data.

4) Experiment 4 studies the effect of the cost parameters
involved in this paper.

5) Experiment 5 studies the quality of the approximations
obtained using the proposed optimization strategies,
as against the optimal solutions obtained using an
exhaustive search for both the methods.

6) Finally, the SGD-based method (first of the two
proposed methods) relies on the GTAM to obtain the
future learner, wt+1. Hence, Experiment 6 studies the
effectiveness of the GTAM algorithm in assigning
labels to unlabeled data, to ensure that the use of this
approach is justified.

A. Data Sets and Feature Extraction

We used two challenging biometric data sets for our
experiments: 1) the VidTIMIT data set [31], which contains
video recordings of subjects reciting short sentences
under unconstrained natural conditions and 2) the mobile
biometric (MOBIO) data set [32], which was recently created
for the MOBIO challenge to test state-of-the-art face and
speech recognition algorithms. It contains recordings of
subjects under challenging real-world conditions, captured
using a hand-held device. Sample images from these data sets
are shown in Fig. 1. The face images in the video frames were
automatically detected using the Viola–Jones algorithm [33]
and cropped to 128 by 128. The discrete cosine transform
feature was used in all our experiments (for details about the
feature extraction process, please refer [34]).

B. Experiment 1: Dynamic Versus Static BMAL

As mentioned earlier, the objective of this experiment
is to study the performance of the proposed dynamic

BMAL methods, as against the existing static BMAL methods
with a prespecified batch size, on the task of face recognition.
We selected 25 subjects at random from each data set.
A classifier was induced with 250 training images (10 images
from each subject). Unlabeled video streams (each containing
100 frames) were then presented to the learner. To vary
the complexity of the task, the number of subjects in each
unlabeled stream was varied between 1 and 10 (selected
randomly from the set of 25). For each stream, the size
and samples in a batch were selected simultaneously using
the proposed methods. The classifier was updated with the
images selected using the dynamic or static BMAL method,
and tested on independent test videos [containing the same
subject(s) as in the unlabeled videos].

The accuracy of the proposed techniques was compared
against the case when all the frames in the unlabeled video
were used for learning (this is assumed to be an estimate for
the best achievable performance, as there is no better way to
quantify the same for a given video stream), and also against
the following static BMAL algorithms.

1) Disc, a discriminative BMAL strategy, proposed in [5].
2) Matrix that queries a batch of data samples by maxi-

mizing the mutual information between the labeled and
unlabeled sets [6].

3) Most Uncertain, where the top k uncertain points were
queried from the unlabeled video, k being the batch size.

4) svmD that incorporates diversity in active learning using
SVMs, as proposed in [15].

5) Random, where a batch of points is queried at random.
The Disc and the Matrix approaches have been shown
to be the state-of-the-art BMAL techniques [6].

When the batch size is fixed at 10 for the static BMAL
methods, the results are shown in Fig. 2 (averaged over 10
trials). The x-axis denotes the number of subjects in the
video stream and the y-axis denotes the accuracy on test
videos containing the corresponding number of subjects. We
observe that, in both data sets, the accuracy obtained with the
proposed methods matches the best achievable accuracy (when
all images are used for training) more closely than any of the
static BMAL algorithms.

In general, we expect that if we select a greater number
of images from an unlabeled set, the updated learner will
perform better on a test set containing the same subjects.
Thus, if we select a higher value of batch size in a static
BMAL learner, its performance is expected to improve. This
is studied in Fig. 3, where the static batch size was taken as 80
instead of 10. We see that the static BMAL schemes perform
much better than before and the best static BMAL techniques
marginally outweigh dynamic batch selection in terms of
classification accuracy. However, to achieve this performance,
static BMAL methods required a significantly greater number
of images to be labeled than dynamic selection. Table I shows
the mean predicted batch size (PBS) and mean percentage
reduction in the number of images that had to be labeled using
SGD optimization-based dynamic selection against static
selection with batch size 80. Evidently, the static framework
required a much greater number of images to be labeled to
marginally outweigh dynamic selection. The same conclusion
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Fig. 2. Dynamic versus static BMAL on (a) VidTIMIT and (b) MOBIO data sets (static batch size = 10). Best viewed in color.

Fig. 3. Dynamic versus static BMAL on (a) VidTIMIT and (b) MOBIO data sets (static batch size = 80). Best viewed in color.

TABLE I

MEAN PBS AND PERCENT LABELING COST REDUCTION (LCR) USING SGD-BASED DYNAMIC SELECTION AGAINST

STATIC SELECTION WITH BATCH SIZE 80 ON A VIDEO STREAM WITH 100 FRAMES

TABLE II

MEAN PBS AND PERCENT LCR USING SUBMODULARITY-BASED DYNAMIC SELECTION AGAINST STATIC SELECTION

WITH BATCH SIZE 80 ON A VIDEO STREAM WITH 100 FRAMES

is reflected in Table II that contains the analogous values for
the submodular optimization-based dynamic BMAL frame-
work. We infer that using a prespecified batch size, the static
batch selection strategies can sometimes query too few points
leading to poor generalization power of the updated learner,
while in some cases, it can entail considerable labeling cost
to attain a marginal improvement in accuracy. The proposed
dynamic methods, on the other hand, strike a balance between
the uncertainty of the learner on the images in the unlabeled

video and the cost of labeling the images, and thus provide
a more concrete basis to decide the size and samples in the
batch.

C. Experiment 2: Performance of the Proposed Batch
Selection Criteria for Given Batch Size

The purpose of this experiment was to analyze the effec-
tiveness of the batch selection criteria of BMAL algorithms
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Fig. 4. BMAL on (a) VidTIMIT and (b) MOBIO data sets. Best viewed in color.

given a batch size (static component) to study their usefulness
in real-world settings. The static versions of the proposed
algorithms were used, as described in Section III-C. Similar
to Experiment 1, the proposed approaches were compared
against the two state-of-the-art BMAL techniques: 1) Disc
and 2) Matrix, and the three heuristic techniques: 1) Most
Uncertain, 2) svmD, and 3) Random. A classifier was induced
with 250 training images (10 from each of 25 randomly chosen
subjects). Unlabeled video streams (each containing about
250 frames) were then presented to the classifier sequentially.
The images in the video streams were randomly chosen from
all 25 subjects and did not have any particular proportion
of subjects in them. A batch of 10 images was queried
from each video stream (that is, the batch size was fixed
at 10 for each unlabeled video). After each batch selection,
the selected images were appended to the training set, the
classifier updated, and then tested on an independent test video
containing about 5000 images spanning all the 25 subjects.
We studied the accuracies on the test set with increasing
sizes of the training set. The results (averaged over five runs)
are shown in Fig. 4, where the x-axis denotes the size of
the labeled set and the y-axis denotes the accuracy on the
test set.

It is evident that the proposed SGD and submodularity-
based techniques perform much better than svmD and
Random sampling. The Most Uncertain method shows the best
performance among the heuristic techniques. The proposed
algorithms perform comparably with Disc and Matrix, which
are the state-of-the-art static BMAL schemes (they marginally
outperform Matrix on the MOBIO data set). We infer that our
choice of the objective function performs comparably with
the existing state-of-the-art methods, even in static settings.
We also note that the SGD-based scheme performs better than
the submodular BMAL technique for both data sets (in the sta-
tic setting explored in this experiment). This can be attributed
to the fact that the SGD-based strategy selects unlabeled
points for manual annotation by optimizing the performance
with respect to the future learner (the learner trained on the
current training set together with the newly selected batch);
it, therefore, is more effective in choosing the set of points
that furnish maximal information. The submodular technique,

TABLE III

AVERAGE TIME TAKEN (IN SECONDS) TO QUERY A BATCH OF 10 IMAGES

FROM AN UNLABELED VIDEO WITH 250 IMAGES

on the other hand, uses the uncertainty of the current model
together with a redundancy-based batch selection criterion
and does not involve a look-ahead strategy using the future
learner.

Table III reports the computation time comparison of
the algorithms. We note that for both the SGD and the
submodularity-based algorithms, the complexity is O(n2);
however, this complexity merely depicts the pattern of growth
in the running time of the algorithms with increasing size
of the data set, that is, the runtime of both the algorithms
grow quadratically with the size of the unlabeled set n. The
actual runtime of the submodularity-based method is much
lesser than the SGD method, as evident from Table III. This
is because the SGD-based BMAL strategy involves classifier
retraining in each iteration (due to the involvement of the
future learner). The submodular framework, on the other
hand, is solved using a greedy algorithm (and is devoid of
model retraining) and involves much lesser computational
overhead, as depicted in the runtime values. Thus, depending
on the requirements of a particular application, an appropriate
scheme can be adopted. While the heuristic techniques (svmD,
Random, and Most Uncertain) depict promising running time
values, their active learning performances are worse than those
of the proposed algorithms (Fig. 4).

D. Experiment 3: Performance of Dynamic BMAL With
Varying Complexities of Video Streams

In real-world settings, video streams can have varying
levels of complexities, in terms of the presence of unknown
subjects (not present in the training set), unknown expressions,
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Fig. 5. Study of the proposed dynamic batch selection frameworks with varying complexities of a video stream. Experiment with unknown subjects from
(a) VidTIMIT and (b) MOBIO data sets.

TABLE IV

TEST SET ACCURACIES USING THE PROPOSED AND CLUSTERING-BASED DYNAMIC BMAL ON THE

VidTIMIT DATA SET WITH INCREASING PROPORTIONS OF NEW IDENTITIES

TABLE V

TEST SET ACCURACIES USING THE PROPOSED AND CLUSTERING-BASED DYNAMIC BMAL ON THE

MOBIO DATA SET WITH INCREASING PROPORTIONS OF NEW IDENTITIES

head poses, and changing illumination among others. This
experiment studies the dynamic component of the proposed
BMAL methods, by observing the computed batch sizes with
varying complexities of a video stream. In [35], we had
proposed a heuristic clustering methodology for dynamic
batch selection. This algorithm segregates the images in the
unlabeled pool into separate clusters using the DBSCAN
clustering algorithm, and then uses a heuristic score based on
the Silhouette coefficient of each cluster to decide the batch
size. Since no other dynamic batch selection strategies have
been proposed till date (for comparison), we compared our
approaches against this heuristic scheme.

Twenty-five subjects from each data set were selected
and divided into two groups: 1) a known group containing
20 subjects and 2) an unknown group containing the remain-
ing five subjects. A classifier was induced, as before, with
10 training images of each of the known subjects. Unlabeled
video streams were then presented to the learner, with the pro-
portion of unknown subjects in the unlabeled video gradually
increased from 0% (where all the subjects in the unlabeled
video were from the training set) to 100% (where none of the
subjects in the unlabeled video were present in the training
set) in steps of 20%. Thus, the classifier was exposed to video
streams of varying levels of new information. However, the
learner was not given any information about the composition
of the video streams. In addition, the size of each video stream

was kept the same (approximately 100 frames) to facilitate fair
comparison.

The results (averaged over 10 trials) are shown in Fig. 5.
The x-axis denotes the percentage of atypical images
in the unlabeled pool, and the y-axis denotes the batch
size predicted using both the proposed and clustering-
based strategies. We note that in both the experiments, as the
proportion of salient images in the unlabeled stream increases,
the uncertainty term outweighs the annotation cost term in
the objective functions and the proposed algorithms decide on
a larger batch size. This matches our intuition because, with
growing percentages of atypical images in the video stream,
the confidence of the learner on those images decreases,
and thus it needs to query more images to attain good
generalization capability. The clustering-based scheme, on the
other hand, does not consider the training set and fails to reflect
the uncertainty of the classifier. The batch size, therefore,
does not bear any specific trend to the percentage of atypical
unlabeled images. We infer that the proposed optimization-
based techniques provide a more sound basis to adaptively
decide the batch size by considering the data typicalness with
respect to the training set together with the labeling cost.

Besides the PBS, it is equally important to analyze the
accuracy obtained on test sets with similar compositions as
the unlabeled videos. In the case of the clustering technique,
the gradient-descent-based approach (Section III-C) was used
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Fig. 6. Effect of the cost parameter in the SGD-based dynamic BMAL.

for batch query once the batch size was determined [35].
Tables IV and V show the accuracies obtained on test videos
from the VidTIMIT and MOBIO data sets using the optimiza-
tion and clustering-based strategies. While the optimization-
based techniques consistently deliver high-accuracy values on
test videos, the accuracy obtained from the clustering scheme
is erratic and inconsistent with varying proportions of new
identities in the unlabeled stream. This is more accentuated
in the MOBIO data set. We also note that the submodularity-
based technique depicts better accuracy than the SGD-based
method for both the data sets. However, a comparison of
the two dynamic BMAL techniques will not be fair here, as
their selected batch sizes are different (evident from Fig. 5),
unlike the previous experiment, where the batch size was kept
constant to facilitate fair comparison. The important thing to
note in this experiment is the fact that for both the proposed
algorithms, the PBS appropriately reflects the complexity of
the data.

E. Experiment 4: Effect of Cost Parameter

In the experiments described above, the cost parameter
(λ2 for the SGD-based method and λ3 for the submodularity-
based method) was set as 1. Here, we study the effect of
this parameter on batch size and accuracy. As in the previous
experiment, the training set consisted of 250 images and the
test set had 5000 images spanning all subjects. An unla-
beled video stream (with 250 frames) was then presented
for dynamic batch selection, and the selected images were
appended to the training set (note that in this case, we are not
interested in studying the growth in accuracy with increasing
size of the training set; hence, we focus on the accuracy
obtained after a single round of dynamic batch selection from
an unlabeled video).

Fig. 6 shows the results (averaged over 20 different
unlabeled video streams) of the SGD-based algorithm, where
the weight parameter λ2 was varied between 0.1 and 2
(for λ2 > 2, the learner did not select any image in the
batch). We note that an increase in the cost parameter value
leads to a reduction of the PBS and also the generalization
accuracy. This corroborates our intuition as an increase in the

Fig. 7. Validation of solution quality for the SGD and submodularity-based
dynamic BMAL.

labeling cost per sample restricts the number of unlabeled
samples that can be purchased for labeling, which also
degrades the accuracy on the same test set. Our observation
revealed that the difference in accuracy for λ2 = 0.1 and
λ2 = 2 was about 7%. A similar result was obtained for the
cost parameter, λ3, in the submodularity-based algorithm (the
results not presented due to space constraints).

F. Experiment 5: Quality of Optimization Solutions

To solve the SGD-based optimization problem, the integer
constraints in (8) were relaxed into continuous constraints
in (9). Similarly, for the submodularity-based approach,
a greedy algorithm was used to solve the dynamic batch
selection problem in (14). Both these strategies lead to
suboptimal solutions, and it is important to study the quality
of the solutions obtained from the relaxations. To this end,
400 random unlabeled video streams were taken from the
VidTIMIT and the MOBIO data sets and the relaxed batch
selection algorithms were applied for dynamic batch selection.
In addition, an exhaustive search was performed to find the
best solution for a given unlabeled stream by brute force.
The ratio ( f (̂x)/ f (x∗)) was computed for the 400 random
samples, where x̂ is the solution obtained after relaxation,
x∗ is the optimal solution obtained by a brute-force search,
and f is the objective function to be maximized [(8) for the
SGD-based approach and (14) for the submodularity
algorithm].

The results are shown in Fig. 7, and depict the fact that
the aforementioned ratio is very close to 1 (greater than
0.8 for most of the test cases). Thus, the functional value
attained by solving the relaxation is very close to the optimal
functional value. The results lead to the conclusion that
both the relaxations produce high-quality solutions of the
corresponding optimization problems. However, we also note
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Fig. 8. Validation of the efficacy of GTAM.

that for the MOBIO data set, the SGD algorithm sometimes
yielded poor solutions (where the ratio is less than 0.3); this is
mostly because of bad starting points of the gradient-descent
algorithm, which led to bad local optima.

G. Experiment 6: Effectiveness of GTAM Algorithm
for Label Prediction

In this experiment, we validate the efficacy of the graph-
based transductive algorithm (GTAM) [26] in assigning labels
to the current batch of unlabeled samples to estimate the
future classifier wt+1 in the iterations of the SGD algorithm.
The performance of GTAM was studied on a test set of
1000 images (from the VidTIMIT and MOBIO data sets) with
different sizes of the training set ranging from 200 to 600. The
results are reported in Fig. 8, which plots the test error against
different training set sizes. We note that with only 200 labeled
samples, the GTAM algorithm produces a generalization error
of about 10% and it reduces further with increasing sizes of
the labeled set. This corroborates our choice of the GTAM
algorithm for assigning labels to unlabeled samples, thus
providing a good approximation of the future classifier wt+1

in the quasi-Newton iterations of the SGD-based dynamic
BMAL algorithm.

V. CONCLUSION

In this paper, we proposed two novel approaches of dynamic
BMAL, which adaptively select the batch size and the specific
data samples for manual annotation based on the complexity
of a data stream and the cost of annotation of each unlabeled
data sample. Unlike the previously proposed BMAL methods,
which need the batch size as an input, our framework incorpo-
rates the labeling cost in the batch selection criterion and com-
putes the batch size automatically. The batch size and selection
criteria are integrated into a single optimization formulation,
whose solution yields the desired batch size and the specific
samples for query. The frameworks were validated on the
face recognition application using two challenging biometric
data sets. Our results corroborated the effectiveness of the
approaches against static BMAL in terms of dynamically iden-
tifying the batch size for a given data stream based on its com-
plexity level and the labeling cost of the images. The proposed

algorithms also depicted comparable performance against the
state-of-the-art static BMAL techniques, when the batch size
was prespecified. We further note that for a given batch size,
the gradient-descent-based scheme has a better label complex-
ity than the submodularity approach, but the latter outweighs
the former in terms of computation time. Thus, based on the
requirements of a given application, an appropriate technique
can be selected. Moreover, the algorithms are flexible and
the specific terms in the objective function can be modified
based on the requirements of a particular application. We also
empirically established that our algorithms yield high-quality
solutions of the relaxations of the corresponding NP-hard
problems. In general, the proposed methods work well when
it is not easy to identify a batch size in an application setting,
or when there is variation expected within a single video,
resulting in the need for dynamic batch size selection.

The proposed frameworks can also be used in problems
where multiple sources of information are available, such
as both face and speech data of an individual or multiple
image features extracted from a given face image. Learning
from multiple sources can be superior to learning from a
single source, if the sources are used appropriately [36].
Let Ut1 and Ut2 denote the unlabeled data streams from
two sources of information. The objective functions can then
be modified by adding relevant terms from the two sources,
together with a penalty on batch size. In the case of the
SGD-based method, the following criterion can be used for
dynamic BMAL:
max

M

∑

j∈Ut1

ρ j M j −
∑

j∈Ut1

(1 − M j )S(y|x j , w
t+1) +

∑

j∈Ut2

ρ j M j

−
∑

j∈Ut2

(1 − M j )S(y|x j , w
t+1) −

∑

j

M j .

This can be solved as before using the quasi-Newton
method. Furthermore, let x1i and x2i denote the feature
representations from the two sources of information, and let
E1, D1, and E2, D2 be the entropy and the distance functions
for the two sources respectively, as defined in Section III-B.
The submodular technique can be adapted for dynamic batch
selection from two sources using the following score function:

Snew(B) =
∑

x1i∈B

{ρ(x1i) + E(x1i ) + D(x1i )}

+
∑

x2i∈B

{ρ(x2i ) + E(x2i ) + D(x2i )} − |B|.

This can be solved in an analogous way as Algorithm 2,
where the submodular and nondecreasing score function is
obtained by removing the penalty term |B| from Snew(B).

Moreover, if contextual information is available
(e.g., location of a subject, at home or in office), the same
approach can be used to construct a prior probability vector
depicting the chances of seeing particular acquaintances in a
given context. The entropy term can then be computed on the
posterior probabilities obtained by multiplying the likelihood
values returned by the classifier with the context aware prior.
Thus, subjects not expected in a given context (e.g., a home
acquaintance in an office setting) will have low priors, and
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consequently, the corresponding posteriors will not contribute
much in the entropy calculation. The frameworks can therefore
be extended to context-aware adaptive batch selection.

Furthermore, real-world problems often have variable
labeling costs, where the cost of annotating each unlabeled
sample is different. For instance, consider a voicemail
classification application, where the objective is to classify
voice messages as urgent/nonurgent. To label a data sample
in such an application, the human oracle has to listen to the
entire message. Thus, it is natural for shorter messages to
have a lower labeling cost as compared with longer messages.
To address such a problem, the labeling cost terms (λ2 for
the SGD method and λ3 for the submodular framework) can
be extended to vectors, of dimension same as the number of
unlabeled instances, where each entry denotes the labeling
cost of the corresponding unlabeled data sample. The same
algorithms can then be used to solve for the batch size and
the unlabeled samples to be annotated. Thus, the proposed
dynamic batch selection frameworks can also be applied to
problems with variable labeling costs.

A potential limitation of this framework is the selection of
the cost parameter. A low value of this parameter results in a
high permissible batch size and, consequently, a high accuracy
and vice versa. It is thus a property of the system running
the application and cannot be tuned to a particular data set.
Converting the storage and labeling resources of a system to
the same currency as the entropy and diversity terms (to derive
the cost coefficient) may be a challenge.

As part of future work, we will explore other mechanisms
of dynamic batch size computation (e.g., L2 regularization as
the penalty term). The problem of adaptive batch selection is
closely related to finding the correct number of clusters in a
clustering algorithm; recent work has addressed this problem
using Dirichlet processes [37], [38], which we plan to investi-
gate in our ongoing work. Our future work will also focus on
deriving performance guarantees on the solution qualities for
both the dynamic BMAL schemes. Furthermore, in the case of
the SGD-based approach, the quadratic programming problem
that needs to be solved as part of the optimization process
can significantly increase the computation time (especially
for large scale data). There have been recent efforts [39]
to efficiently solve QP problems using a pivoting algorithm
and the KKT conditions to significantly reduce computations.
This can be judiciously used in our approach, making it
meritorious even for large-scale data. We will explore this in
our future work. Future work will also include designing a
proper user interface for adaptive BMAL.
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