Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2013, Article ID 456232, 18 pages
http://dx.doi.org/10.1155/2013/456232

Research Article

Complex System Optimization Using
Biogeography-Based Optimization

Dawei Du and Dan Simon

Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA

Correspondence should be addressed to Dan Simon; d.j.simon@csuohio.edu

Received 14 August 2013; Revised 2 October 2013; Accepted 3 October 2013

Academic Editor: Oleg V. Gendelman

Copyright © 2013 D. Du and D. Simon. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Complex systems are frequently found in modern industry. But with their multisubsystems, multiobjectives, and multiconstraints,
the optimization of complex systems is extremely hard. In this paper, a new algorithm adapted from biogeography-based
optimization (BBO) is introduced for complex system optimization. BBO/Complex is the combination of BBO with a multiobjective
ranking system, an innovative migration approach, and effective diversity control. Based on comparisons with three complex system
optimization algorithms (multidisciplinary feasible (MDF), individual discipline feasible (IDF), and collaborative optimization
(CO)) on four real-world benchmark problems, BBO/Complex demonstrates competitive performance. BBO/Complex provides
the best performance in three of the benchmark problems and the second best in the fourth problem.

1. Introduction

With the recent advances of technology in industry, many
systems include more components and parts than those in
the past. Such systems are more complex than ever before.
The design optimization of such systems becomes more
difficult under these circumstances. One familiar example
is the design of the modern aircraft, where thousands of
components need to be designed, and millions of parts
need to be chosen for assembly. Due to the huge number
of variables, it is extremely difficult to find an effective
optimization method.

In the remainder of this section, we give a brief introduc-
tion to complex systems, optimization algorithms for com-
plex systems, and biogeography-based optimization (BBO).
In Section 2, we introduce the new optimization algorithm
for complex systems (BBO/Complex). Section3 demon-
strates the performance of BBO/Complex with competitor
algorithms. Section 4 presents conclusions and plans for
future work.

1.1 Complex Systems. According to [1], a complex system has
the following properties: (1) a complex system contains a

large number of elements; (2) the elements have interactions
with each other; (3) the interactions are rich; (4) the inter-
actions include certain characteristics such as nonlinearity.
In [2], a complex system is defined as “[a]n assembly of
interacting members that is difficult to understand as a
whole” We see that complex systems can have various
structures, as long as they satisfy the above descriptions.
Considering these descriptions and real-world systems in
modern industry, we propose here that a complex system
includes the following characteristics: (1) multiple objectives;
(2) multiple constraints; (3) multiple variables; (4) high
degree of nonlinearity. This is an ambiguous and fuzzy
definition, but no more so than the definitions of many
other engineering terms. Perhaps it is appropriate that the
definition of a complex system is, itself, complex.

The mathematical description of a system comprises
equations and inequalities that include the definitions of
variables, the ranges of variables, and the connections
between variables. Optimizing a system is equivalent to
mathematically defining the system and then finding the
feasible solutions that (approximately) optimize the objective
functions. But when the order of the equations or inequalities
is relatively large or those equations or inequalities are highly

Mathematical Problems in Engineering

)

System optimizer

—

Subs?fst.em n J
optimizer

Subsystem 1 Subsystem 2
optimizer optimizer
N
Subsystem 1 Subsystem 2
analysis analysis

Subsystem n
analysis

FIGURE 1: Multidisciplinary feasible (MDF) formulation [9].

nonlinear, the solutions must be obtained numerically rather
than analytically [3]. Unfortunately, most complex systems
include interacting subsystems that are either continuous
or NP-hard and thus contain a huge number of possible
solutions. The inclusion of subsystems in complex systems
adds even more complexity than that involved in a single
system.

1.2. The Optimization of Complex Systems: Multidisciplinary
Design Optimization. Multidisciplinary design optimization
(MDO) is a class of optimization methods dedicated to solv-
ing design problems that involve more than one discipline. Its
definition is as follows: “Multidisciplinary Design Optimiza-
tion (MDO) is a methodology for design and analysis of com-
plex engineering systems and subsystems which coherently
exploits the synergism of mutually interacting phenomena”
[4]. Based on this definition, we see that MDO algorithms are
good candidates for complex system optimization tools.

In the 1970s and 1980s, computer aided design became
a mature approach for aircraft design, including economic
factors, manufacturability, and reliability. Aircraft design
was the initial motivation of MDO [5]. With thousands of
parts and parameters in airplane design, MDO provided a
revolution in the aircraft industry. In 1989, the American
Institute of Aeronautics and Astronautics (AIAA) established
the technical committee on MDO [5].

As mentioned above, MDO is a class of optimization
methods. Numerous algorithms belong to this class, such
as multidisciplinary feasible (MDF), which is the most
popular MDO algorithm [6]; individual discipline feasible
(IDF), which does not require system decomposition [7];
and collaborative optimization (CO), which is effective for
many complex systems and which has been widely adopted
in industry [8].

Traditional MDO algorithms are frameworks that pro-
vide basic conceptual structures without specifying the
detailed underlying algorithms. In [9], the definition of MDO
is given as follows: “an MDO method for a given prob-
lem consists of an MDO formulation and an optimization
algorithm.” The particular optimization algorithm is usually

chosen based on the specific problem or the user’s preference.
Different MDO methods can share the same underlying
optimization algorithm. Conversely, the same MDO method
can be implemented with different underlying optimization
algorithms. Therefore, the major difference between MDO
algorithms is the MDO formulation, or, in other words, the
structure of the method.

The most popular MDO algorithms include MDE, CO,
and IDE. MDF is perhaps the most well-known MDO algo-
rithm. It is often considered the standard solution method for
multidisciplinary problems. The structure of a typical MDF
algorithm is shown in Figure 1. The top level of MDF is system
optimization. The second level is called multidisciplinary
analysis (MDA), which passes coupled variables among
subsystems to obtain feasible solutions at the subsystem
level after a certain number of iterations. After reaching the
iteration limit, the second level passes its solution to the first
level, and this completes one optimization cycle. The iteration
cycle limit is usually defined by the user. The structure of
MDF enables it to be a very competitive optimization method
when the subsystems are highly coupled.

CO is another typical MDO algorithm and has a bilevel
structure which is shown in Figure 2. The first level is the
system optimizer, which optimizes the feedback from the
subsystem optimizers. The second level is the combination
of the subsystem optimizers, which optimize each subsystem.
Unlike MDE, the subsystem optimizations in CO are inde-
pendent from each other, which means that CO puts more
focus on subsystem optimization, which is advantageous for
systems with extremely complex subsystems that are loosely
coupled.

IDFisan all-in-one MDO algorithm. The most significant
benefit of IDF is that it can optimize all of the subsystems
together without subsystem optimizations. For most MDO
algorithms, decomposition of the system is necessary. But
unlike CO, IDF does not require subsystem optimization. It
treats subsystems more like objective functions. As long as
we have the objectives and constraints for each subsystem,
IDF can be implemented. As we see from the structure
of IDF in Figure 3, IDF includes subsystem analysis but
not subsystem optimizers, which makes it an all-in-one

Mathematical Problems in Engineering

E System optimizer }

Subsystem 1 Subsystem 2 Subsystem n
optimizer optimizer optimizer
Subsystem 1 Subsystem 2 Subsystem n
analysis analysis analysis

FIGURE 2: Collaborative optimization (CO) [9].

[System optimizer]

Subsystem 2

analysis

Subsystem 1
analysis

J |

Subsystem n
o analysis

F1GURE 3: Individual discipline feasible (IDF) formulation [9].

algorithm. Optimization only operates at the global system
level.

1.3. Biogeography-Based Optimization. BBO is a newly
invented heuristic algorithm that was first introduced in
2008 [10]. Like most heuristic algorithms, it is inspired by
nature. The inspiration of BBO comes from the distribution
of species over time and area. The environment of BBO
is analogous to an archipelago of islands, and each island
is considered as a possible solution to the problem. Each
decision variable is called a suitability index variable (SIV)
in BBO, and each island consists of SIVs. The performance
of each island is measured by objective functions, and we
use habitat suitability index (HSI) to represent the level
of performance. BBO uses migration to share SIVs and
mutation to randomly create new SIVs. The basic procedure
of the BBO algorithm is as follows [11].

(1) Define the mutation probability and the elitism
parameter. Mutation and elitism are the same as
in genetic algorithms and many other evolutionary
algorithms [12].

(2) Initialize the population. Again, this is performed as
in any other evolutionary algorithm [12].

(3) Calculate the immigration rate and emigration rate
for each island. Good solutions have high emigration
rates and low immigration rates. Bad solutions have
low emigration rates and high immigration rates.

(4) Probabilistically choose the immigrating islands
based on the immigration rates. Use roulette wheel
selection based on the emigration rates to select the
emigrating islands.

(5) Migrate randomly selected SIVs (i.e., independent
solution variables) based on the selected islands in the
previous step.

(6) Probabilistically perform mutation for each island.

(7) Replace the worst islands in the population with the
previous generation’s elite islands.

(8) If the termination criterion is met, terminate; other-
wise, go to step 3.

BBO is based on migration between islands, and each
candidate solution in a BBO population is referred to as an
island. BBO therefore uses some of the same terminology as
that in island models in evolutionary computing. Island mod-
els were first introduced in distributed genetic algorithms
(GAs) [13] designed for parallel computing. In island models,
each island typically represents a semiisolated subpopulation
of candidate solutions. Each subpopulation used a different
search strategy, and candidate solutions occasionally migrate
between islands. The island model is an effective tool for
parallelizing evolutionary algorithms and also for preserving
diversity throughout the entire population. A schema-based
model of an island GA was developed and studied in [14],
and a Markov-based model was proposed in [15]. Separability,
population size, and convergence of island models were

studied in [16]. Several parallel island EAs are reviewed
and surveyed in [17]. The design and theoretical analysis of
island model migration strategies are studied in [18]. Island
models have been applied to practical optimization problems
in several works, including [19-21].

Although BBO terminology uses the term island, the
definition of a BBO island is different than the definition
of an island in the island model. In the island model each
island represents a subpopulation of candidate solutions,
while in BBO each island represents a single candidate
solution. We use the term archipelago (which is a group of
islands) to represent a BBO subpopulation. In the remainder
of this paper, we discuss the multiarchipelago BBO structure
for optimizing complex systems. The multiarchipelago BBO
structure is similar to the standard island model structure of
EAs but includes a significant difference. Island model EAs
are generally designed to solve a single problem. However,
our multiarchipelago BBO algorithm is designed for complex
systems with multiple subsystems, with each archipelago
consisting of multiple islands and designed to optimize a
unique subsystem.

BBO has recently become popular in both academia and
industry. As with other EAs, BBO can be considered as a fam-
ily of algorithms, or metaheuristic, and can be easily modified
for application to various types of problems. BBO has been
used for parameter selection in electric discharge machining
[22], power flow optimization [23], robot control tuning [24],
cancer classification [25], and many other applications.

Since its inception, BBO has been modified in a variety
of ways. For example, it has been hybridized with differential
evolution [26], ant colony optimization [27], particle swarm
optimization [28], artificial bee colony optimization [29], and
harmony search [30]. BBO has also been extended to special
types of optimization problems, such as those with noisy
fitness function evaluations [31], those with constraints [32],
those with discrete search spaces [33], and those with multiple
objectives [34].

2. BBO for Complex Systems

BBO was invented less than a decade ago, but according to
[10] it provides competitive optimization performance with
ACO, differential evolution (DE), evolutionary strategy (ES),
GA, population-based incremental learning (PBIL), particle
swarm optimization (PSO), stud genetic algorithm (SGA),
and many other algorithms. This is the reason we extend BBO
to complex systems.

The original BBO algorithm was designed for a single
objective, no constraints, and single system problems. But
since then BBO has been extended to multiobjective prob-
lems [35] and multiconstraint problems [36]. As we recall
from Section 1, the major feature of the complex system is
its multisubsystem structure. Therefore, our major goal in
this paper is to extend BBO to systems with multisubsystems,
where each subsystem contains multiobjectives and multi-
constraints. Our new algorithm is called BBO/Complex.

Our first BBO extension involves its environment. The
original BBO environment is an archipelago that consists of

Mathematical Problems in Engineering

islands. The islands represent possible solutions to the prob-
lem. This BBO environment is based on the premise that BBO
is a single system optimization algorithm. Complex systems
contain more than one subsystem, each of which is partially
independent from the others. Therefore, the environment
of BBO/Complex includes n archipelagos, where n is the
number of subsystems. The second difference between BBO
and BBO/Complex involves objectives and constraints. The
original BBO algorithm only includes one objective and no
constraints, but BBO/Complex includes multiobjectives and
multiconstraints. The new environment of BBO/Complex is
as follows [37].

1P ={A1,A2,A3,..}is a population that is com-
pop
prised of archipelagos. Each archipelago corresponds
to one subsystem.

(2) Ach = {I_h1,1_h2,1 h3,...;0.h1,0.h2,0.h3,...;
C_h1,C_h2,C_h3,...} is an archipelago that is com-
prised of islands I_hi, objectives O_hi, and constraints
C_hi.

As previously discussed, each archipelago is an analogy
for a subsystem. So each archipelago contains three groups
of components. The first group of components is a group of
islands, and each island is a possible solution to the subsystem
optimization problem. The second group of components
is a group of objectives for the subsystem. The last group
of components is the set of constraints for the subsystem.
The combination of all three groups of components in the
subsystem is called an archipelago.

(3) I_hi = {S_hil,S_hi2,S_hi3,...} is an island that is
comprised of SIVs, also called candidate solution
features, independent variables, or design variables,
which are denoted as S_hij.

Mutation in BBO/Complex is identical to that in standard
BBO. But migration in BBO/Complex needs to be modified
due to the fact that the environment of BBO/Complex con-
tains more than one subsystem. In the following sections we
consider two types of migration: within-subsystem migration
and cross-subsystem migration.

2.1. Within-Subsystem Migration. Within-subsystem migra-
tion contains two parts: a ranking system and a modified ver-
sion of the BBO migration algorithm. In standard BBO, the
fitness of an island is linearly related to the objective function
because the system consists of only one objective function
and no constraints. So the only performance measurement
comes from the objective function. But in a complex system,
the performance of an island is not reflected by only one
objective function. Due to the fact that each subsystem
contains multiobjectives and multiconstraints, we combine
all of this information to determine the fitness of an island and
its resulting migration rate. We note here that Pareto-optimal
solutions are often used in multiobjective algorithms. But
Pareto approaches require decision makers to select a single
solution from a set of Pareto-optimal solutions, all of which
are considered to be equally optimal. The Pareto approach
has the advantage of providing multiple candidates to the

Mathematical Problems in Engineering

decision maker as potential solutions but has the drawback
of requiring the decision maker to select from a potentially
large set of such candidate solutions. Our approach avoids the
need for a human decision maker, which may be desirable
for certain problems. In this paper, a ranking system is
introduced for BBO/Complex which is a modified version of
the nondominated ranking system (NDRS) [38].

NDRS was initially designed for single systems with
multiobjectives [39]. NDRS eliminates the weighting factors
used in weighted ranking algorithms. NDRS can be easily
deployed in almost any optimization algorithm without
major modification [40]. An updated version of NDRS was
introduced in [41] as the ranking system in the multiobjective
genetic algorithms (MOGA). That version uses inconsecutive
integers as ranks to reflect the relative performance of
each individual in a population. We are inspired here by
both NDRS and the MOGA ranking system. But neither
NDRS nor MOGA deal with constraint violation, which is
a major concern in our work, as well as in most real-world
optimization problems. So our modified NDRS considers
constraint violations. We consider two factors that determine
the relative performance of a candidate solution: fitness
values and constraint violations. In our modified NDRS, the
constraints have a higher priority than the fitness values.
Violations of constraints significantly degrade the relative
rank of individuals. Assume that we have a subsystem: the
population size is #n; the number of objectives is m; the
number of constraints is k; R; is the rank of the ith island
(to be determined below); and V; is the number of constraint
violations of the ith island. Algorithm 1 outlines the modified
NDRS procedure.

After performing the above version of NDRS, we have
the rank of each island in the subsystem. A smaller rank
means better performance. For example, suppose that we
have 4 islands and each of the islands has 3 objectives
and 3 constraints. The objective and constraint violation
information is as in Table 1. Based on those, the rank of each
island is calculated according to the modified NDRS method
in Table 1.

The ranks obtained from the modified NDRS are shown
in Table 1, but one thing that needs to be mentioned is that
the ranks assigned to the islands are 0, 4, 5, and 9 rather
than 0, 1, 2, and 3. Ranks are not necessarily consecutive
integers. The reason is that NDRS reflects the performance
of an island by including the number of partial domination
counts in a rank rather than simply ordering the islands. This
gives more granularity for rank values, which is important
when statistically choosing migrating islands in BBO.

2.2. Cross-Subsystem Migration. Standard BBO only contains
one type of migration, within-subsystem migration, which
has been modified for BBO/Complex as shown before.
But BBO/Complex also includes cross-subsystem migration.
Cross-subsystem migration is different because each subsys-
tem has its own ranking system. The comparison of ranks
across subsystems is meaningless, because ranks assigned
to each island in a subsystem only represents the relative
goodness of the island in that specific subsystem. If we con-
sider two islands from two different subsystems, we cannot

determine which island is better by simply comparing their
ranks, because ranks from different subsystems are calculated
differently based on the different subsystem objectives and
constraints. Instead, cross-subsystem migration is based on
three factors—distance between islands, the similarity level
of objectives, and the similarity level of constraints.

2.2.1. Distance between Islands. The first factor to consider
in cross-subsystem migration is the distance between islands.
As we know, heuristic algorithms require population diversity
[12]. BBO migration is based on sharing SIVs among islands.
If the population has a low diversity, most of the islands
are similar to each other, and the probability that an island
improves after migration is low. In this case, migration may
not effectively contribute to improvement in the population.

Mutation is the technique that introduces new SIVs to the
population, and mutation does not depend on the diversity
of the population. But the mutation rate is usually a small
number, for example, 1%, because large mutation rates negate
the effectiveness of migration and reduce the evolution-
ary algorithm to a random search. The new information
introduced to the population through mutation sometimes
includes useful SIVs. But most of the time, those SIVs are
useless and can even degrade the population. Mutation, in
general, is not a rapid or eflicient technique for evolution.

Usually we use the Euclidean distance to calculate the dif-
ferences between islands. This calculation is straightforward
for islands with the same structure. The Euclidean distance
between islands a and b in archipelago 4, both of which have
¢ SIVs, is

< 2
Dy = Z(Shak = Shbk) - @
k=1

This calculation is valid if and only if both islands share
the same structure, which means they have the same SIV
type at the same location. But in a complex system, sub-
systems usually have different island structures. That is, the
independent variables in subsystems are not commensurate.
For example, the SIV types in island 1 may be labeled types
1, 2, and 3, but the SIV types in island 2 may be labeled
2, 3, and 4. Equation (1) is not appropriate to calculate the
distance between islands 1 and 2, because we cannot find the
corresponding SIVs on both islands for the type 1 SIV and the
type 4 SIV.

For BBO/Complex, we need a new technique to calculate
the distance between islands with different structures. The
partial distance strategy (PDS) is widely used in statistics to
calculate Euclidean distances with missing data [42]. This
is similar to our situation. Instead of missing data, we have
missing SIV types. In order to implement PDS, we need to
modify the data structure of the islands. First, we define
each island to include all the SIV types on all islands. If an
island did not originally include a specific SIV type, we assign

Mathematical Problems in Engineering

RI:RZ:...:R :O;
V=V, ==V, =0;
fori=1ton do

end for
fori, =1tondo

n

n

forc=1tokdo
if constraint ¢ of island i is violated then
Vi=V+1
end if
end for

fori, =i, ton do
if V;, >V,
R, =R, +m
elseif V,; <V,
Ry, =Ry +m
elseif V;, =V,
foro, = 1tom do
if objective o, of island i, is better than o, of i, then

end if
end for
end for

R, =R, +1
else if objective 0, of island ¢, is better than o, of t; then
R, =R; +1
end if
end for

ArLGoriTHM 1: Modified non-dominated ranking system (NDRS). V; is the number of constraint violations of the ith island, and R; is the
relative rank of the ith island, where a lower rank is better. m is the number of optimization objectives.

TaBLE 1: Rank calculation example with the modified NDRS. A lower objective means better performance, and lower ranks are better than

higher ranks.

Objective 1 Objective 2 Objective 3 Constraint violation Rank
Island 1 1 2 3 0 0
Island 2 2 4 2 1 4
Island 3 3 1 4 1 5
Island 4 1 1 1 2 9

an N/A value to the SIV and treat it as missing data. The
implementation of PDS in BBO/Complex is given as follows:

t
t 2 .
Dy = m kz_l(sgak - Shbk) Kgpaplo 1f Kgpgp > 0,
0, lf thab = O,
. N N
0, lf Sgak = X or Shbk = X,
thabk =

N N
1, lf Sgak:‘#X’ and Shbk:'éZ’

t
Kopab = Zthabk'
k=1

)

Dy is the partial distance between island a in
archipelago g and island b in archipelago h, and ¢ is the

total number of SIV types. As an example, suppose we have
2 islands: island 1 = [0,1,2,3,N/A,4] and island 2 =
[1,3,N/A,N/A,5,5]. Island 1 has 5 SIVs and island 2 has 4
SIVs, and the two islands have 3 SIVs in common. Then the
distance is calculated based on (2) as Dy, = 4.90.

2.2.2. Similarities between Objectives and Constraints. The
second and third factors in the island distance calculation
are the similarity level of the objectives and the similarity
level of the constraints. Subsystems with similar objectives
and constraints are more likely to benefit each other through
migration than subsystems that are not closely related. Our
calculation of the similarity level is based on the fast similarity
level calculation (FSLC) [37]. Suppose there are two islands,
each of which has a vector of variables: U = [u,u,,u;,..]
and V' = [v;,v,, v5,...] (either objectives or constraints). The
similarity level (SL) of these vectors is calculated by FSLC in
Algorithm 2.

Mathematical Problems in Engineering

SL=0;
foreachu e U
foreachv eV

end if
end for
end for

if u and v are the same type then

SL=SL+1

ALGORITHM 2: Similarity level calculation. U and V are the sets of objectives or constraints of two islands (candidate solutions).

2.2.3. Summary of Cross-Subsystem Migration. Now that we
have discussed the three factors for cross-subsystem migra-
tion, we summarize cross-subsystem migration as follows.
First, calculate the migration probability between islands
based on the similarity level between subsystems:

(1 ((ON) N CS)
2 Osmax CSmax ’
it OS> 0, CS,x > 0,
1 0S8
208y
Pmigration = if OSmax >0, CSmax =0, (3)
1 CS
2 Csmax)
if 0S,,, =0, CS,,, >0,
0:
lf Osmax = 0’ Csmax = 0’

OS is objective similarity level between two islands,

OS,.x is the maximum interarchipelago objective
similarity level in the population,

CS is constraint similarity level between two islands,

CS,.x is the maximum inter-archipelago constraint
similarity level in the population.

The probability for a pair of subsystems to perform cross-
subsystem migration is linearly related to the above migration
probability. After that, we need to choose emigrating islands
for each immigrating island. We use roulette wheel [43]
to select the emigrating island. Islands with better partial
distances will have better chance to be selected as the
emigrating island. Figure 4 shows an example of emigrating
island selection across subsystems.

2.3. Summary of BBO/Complex. BBO/Complex is summa-
rized as follows.

(1) Define the control parameters: population size,
stopping criteria, mutation probability, and elitism
parameter. For example, a typical setup for BBO is
that population size is 100, stopping criteria is 100,000
cost function calls, mutation probability is 0.05, and
elitism parameter is 1.

(2) Initialize the population. This is usually done with
randomlygenerated individuals.

(3) Calculate the constraint and objective similarity levels
between all pairs of subsystems.

(4) Calculate the rank of islands in each subsystem.

(5) Perform within-subsystem migration: probabilisti-
cally choose the immigrating islands based on the
island ranks. Use roulette wheel selection based on
the emigration rates to select the emigrating islands.
Emigration rates are linearly related to the island
ranks. After each immigrating island selects its cor-
responding emigrating island, we perform within-
subsystem migration. Each SIV in an immigrating
island will have a chance to be replaced by an SIV
from an emigrating island.

(6) Perform cross-subsystem migration: find suitable
pairs of subsystems based on similarity levels. Cal-
culate distances between each pair of islands from
different subsystems. Use roulette wheel selection
based on partial distances to select the emigrating
islands. Then, we begin cross-subsystem migration.
Each SIV in an immigrating island will have a chance
tobe replaced by a SIV from an emigrating island, and
this probability is Pgrymigration Which can be predefined
by users.

(7) Probabilistically perform mutation on each island
based on the mutation probability.

(8) Save the islands in each subsystem with best per-
formances as elite islands. Replace the worst islands
in the population with the previous generation’s elite
islands.

(9) If the termination criterion is not met, go to step 4;
otherwise, terminate.

The structure of BBO/Complex is conceptually different
than MDE, IDFE, and CO. As we see from Figures 1, 2, and
3, that of MDE IDE and CO provide different strategies
to optimize systems. But they are just frameworks, and we
can choose any optimization method, like gradient descent
or a genetic algorithm (GA), as the optimizer within the
framework. But BBO/Complex is in a different category,
because it includes both the framework and the optimization
algorithm, as shown in Figure5. It provides an efficient
way to communicate between subsystems and provides a

Subsystem 2

Mathematical Problems in Engineering

D
1 Island 1
D
1 Island 2
-
Subsystem 1
Dys
Island 1 Island 3
)
Dyy
Island 4
-
Roulette wheel selection
N b, M b,
D, n Dy, u Dys
— Island 5 M p,

FIGURE 4: An example of emigrating island selection for immigration to island 1 in subsystem 1. First, calculate the partial distances between
island 1 in subsystem 1 and each island in subsystem 2. Then create a roulette wheel based on the partial distances. Finally, probabilistically

select the emigrating island based on the roulette wheel.

unique migration strategy to share information both within
and across subsystems. Comparing Figures 1, 2, 3, and 5,
we see that cross-subsystem migration in BBO/Complex is
an innovation that can significantly enrich communication
among subsystems compared to more traditional MDO
methods.

3. Simulation Results

In this section, we compare the performance of
BBO/Complex in real-world benchmark problems with
other well-known MDO algorithms: MDEF, IDF, and CO.
As we mentioned before, these three MDO algorithms
are frameworks which require an additional optimization
method as a complementary but essential component. The
optimization algorithm we use in all three of these MDO
algorithms is BBO without cross-subsystem migration. The
benchmark problems are obtained from [44] and include the
speed reducer problem, the propane combustion problem,
the heart dipole problem, and the power converter problem.
Each benchmark contains several subsystems, and each
subsystem contains multiobjectives and multiconstraints.
Detailed information about each benchmark can be found in
the Appendix.

The reason we choose these benchmarks is that they
can be formulated as a complex system with interconnected
subsystems. There are two decomposition strategies: one
is based on the physical system and one is based on the
system requirements. In this paper we decompose the sys-
tems based on system requirements. Based on [45, 46],
traditional MDO algorithms usually lack the capability of
dealing with multiobjectives, so their decomposition is based
on the principle that each subsystem has one objective
and multiconstraints. This type of decomposition is suitable
for traditional optimization methods because it avoids the

need to consider all objectives at once. Due to the fact
that BBO belongs to the heuristic algorithm category and
with supporting results from [34, 47, 48], BBO/Complex is
expected to perform well on multiobjective problems. It has
more flexible decomposition options compared to traditional
MDO algorithms.

Our decomposition option for BBO/Complex is that
each subsystem has multiobjectives and multiconstraints.
But in order to provide a fair comparison between other
MDO algorithms and BBO/Complex, we also introduce a
BBO/Complex version that uses the same decomposition
strategy as the other MDO algorithms. So we have two
versions of BBO/Complex in this section: the first one uses
the same decomposition method as CO, MDEF, and IDF and is
called BBO/Complex/Single; the other one uses multiobjec-
tives in each subsystem and is called BBO/Complex/Multi.

For each benchmark test, we compare the performance of
each algorithm using both feasibility and cost. We perform
100 Monte Carlo simulations for each algorithm and each
benchmark problem to accurately measure performance. The
termination criterion is 100,000 cost function evaluations.
The feasibility index is calculated for each generation as the
average number of constraint violations among all Monte
Carlo simulations. The feasibility index is 0 if there are no
violations. The second performance metric is based on the
cost function values. We calculate the average cost values
among all Monte Carlo simulations and then use the modified
NDRS to obtain cost rank values. The optimization goal
for each benchmark is to find the minimum value of the
cost without violating any constraints. Since each benchmark
contains multiobjectives, we use NDRS to calculate the rank
for each algorithm based on its cost. But we have two priority
levels: the first goal is to find feasible solutions; the second
goal is to reduce cost. Priority level one overrides priority
level two.

Mathematical Problems in Engineering

)

System optimizer

\
J

-

Subsystem 1

optimizer

Subsystem 1
analysis

analysis

\

Subsystem 2
optimizer

Subsystem 2

Subsystem n
optimizer

Subsystem n
analysis

/

F1GURE 5: BBO/Complex formulation.

TABLE 2: NDRS cost rank and feasibility for the speed reducer
problem after 100,000 function calls. For each metric, a smaller
number means better performance.

Algorithm NDRS cost rank Feasibility
BBO/Complex/Single 4 0.27
MDF 5 0.60
CO 6 0.86
BBO/Complex/Multi 7 1.57
IDF 8 3.00

3.1. The Speed Reducer Problem. The first benchmark we
test is the speed reducer problem. It contains 3 objectives,
11 constraints, and 7 design variables, as detailed in the
Appendix. The performance of all algorithms in the first
benchmark is shown in Table 2 and Figure 6, which show that
BBO/Complex/Single has the best performance in the speed
reducer benchmark, including the best cost rank and the
best feasibility level. MDE, CO, and BBO/Complex/Multi are
slightly worse than BBO/Complex/Single. IDF has the worst
performance in terms of both cost rank and feasibility level.
Note that both feasibility and cost at the beginning of the
simulation start at different values for different algorithms.
This is because when we initially evaluate the performance
of algorithms, they have already been optimized at the
subsystem level.

3.2. The Power Converter Problem. The second benchmark
is the power converter problem. It has 6 design variables, 8
state variables, 2 objectives, and 4 constraints, as detailed in
the Appendix. Table 3 and Figure 7 show the performance
of the algorithms in the power converter problem. The
performances of all algorithms are fairly close to each other.
We have good results in this problem because all algorithms
achieve a 0 feasibility level. MDF is the best algorithm in
terms of cost, and BBO/Complex/Multi has the second best
performance.

3.3. The Heart Dipole Problem. The third benchmark is
the heart dipole problem. It has 6 design variables, 2
objectives, and 5 constraints, as detailed in the Appendix.
Table 4 and Figure 8 show that BBO/Complex/Single and
BBO/Complex/Multi are the only algorithms which achieve
a 0 feasibility level, which means that the best individuals
for each Monte Carlo run are feasible. When we combine
cost rank and feasibility, BBO/Complex/Multi has the best
performance in this benchmark, and BBO/Complex/Single is
the second best.

3.4. The Propane Combustion Problem. The fourth bench-
mark is the propane combustion problem. It has 1 design
variable, 3 objectives, and 4 constraints, as detailed
in the Appendix. According to Table5 and Figure9,
BBO/Complex/Multi is the best algorithm for this bench-
mark because it is the only algorithm that achieves a 0 fea-
sibility level. BBO/Complex/Single achieves the second best
performance with a feasibility level slightly greater than 0.

3.5. Summary of Benchmark Tests. The benchmark results
show that BBO/Complex/Multi is the only algorithm that
obtains feasible solutions in three of the benchmarks. For
the speed reducer benchmark, none of the algorithms finds
a feasible solution, but BBO/Complex/Single comes the
closest. Among all four benchmarks, BBO/Complex/Multi
achieves the best performance twice and the second best
performance once, and BBO/Complex/Single achieves the
best performance once and the second best performance
twice. Among the non-BBO/Complex algorithms, MDF is
the best, achieving the best performance once and the second
best performance once.

4. Conclusion

Heuristic algorithms are powerful and proven optimization
techniques whose structures are motivated by nature. In con-
trast with more traditional optimization methods, heuristic

10

Speed reducer feasibility

Feasibility
SRS

—

e
w

(=}

Function evaluations

— CO
—o— MDF
--- IDF

—— BBO/Complex 1
BBO/Complex 2

()

Speed reducer cost 2

400
350 |
300 |
250
200 §
100 |0

Costs

Function evaluations

— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF

(c)

Mathematical Problems in Engineering

Speed reducer cost 1

Costs

0 1 2 3 4 5 6 7 8 9 10

Function evaluations x10

— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF

(®)

Speed reducer cost 3

600

500 r

400

300 [ot

Costs

200 b

100

0 1 2 3 4 5 6 7 8 9 10

Function evaluations

— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF

(d)

FIGURE 6: The feasibility and cost of each objective for the speed reducer problem.

algorithms are intuitive and easy to apply, even to systems
with complex structures.

Complex systems include multisubsystems, multiobjec-
tives, and multiconstraints and have been deployed in every
type of modern industry. But optimization methods for
complex systems are lagging behind the implementation of
complex systems in industry. CO, MDE, and IDF are often
applied to the optimization of complex systems. Those meth-
ods have made many contributions to modern industry, but
this paper has aimed to take complex systems optimization to
the next level.

In this paper, BBO, a newly developed heuristic algo-
rithm, has been extended and applied to complex system
optimization. Our new algorithm is called BBO/Complex.
BBO/Complex uses the original framework of standard BBO
but extends it to a multiarchipelago environment to suit
the structure of complex systems. BBO/Complex has one
significant difference from its predecessors—it combines
the optimization framework and the low-level optimization

TABLE 3: NDRS cost rank and feasibility for the power converter
problem after 100,000 function calls. For each metric, a smaller
number means better performance.

Algorithm NDRS cost rank Feasibility
MDF 1 0
BBO/Complex/Multi 3 0
IDF 4 0
BBO/Complex/Single 6 0
CO 6 0

approach into a single algorithm. This is quite different
from MDE, IDE and CO, all of which are only frameworks
for complex systems and need a low-level optimization
method as an additional tuning parameter. The low-level
optimization approaches incorporated in MDEF, IDFE, and CO
are typically traditional algorithms like gradient descent and
Newton’s method. But those algorithms can easily get stuck

Mathematical Problems in Engineering

Power converter feasibility

1

Power converter cost 1

2.5

1.5

Costs

-
|
|
05 e
\l&_
0

0 1 2 3 4 5 6 7 8 9 10

Function evaluations

x10
— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF

(b)

Power converter cost 2

0.8
0.7 i
0.6 i
iy 0.5 i
2 041]]
§ 1
w 0.3 i
0.2 i
0.1 i
0 .
1 2 3 4 5 6 7 8 9 10
Function evaluations x10*
— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF
(a)
200
150
2 100 |
© [
i
i
|
>0 ?' J 7 ‘:Il |
=T ,
0 I’\"l’. n ’\—I ;'\ TNPAN v

0 1 2 3 4

Function evaluations

CO
MDF
--- IDF

—— BBO/Complex 1

BBO/Complex 2

(c)

FIGURE 7: The feasibility and cost of each objective for the power converter problem.

in a local optimum. Based on [49, 50], standard BBO can
guarantee convergence to the optimal solution given enough
generations. Besides the traditional advantages of BBO, the
BBO/Complex algorithm also introduces new features, like
a ranking system that evaluates candidate solutions based
on both performance and constraints, the use of a partial
distance strategy to maintain the diversity of the popula-
tion, within-subsystem migration for information sharing
within subpopulations, and cross-subsystem migration for
information sharing between subpopulations. The simulation
results indicate that BBO/Complex is a competitive multidis-
ciplinary optimization algorithm.

Future work for BBO/Complex can be extended in two
directions: speed and adaptation. Convergence speed is one
of the primary concerns for heuristic algorithms. Parallel
computation can be used to decrease convergence time by
dividing a task into multiple subtasks and solving them in
parallel. One of the classic parallel computation models is the
master-slave model. The master is in charge of job assignment

TABLE 4: NDRS cost rank and feasibility for the heart dipole problem
after 100,000 function calls. For each metric, a smaller number
means better performance.

Algorithm NDRS cost rank Feasibility
BBO/Complex/Multi 2 0
BBO/Complex/Single 6 0
MDF 6 0.03
IDF 4 1.00
CcO 2 2.00

and global calculations. The slaves perform subtasks that
are assigned by the master and return the results to the
master. This structure can be adapted to BBO/Complex by
viewing the master as the system optimizer and each slave as
a subsystem optimizer. Computation time can be decreased

Mathematical Problems in Engineering

Heart dipole cost 1

B X7 /N Aaav v

Cost
(=)

0 1 2 3 4 5 6 7 8 9 10

Function evaluations

x10
— CO —— BBO/Complex 1
—e— MDF BBO/Complex 2
--- IDF

(b)

Heart dipole cost 2

12
Heart dipole feasibility
4 T T T T T
3.5¢F
3
225
ol
3
215
B
0.5}
oL
0 1 2 3 4 5 6 7 8 9 10
Function evaluations x10%
— CO —— BBO/Complex 1
—e— MDF BBO/Complex 2
--- IDF
(a)
x10"!
2
SV TRNII A v
15|
2
O

a B ~ ’ .
N \\/‘/"\-\/” It VRN X G PRVAT VAR VEAS AN,

0 1 2 3 4

Function evaluations

— CO
—o— MDF
--- IDF

5 6 7 8 9 10
x10*

—— BBO/Complex 1
BBO/Complex 2

FIGURE 8: The feasibility and cost of each objective for the heart dipole problem.

dramatically with this structure, especially for problems with
a large number of subsystems.

The second direction for future research in
BBO/Complex is adaptation. In BBO/Complex, we find
a solution to a complex system with a combination of within-
subsystem migration and cross-subsystem migration. But
other types of migration could be implemented. A proper
migration method can significantly increase performance
for different types of problems. So we can design a series
of migration methods, like migration for complex systems
with tight subsystem coupling, migration for complex
systems with loose subsystem coupling, and migration
for complex systems with many design variables. Then
we can classify the migration methods according to their
performances in various types of problems and create
a BBO/Complex algorithm that adaptively chooses the
most efficient migration methods according to the selected
problem.

TABLE 5: NDRS cost rank and feasibility for the propane combustion
problem after 100,000 function calls. For each metric, a smaller
number means better performance.

Algorithm NDRS cost rank Feasibility
BBO/Complex/Multi 7 0
BBO/Complex/Single 5 0.08
CO 7 0.16
MDF 3 1.00
IDF 5 1.00
Appendix

This appendix gives details about the benchmark problems
used in this paper.

Speed Reducer (see [44, 45, 51]). The speed reducer problem
is a gear box design problem. The objective is to minimize

Mathematical Problems in Engineering

Propane combustion feasibility

3 4 5 6 7
Function evaluations

—— BBO/Complex 1
BBO/Complex 2

()

Propane combustion cost 2

1.4
12 |
1
=
= 08
2
g 06
=~
04 t
0.2
0
0 1
— CO
—o— MDF
--- IDF
2
©)

0 1
— CO
—— MDF
--- IDF

3 4 5 6 7
Function evaluations

—— BBO/Complex 1
BBO/Complex 2

(©)

Cost

Propane combustion cost 1

60

50 f 7 m e

40

30 +

0 1 2 3 4 5 6 7
Function evaluations

— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF

(b)

Propane combustion cost 3

0 1 2 3 4 5 6 7

FIGURE 9: The feasibility and cost of each objective for the propane combustion problem.

the gear box weight and the von Mises stresses for shafts 1
and 2. This problem contains 3 objectives, 11 constraints, and

7 design variables. This problem is defined as follows:

min F, = 0.7854x,x,” (3.3333x,” + 14.9334x, — 43.0934)

— 1.5079x, (x5° + x;7) + 7.477 (x5 + x;°)

+0.7854 (x4x62 + x5x72) ,

745x, *
minFZ:\]< x‘*) +1.69 x 107,

745x5 \
min F; = <) +1.575 x 108

Xy X3

Xy X3

(A1)

Function evaluations x10*
— CO —— BBO/Complex 1
—— MDF BBO/Complex 2
--- IDF
(d)
such that the following constraints hold:
27
- __1<o,
o X157 %3
397.5
=———-1<0,
g x1%,°%x5°
_1.93x,] <0
5= x5 %3%6* o
~1.93x;° <0
97 X, X350," o
V(7455 /%) + 1.69 x 107
= -1100 <0,
95 0.1x43
V(7455 /x,x,) + 1.575 x 108
e = -850<0,

0.1x43

13

14

(A.2)

The objectives, decision variables, and constraints are
defined as follows:

Fy

F,:
F;:

X

e

97

: overall weight of gear box,
von Mises stress for shaft 1,
von Mises stress for shaft 2,
gear face width,

: tooth module,

: number of teeth of pinion,

: distance between bearing 1,

: distance between bearing 2,

: diameter of shaft 1,

: diameter of shaft 2,

: bending stress of gear tooth,

: contact stress of gear tooth,

: transverse deflection of shaft 1,
: transverse deflection of shaft 2,
: stress in shaft 1,

stress in shaft 2,

-g;,: dimension requirement for shafts.

Power Converter (see [44, 51]). The power converter problem
consists of two subsystems—the electrical subsystem and the
loss subsystem. It has 6 design variables, 8 state variables,
2 objectives, and 4 constraints. The system is described as

follows:

TT.
minF, = l0.78 x 10%x,> (6x6 + %)

+[6.747 x 10%x, x,%5 (A3)

5x10% (1 - y,)
88y,

>

min F, = [25x;| +

such that the following constraints hold:

2% (%, - 2x107 - xyx;)

- >0,
9 0.4

Mathematical Problems in Engineering

~5%10% - (565 (1 - y3) /10°x,) (0.3 x 107/x5)

D =

5
>0,
x4 (100 + (5.65 (1 - y,) 0.5/10°x,))
g; =03~ >0,
X2)e
28.25(1 - y,)
=x, - ——— 22 >0
g4 x4 107
(A.4)
The state variables are defined as follows:
y, = |0.78 x 10,2 <6x6 + %)
+ |6.747 X 104x1x2x3| + |25x5|
5% 10% (1 -
+ (1-,)
88y,
500
V2 = 5 >
5 ((3.25x 10%) /32)
500
V3= 2 >
¥, ((3.25 x 10%) /32)
(A.5)
- 500
747 (425 x 102) /32)
 7.6xx,1.724 x 107°
Y5 = X >
2
Y6 = X1 >
- ™
7 = 2 >
_5.65(1+ y3)
Vs = Vex,10°

The objectives, decision variables, states, and constraints
are defined as follows:

Fy

2

X
X,
X5
Xy
Xg:
Xg:

2

weight of primary winding,

F,: weight of secondary winding,

core center leg width,
turns,

copper size,
inductance,
capacitance,

core window width,

component weight,

Mathematical Problems in Engineering

y,: circuit efficiency,

y5: duty cycle,

y,: minimum duty cycle,

ys: inductor resistance,

Ye: core cross-sectional area,
y,: magnetic path length,
yg: inductor value,

g,: fill window constraint,
g, ripple specification,

gs: core saturation,

g,: minimum inductor size.

Heart Dipole (see [44, 51, 52]). The heart dipole problem is
based on the electrolytic determination of the dipole moment
in the heart. This problem contains 2 objectives, 5 constraints,
and 6 design variables. This problem was modified from
its original formulation in order to be testable with MDO
algorithms. Therefore, although the problem is a common
MDO benchmark, the objectives do not have any physical
meaning. The problem is defined as follows:

min Fy = x, ((1 - x,)" - x37) = 2x; (1 - x,) x5
+(1-x) (x22 - x42) —2(1=x;) %%, — 1

+ X, ((1 - x2)2 - x32) +2x; (1 - x,) x5

+(1 —xl)(x2

2 —x42) +2(1-x;) %%, — 1,

minF, = x; (1 - x,) ((1 —x,)’ - 3x32)

+ x5 (%57 =3 (1-x,%))
+(1-x) %, (x,° - 3x,°)
+(1-x) %y (247 - 3%,7) - 1
+x; (1= x,) (1 - x,)" - 3x5,7)
—xyx5 (357 = 3(1 - x,)%)
+(1=2x)) %, (%7 = 3x,%)

— (1) %, (%7 = x,7) - 1,

(A.6)

15
such that the following constraints hold:

g1 = |xaxy + x4 (1= 1) = x5 (1 = x,) — x¢x, — 1] < 0.1,

9r = | x5y + x5 (1= 1) + x5 (1 = x,) + x4%, — 1] < 0.1,

:) 2x, (1 - x2) X3

) -
1—x1)(x2 - X,)—2(1
) -

g3 =% ((1 X

—x;) X% —1>0,

2

g4—x1((1—x2)+2x1(1—x2)x3

+(1-x) (7 = x2) +2 (1= x)) Xy, = 1> 0,
g5 = x; (1-x,) (1 - x,)" = 3x5)
+xx5 (357 = 3(1 - x,)%)
+(1-x) %, (x,° - 3x,7)
+ (1 - x,) x4 (x4
g6 = %, (1-x,) ((1 - x,)" = 3x3%)
— x5 (%57 = 3(1 - %)) + (1= x) %, (2,° = 3%,%)

—(1=x;)x, (x4

(A7)

The objectives, decision variables, and constraints are
defined as follows:

F,:sum of g; and g,,

F,: sum of g5 and g,

x,: magnitude of dipole 1 on x-axis,
x,: magnitude of dipole 2 on x-axis,
x5;: magnitude of dipole 1 on y-axis,
x,: magnitude of dipole 2 on y-axis,
x5: coordinate of dipole 1 on x-axis,
X¢: coordinate of dipole 2 on x-axis,
x,: coordinate of dipole 1 on y-axis,
xg: coordinate of dipole 2 on y-axis,

91-9ge: predefined constraints to determine the mag-
nitude, directions, and locations of two dipoles.

Propane Combustion (see [44, 51, 53]). The propane com-
bustion problem is a chemical equilibrium problem. This

16

problem contains 3 objectives, 4 constraints, and 11 design
variables. This problem is described as follows:

min F; = 2x; + x, + X4 + X; + Xg + X9 + 2%, — 10,

=10
40x '
. _ 1 —
min F, = 1/X,x, —x6\] P Xy = E X

11 i=1

40x
X11

40
Xy - x4x9\]—,

X1

min F; = 1/x;x, — x7\/

such that the following constraints hold:

g1 = 2X; + Xy + X4 + X7 + Xg + X9 +2x,5— 10 > 0,

40
9o = XXy —x6\j sl >0,
X11
gs = x/xlxz—x7\j o s,
11

40
9s = xlx/x—3—x4x9\/x— > 0.

11

The objectives, decision variables, and constraints are
defined as follows:
F,: first product of combustion,
E,: second product of combustion,
F;: sum of third and fourth product of combustion,

x;-x1o: number of moles of each product formed for
each mole of propane burned,

x,: sum of x; to x,0,

gy: first product of combustion,
g,: second product of combustion,
g5: third product of combustion,

ga: fourth product of combustion.

Acknowledgments

This material is based on work supported by the National
Science Foundation under Grant no. 0826124 and by a Disser-
tation Research Award from Cleveland State University. The
comments of an anonymous reviewer were instrumental in
improving this paper.

References

(1] P.Cilliers, Complexity and Postmodernism: Understanding Com-
plex Systems, Routledge, New York, NY, USA, Ist edition, 1998.

[2] J. Allison, Complex system optimization: a review of analytical
target cascading, collaborative optimization, and other formula-
tions [M.S. thesis], Mechanical Engineering Department, Uni-
versity of Michigan, Ann Arbor, Mich, USA, 2004.

Mathematical Problems in Engineering

[3] S. Bradley, A. Hax, and T. Magnanti, Applied Mathematical
Programming, Addison Wesley, Reading, Mass, USA, 1977.

[4] W. Hammond, Design Methodologies for Space Transportation
Systems, American Institution of Aeronautics & Astronautics,
2001.

[5] J. Martins and A. Lambe, “Multidisciplinary design optimiza-
tion: a survey of architectures,” The AIAA Journal, vol. 51, no. 9,
pp. 2049-2075, 2013.

[6] E.]J. Cramer, J. E. Dennis,, P. D. Frank, R. M. Lewis, and G. R.
Shubin, “Problem formulation for multidisciplinary optimiza-
tion,” SIAM Journal on Optimization, vol. 4, no. 4, pp. 754-776,
1994.

[7] S. Kodiyalam and J. Sobieszczanski-Sobieski, “Multidisci-
plinary design optimization—some formal methods, frame-
work requirements, and application to vehicle design,” The
International Journal of Vehicle Design, vol. 25, no. 1-2, pp. 3-22,
2001.

[8] R. Braun, P. Gage, and I. Kroo, “Implementation and per-
formance issues in collaborative optimization,” in Proceedings
of the AIAA/NASA/ISSMO Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, Washington, DC, USA,
1996.

[9] T. Zang and L. Green, “Multidisciplinary design optimization
techniques: implications and opportunities for fluid dynamics
research,” in Proceedings of the 30th AIAA Fluid Dynamics
Conference, Norfolk, Va, USA, 1999.

[10] D. Simon, “Biogeography-based optimization,” IEEE Transac-
tions on Evolutionary Computation, vol. 12, no. 6, pp. 702-713,
2008.

[11] D. Du, D. Simon, and M. Ergezer, “Biogeography-based opti-
mization combined with evolutionary strategy and immigra-
tion refusal,” in Proceedings of the IEEE International Conference
on Systems, Man and Cybernetics, pp. 997-1002, San Antonio,
Tex, USA, 2009.

[12] D. Simon, Evolutionary Optimization Algorithms, John Wiley &
Sons, New York, NY, USA, 2013.

[13] R. Tanese, “Distributed genetic algorithms,” in Proceedings of
the 3rd International Conference on Genetic Algorithms, pp. 434-
439, Fairfax, Va, USA, 1989.

[14] D. Whitley, “An Executable model of a simple genetic algo-
rithm,” in Foundations of Genetic Algorithms 2, D. Whitley, Ed.,
pp- 45-62, Morgan Kaufmann, Boston, Mass, USA, 1993.

[15] R. Schaefer, A. Byrski, and M. Smotka, “The island model as a
Markov dynamic system,” The International Journal of Applied
Mathematics and Computer Science, vol. 22, no. 4, pp. 971-984,
2012.

[16] D. Whitley, S. Rana, and R. Heckendorn, “The island model
genetic algorithm: on separability, population size and conver-
gence,” Journal of Computing and Information Technology, vol.
7, pp. 33-47,1998.

(17] D. Whitley, “An overview of evolutionary algorithms: practical
issues and common pitfalls,” Information and Software Technol-
0gy, vol. 43, no. 14, pp. 817-831, 2001.

[18] J. Laessig and D. Sudholt, “Design and analysis of migration in
parallel evolutionary algorithms,” Soft Computing, vol. 17, no. 7,
pp. 1121-1144, 2013.

[19] N. Chakraborti and A. Kumar, “The optimal scheduling of a
reversing strip mill: studies using multipopulation genetic algo-
rithms and differential evolution,” Materials and Manufacturing
Processes, vol. 18, no. 3, pp. 433-445, 2003.

»
>

Mathematical Problems in Engineering

[20] G. Luque and E. Alba, Parallel Genetic Algorithms: Theory and
Real World Applications, Springer, Berlin, Germany, 2011.

[21] O. Chikumbo and I. Nicholas, “Efficient thinning regimes for
Eucalyptus fastigata: multi-objective stand-level optimisation
using the island model genetic algorithm,” Ecological Modelling,
vol. 222, no. 10, pp. 1683-1695, 2011.

[22] R. Mukherjee and S. Chakraborty, “Selection of EDM process
parameters using biogeography-based optimization algorithm,”
Materials and Manufacturing Processes, vol. 27, no. 9, pp. 954-
962, 2012.

[23] R. Rarick, D. Simon, E E. Villaseca, and B. Vyakaranam,
“Biogeography-based optimization and the solution of the
power flow problem,” in Proceedings of the IEEE International
Conference on Systems, Man, and Cybernetics, pp. 1003-1008,
San Antonio, Tex, USA, 2009.

[24] G. Thomas, P. Lozovyy, and D. Simon, “Fuzzy robot controller
tuning with biogeography-based optimization,” in Proceedings
of the 24th International Conference on Industrial Engineering
and Other Applications of Applied Intelligent Systems, pp. 319-
327, Syracuse, NY, USA, 2011.

[25] S. Nikumbh, S. Ghosh, and V. Jayaraman, “Biogeography-based
informative gene selection and cancer classification using SVM
and random forests,” in Proceedings of the IEEE World Congress
on Computational Intelligence, pp. 187-192, Brisbane, Australia,
2012.

[26] W. Gong, Z. Cai, and C. X. Ling, “DE/BBO: a hybrid differential
evolution with biogeography-based optimization for global
numerical optimization,” Soft Computing, vol. 15, no. 4, pp. 645-
665, 2011.

[27] L. Goel, D. Gupta, and V. K. Panchal, “Hybrid bio-inspired
techniques for land cover feature extraction: a remote sensing
perspective,” Applied Soft Computing Journal, vol. 12, no. 2, pp.
832-849, 2012.

[28] H. Kundra and M. Sood, “Cross-country path finding using
Hybrid approach of PSO and BBO,” International Journal of
Computer Applications, vol. 7, pp. 15-19, 2010.

[29] P. Arora, H. Kundra, and V. Panchal, “Fusion of biogeography
based optimization and artificial bee colony for identification
of natural terrain features,” International Journal of Advanced
Computer Science and Applications, vol. 3, pp. 107-111, 2012.

[30] G. Wang, L. Guo, H. Duan, H. Wang, L. Liu, and M. Shao,
“Hybridizing harmony search with biogeography based opti-
mization for global numerical optimization,” Journal of Com-
putational and Theoretical Nanoscience, vol. 10, pp. 2312-2322,
2013.

[31] H.Ma, M. Fei, D. Simon, and M. Yu, “Biogeography-based opti-
mization for noisy fitness functions,” submitted for publication,
2013, http://academic.csuohio.edu/simond/bbo/noisy.

[32] P. K. Roy, S. P. Ghoshal, and S. S. Thakur, “Biogeography
based optimization for multi-constraint optimal power flow
with emission and non-smooth cost function,” Expert Systems
with Applications, vol. 37, no. 12, pp. 8221-8228, 2010.

[33] Y. Song, M. Liu, and Z. Wang, “Biogeography-based optimiza-
tion for the traveling salesman problems,” in Proceedings of the
3rd International Joint Conference on Computational Sciences
and Optimization, pp. 295-299, Huangshan, China, 2010.

[34] P. K. Roy, S. P. Ghoshal, and S. S. Thakur, “Multi-objective
optimal power flow using biogeography-based optimization,’
Electric Power Components and Systems, vol. 38, no. 12, pp. 1406
1426, 2010.

[35] A. Bhattacharya and P. K. Chattopadhyay, “Application of
biogeography-based optimization for solving multi-objective

(37

(38

[41

(42

[43

(50

[51

J

]

]

]

]

]

17

economic emission load dispatch problems;” Electric Power
Components and Systems, vol. 38, no. 3, pp. 340-365, 2010.

P. K. Roy, S. P. Ghoshal, and S. S. Thakur, “Biogeography based
optimization technique applied to multi-constmints economic
load dispatch problems,” in Proceedings of the Transmission and
Distribution Conference and Exposition: Asia and Pacific, Seoul,
Repuplic of Korea, October 2009.

J. Abell and D. Du, “A framework for multiobjective,
biogeography-based optimization of complex system families,”
in Proceedings of the AIAA/ISSMO Multidisciplinary Analysis
Optimization Conference, Fort Worth, Tex, USA, 2010.

K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE
Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182-
197, 2002.

D. Goldberg, Genetic Algorithm in Search, Optimization, and
Machine Learning, Addison-Wesley, Boston, Mass, USA, 1989.

N. Srinivas and K. Deb, “Multiobjective optimization using
nondominated sorting in genetic algorithms,” IEEE Transac-
tions on Evolutionary Computation, vol. 2, no. 3, pp. 221-2438,
1994.

M. Fonseca and P. Fleming, “Genetic algorithms for multiobjec-
tive optimization: formulation, discussion and generalization,”
in Proceedings of the International Conference on Genetic Algo-
rithms, pp. 416-423, Urbana-Champaign, I1l, USA, 1993.

R. J. Hathaway and J. C. Bezdek, “Fuzzy c-means clustering

of incomplete data,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 31, no. 5, pp. 735-744, 2001.

P. Austin, Cracking the Roulette Wheel: The System & Story
of the CPA Who Cracked the Roulette Wheel, CreateSpace
Independent Publishing Platform, 3rd edition, 2010.

S. Kodiyalam, “Evaluation of methods for multidisciplinary
design optimization (MDO), phase I,” NASA CR-1998-208716,
National Aeronautics and Space Administration, Langley
Research Center, Hampton, Va, USA, 1998.

X. Chen, B. Li, and Y. Lin, “Multidisciplinary design optimiza-
tion with a new effective method,” The Chinese Journal of
Mechanical Engineering, vol. 23, no. 4, pp. 505-510, 2010.

M. Xiao, L. Gao, H. B. Qiu, X. Y. Shao, and X. Z. Chu, “An
approach based on enhanced collaborative optimization and
kriging approximation in multidisciplinary design optimiza-
tion,” Advanced Materials Research, vol. 118-120, pp. 399-403,
2010.

K. Jamuna and K. S. Swarup, “Multi-objective biogeography
based optimization for optimal PMU placement,” Applied Soft
Computing Journal, vol. 12, no. 5, pp. 1503-1510, 2012.

P. K. Roy and D. Mandal, “Quasi-oppositional biogeography-
based optimization for multi-objective optimal power flow;”
Electric Power Components and Systems, vol. 40, no. 2, pp. 236
256, 2011.

G. Rudolph, “Convergence analysis of canonical genetic algo-
rithms,” IEEE Transactions on Neural Networks, vol. 5, no. 1, pp.
96-101, 1994.

D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov models
for biogeography-based optimization,” IEEE Transactions on
Systems, Man, and Cybernetics B, vol. 41, no. 1, pp. 299-306, 2011.
L. Padula, N. Alexandrov, and L. Green, “MDO test suite
at NASA Langley research center; in Proceedings of the
AIAA/NASA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Bellevue, Washington, DC, USA, 1996.

18

[52] A. P. Morgan, A. Sommese, and L. T. Watson, “Mathematical
reduction of a heart dipole model,” Journal of Computational
and Applied Mathematics, vol. 27, no. 3, pp. 407-410, 1989.

[53] N. P. Tedford and J. R. R. A. Martins, “Benchmarking multi-
disciplinary design optimization algorithms,” Optimization and
Engineering, vol. 11, no. 1, pp- 159-183, 2010.

Mathematical Problems in Engineering

Copyright of Mathematical Problemsin Engineering is the property of Hindawi Publishing
Corporation and its content may not be copied or emailed to multiple sites or posted to a
listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individua use.

