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Abstract 

The Fuzzy C-Means (FCM) algorithm is commonly 
used for clustering. The performance of the FCM 
algorithm depends on the selection of the initial cluster 
center and/or the initial membership value. r f  a good 
initial cluster center that is close to the actualfinal cluster 
center can be found the FCM algorithm will converge 
very quickly and the processing time can be drastically 
reduced. 

In this papec we propose a novel algorithm for eficient 
clustering. This algorithm is a modrfied FCM called the 
psFCM algorithm, which signrficantly reduces the 
computation time required to partition a dataset into 
desired clusters. We find the actual cluster center by using 
a simplified set of the original complete dataset. It refines 
the initial value of the FCM algorithm to speed up the 
convergence time. Our experiments show that the 
proposed psFCM algorithm is on average four times 
faster than the original FCM algorithm. We also 
demonstrate that the quality of the proposed psFCM 
algorithm is the same as the FCM algorithm. 

1. Introduction 

Clustering is a process of partitioning or grouping a 
given set of unlabeled patterns into a number of clusters 
such that similar patterns are assigned to one cluster. 
There are two main approaches to clustering. One method 
is crisp clustering (or hard clustering), and the other one is 
fuzzy clustering. A characteristic of the crisp clustering 
method is that the boundary between clusters is fully 
defined. However, in many real cases, the boundaries 
between clusters cannot be clearly defined. Some patterns 
may belong to more than one cluster. In such cases, the 
hzzy  clustering method provides a better and more useful 
method to classify these patterns. 

There are many fuzzy clustering methods being 
introduced [ I  1. The fuzzy C-means (FCM) algorithm is 

widely used. It is based on the concept of h z z y  
C-partition, which was introduced by Ruspini [2], 
developed by Dunn [3], and generalized by Bezdek [4,5]. 
The FCM algorithm and its derivatives have been used 
very successfully in many applications, such as pattern 
recognition [6], classification [7], data mining [SI, and 
image segmentation [9,10]. It has also been used for data 
analysis and modeling [ 1 1,121 etc. 

Normally, the FCM algorithm consists of several 
execution steps. In the first step, the algorithm selects C 
initial cluster centers from the original dataset randomly. 
Then, in later steps, after several iterations of the 
algorithm, the final result converges to the actual cluster 
center. Therefore, choosing a good set of initial cluster 
centers is very important for an FCM algorithm. However, 
it is difficult to select a good set of initial cluster centers 
randomly. If a good set of initial cluster centers is chosen, 
the algorithm may take less iterations to find the actual 
cluster centers. 

To show that selecting a set of initial cluster centers 
that approximates the actual cluster centers can reduce the 
number of iterations and improve the system performance, 
we use Figures 1 and 2 for illustration. Using the target 
tracking by initializing each iteration in the procedure 
with the clustering result from the previous one can speed 
up the convergence significantly. Since the number of 
iterations required in the FCM algorithm strongly depends 
on the initial cluster centers, the goal of our proposed 
method is to find a good set of initial cluster centers. 

In [13], Cheng et al. propose the multistage random 
sampling FCM algorithm. It is based on the assumption 
that a small subset of a dataset of feature vectors can be 
used to approximate the cluster centers of the complete 
dataset. Under this assumption FCM is used to compute 
the cluster centers of an appropriate size subset of the 
original dataset. After obtaining the cluster centers of this 
small subset, the subset of data is merged with an 
additional small, randomly selected subset of the 
remaining unprocessed feature vectors to form a larger 
subset that is processed by FCM. The previously 
calculated cluster centers are used for the initialization of 
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the fuzzy partition matrix of this newly formed set. The 
procedure above is repeated until the size of the feature 
vectors matrix used in calculations is large enough to 
approximate the actual cluster center of the hll dataset. 
The resulting cluster centers are then used for the 
initialization of the fuzzy partition matrix used by FCM 
when it is applied to the original dataset. This results in a 
faster convergence for the FCM algorithm. 
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rigure 1 .  An example showing the convergence paths from 
three distant initial cluster centers to the final actual cluster 
centers after seven iterations by using the FCM algorithm. 

2 4 6 8 IO " 12 I4 16 :I 
.gure 2. An example of improved initial cluster centers that 

are near the final cluster centers requiring only three FCM 
iterations. 

The FCM algorithm and its derivatives have the 
iterative nature of  an algorithm. In addition, their 
calculation often involves a huge number of membership 
matrices and candidate cluster centers matrices. It is a 
computationally intensive method. In our study, we 
mitigate the time problem by simplifying the computation 
and reducing the number of iterations required to 
converge. The idea of the proposed method is to simplify 
the dataset and find an initial candidate set of cluster 

centers as close as possible to the actual cluster centers. 
This will reduce the number of iterations and improve the 
execution performance. The initial cluster center found by 
the proposed algorithm approximates the actual cluster 
center very well. 

This efficient algorithm for improving the FCM is 
called the partition simpfrfication FCM (psFCM). It is 
divided into two phases. In Phase I ,  we first partition the 
dataset into some small block cells using the k-d tree 
method [I41 and reduce the original dataset into a 
simplrfied dataset with unit blocks as  described in our 
previous work [15]. All patterns in a unit block are 
replaced by the centroid of these patterns. Then, the large 
number of patterns in the original dataset is drastically 
reduced to a small number of unit blocks' centroids, i.e., 
the simplified dataset. Secondly, we find the actual cluster 
center of this simplified dataset by the FCM algorithm. In 
Phase II, it is a standard process of the FCM with the 
cluster centers initialized by the final cluster centers from 
Phase I. The execution performance of the psFCM is 
much better than that of the FCM and its derivatives. 

The rest of the paper is organized as follows. The 
review of the previously proposed approach for the FCM 
algorithm is in Section 2. In Section 3, we discuss the 
proposed algorithm. In Section 4, we show the 
experimental results and discuss the time complexity and 
accuracy issue. Finally, in Section 5, we conclude the 
paper. 

2. Related Work 

In this section, we briefly describe the Fuzzy C-means 
algorithm. Consider a set of unlabeled patterns 
X={x,,x2, ..., x,~} ,  X,E A/, where N is the number of patterns 
and f is the dimension of paftern vectors (features). The 
FCM algorithm focuses on minimizing the value of an 
objective function. The objective fbnction measures the 
quality of the partitioning that divides a dataset into C 
clusters. 

The FCM algorithm measures the quality of the 
partitioning by comparing the distance from pattern x, to 
the current candidate cluster center wI with the distance 
from pattern x, to other candidate cluster centers. The 
objective hnction is an optimization hnction that 
calculates the weighted within-group SUM of squared 
errors (WGSS) as follows [ 5 ] :  

where: 
N :  the number of patterns in X 
C: the number of clusters 
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U: the membership function matrix; the elements of U Step 3 :  Increase t by one. Compute the new cluster 
are P.; center matrix (candidate) F@ by using (7). . *I 

Step 4: Compute the new membership matrix v"! by 

Step 5: If 1 1  rf"- fl-') )I  < E then stop, otherwise go to 

p, : the value of the membership function of the th 

dg: the distance from x, to wJ, viz., d,,= IIx, - w ; ) l l  ; where 

using functions ( 5 )  and (6). 

step 3. 
pattern belonging to thej* cluster 

w:) denotes the cluster center of thej th  cluster for 

the t' iteration 
W the cluster center vector 
m: the exponent on pu ; to control fuzziness or amount 

of clusters overlap 

The FCM algorithm focuses on minimizing J,, subject 
to the following constraints on U: 

p,, E [0,1] ' i = l ,  ..., N a n d j = l ,  ..., c (2) 

N 

O < c p , ,  < N  ' j = l ,  ..., C 
,=I  

(4) 

Function (1) describes a constrained optimization 
problem, which can be converted to an unconstrained 
optimization problem by using the Lagrange multiplier 
technique. 

If d,  =O then p,=1 and p,,=O for l # j  ( 6 )  

The FCM algorithm starts with a set of initial cluster 
centers (or arbitrary membership values). Then, it iterates 
the two updating functions (5) and (7) at the ihiteration 
until the cluster centers are stable or the objective function 
in (1) converges to a local minimum. The complete 
algorithm consists of the following steps: 

Step 1 :  Given a fixed number C, initialize the cluster 
center matrix uXo' by using a random generator from the 
original dataset. Record the cluster centers, set t=O, m = 2, 
and decide E , where E is a small positive constant. 

Step 2: Initialize the membership matrix do) by using 
functions (5) and (6) .  

3. Our Proposed Algorithm 

In this section, we propose a novel method for the 
clustering problem. The proposed psFCM algorithm can 
speed up the overall computation time and reduce the total 
number of calculations. The main idea of the proposed 
algorithm is to refine the initial cluster centers (initial 
prototypes). It finds a set of initial cluster centers that is 
very close to the actual cluster centers of the dataset. 

First, we give an introductory explanation of the 
proposed algorithm followed by a formal description. The 
psFCM algorithm consists of two phases. Phase I is a 
sequence of processes that refines the initial cluster 
centers. In the first stage, we partition the dataset into 
several unit blocks by using the k-d tree method [14]. 
There must be at least one pattern in each unit block. Thus, 
the actual number of unit blocks depends on the size and 
pattern distribution of the dataset. For each unit block, we 
calculate the centroid of patterns in the unit block. The 
centroid of patterns will be used to represent all the 
patterns in this unit block. By doing so, a dataset X, can 
be drastically reduced to a simplified dataset X,, 
containing the centroids of the original patterns. 

In the second stage, we apply the FCM algorithm to 
find the cluster centers of the simplified dataset 
X,, = (T,,F2 ,..., Z p s ) ,  2, E R f .  The number of centroids in 
the simplified dataset is Nps. It is equivalent to the number 
of unit blocks N,,h. Since NpJ<< N, we may reduce the 
number of calculations of the norm distance. This reduces 
the overall computation time. 

The cluster centers found in Phase I are used in Phase 
11. In Phase 11, we apply the FCM algorithm to find the 
actual cluster center of the dataset. That is, the cluster 
centers found in Phase I are the initial values of the fuzzy 
partition matrix used by the FCM algorithm in Phase 11. 
The process in Phase I1 converges quickly because the 
initial cluster centers are near the location of the actual 
cluster centers. 

Before we show details of the psFCM algorithm, there 
are several parameters that need to be defined. They are 
the number of clusters C, the weight exponent m, the 
number of unit blocks NIlh(the number of splits with the 
k-d tree method), and the stopping conditions E and E 

in Phases I and 11, respectively. Here, we let the weight 
exponent m be 2. The number of unit blocks depends 
on the total number of patterns N and the distribution of 
the dataset. The value of E and E is decided from 

- 
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experiments as explained in Section 4. 

as follows: 
The proposed psFCM algorithm consists of two phases R 

3.1. Phase I : Refine initial prototypes for fuzzy 
C-means clustering 

: . i  \ i- 7 

Stepl: 
First, we partition the dataset into unit blocks by using 

the k-d tree method. The splitting priority depends on the 
scattered degree of data values for each dimension. If one 
dimension has a higher scattered degree, it has a higher 
priority to be split. The scattered degree is defined as the 
distribution range and the standard deviation of the feature. 
The formula of the scattered degree is as follows: 

7 

G 

5 

4 

i 

1 -  

0 

R, = ( X m a  - XIn," 1, , = 1, , f (8) 
0, 

Where 
R, : the scattered degree for the ith feature (dimension) 
Xmm: the maximum value of pattern in the ith feature 
X,,,,, : the minimum value of pattern in the ith feature 
0,: the standard deviation of all patterns in the ith 

f: the number of features (dimensions) 
feature 

The k-d tree is a kind of binary partition based on the 
difference between the maximum and minimum values of 
the partition dimension. Thus, we may easily acquire the 
range of each block in each dimension. If the number of 
splits isp,  N,,hS2p. 

After splitting the dataset into unit blocks, every unit 
block may contain some sample patterns. There must be at 
least one pattern in each unit block. If there is no sample 
pattern in a unit block, the unit block will then be 
discarded. We do not consider such a unit block in the 
following steps. Figure 3 gives an example where a 
two-dimension dataset is divided into several unit blocks. 
Here, we only have to scan the database twice to identify 
the location of each sample pattern. 

Step 2: 
After splitting the dataset into unit' blocks, we calculate 

the centroid ,y, for each unit block that contains some 
sample patterns. The centroid x, represents all sample 
patterns in this unit block. Then, we use all of these 
centroids 2, to denote the original dataset. Figure 4 
gives an example in which original patterns are 
represented by all the computed centroids z, . 

,,LA . .L -/ I 
0 1 7 7 1 5 6 7 A c J  

Figure 3. Partitioning the original dataset into several unit 
blocks. 

Figure 4. The simplified dataset of Figure 3. 

In addition, each centroid contains statistical 
information of the patterns in each unit block. These 
include the number of patterns in a unit block ( WUB) and 
the linear sum of all patterns in a unit block (LSUB). 
When we scan the database the second time, it also finds 
the statistics of each dimension. These statistics will be 
used when the algorithm calculates new candidate cluster 
centers, which improves the system performance. 

The formula of calculating the centroid in the i lh unit 
block is as follows: 

- LSUB, x, =- 
WUB, 

(9) 

The algorithm to split a dataset into unit blocks and to 
form the simplified dataset is shown in Figure 5. 

Step 3: 
Initialize the cluster center matrix do' by using a 

random generator from the dataset, record the cluster 
centers, and set FO. 

Step 4: 
Initialize the membership matrix cfo) by using 

functions (5) and (6)  with the simplified dataset 
X, = (X,, Z2 ,..., Z P s )  and i = 1 ,..., N ,  . 
- 
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Phase 11. 
Proc partition-dataset (original dataset) 

for each dimension D., of the dataset 

I* Find the range for dimension D., */ 

Range-MaxV] = the maximum value of dimension D 

Range-MinV] = the minimum value of dimension D 
I* Calculate the interval of segment it would partition for 
dimension D.f *I 

I* Num-of-SplitV] is the number of splits for dimension 

Interval-of-SegV] = ( Range-MuxV] - Range-MinV] ) I 
Num-of-Split V] 

/* Calculate the UB to which pattern ,y, [f] belongs *I 

for each dimension D,/ of X, , named x,[fl 
Point-in-DimV] = ( x,[f] - Range-MinV] ) I 

Interval-of-Seg V] 
/* Use the value of Point-in-DimV] to calculate the ,y4 
to which ,y,[fl belongs, named UB-Location of x,[f] 
*I 

J 

.I 

D.f */ 

for each pattern X, 

I* Calculate LSUB and CVUB for each UB, *I 

UBgrocess  ( ,y, if], UB-Locution ) 

/* Compute ,i, : Centroid of Unit Block i *I 
- LSUBz x, =- 

WUBz 
End partition-dataset 

Figure 5. The algorithm to partition the original dataset to form 
the simplified dataset. 

Step 5: 

matrix (candidate) do by using function ( 1  0). 
Increase t (i.e., t=t+l); compute a new cluster center 

where n, denotes the number of patterns of the ifh unit 
block. 

Step 6: 
by using 

functions (5) and (6) with the simplified dataset 
X ,  = (XI ,X2 ,..., Xp,, ) and i = 1 ,..., NI,> . 

Compute the new membership matrix 

- 

Step'7: 
2~1, go to Step 5, otherwise go to II 

3.2. Phase 11: Find the actual cluster centers for 
the dataset 

Stepl: 
Initialize the fuzzy partition matrix U''' by using the 

results of ux" from Phase I with functions (5) and (6) for 
the dataset X. 

Step 2: 

discussed in Section 2 using the stopping condition E ~ .  

Follow Step 3 to Step 5 of the FCM algorithm 

4. Experiments and Results 

In this section, we discuss our experimental results, the 
time complexity of the proposed method, and its accuracy. 
The datasets used in the experiments are described in 
Section 4.1. Section 4.2 shows the experimental results. In 
Section 4.3, we discuss our findings. 

4.1 Dataset Description 

In this paper, we focus on improving the time 
complexity of the fuzzy C-means algorithm. To show that 
the result of our proposed algorithm is correct and more 
efficient than the other algorithms, we performed a series 
of experiments. Table I shows the datasets used in the 
experiments, where N is the number of patterns, C is the 
number of clusters, and f is the dimension of pattern 
vectors (features). 

The datasets are generated by using the following 
criteria: 
1) The datasets from DI to Dlo are generated from a 

normal distribution. Here, we generate normally 
distributed data points (patterns) by using the 
Marsaglia 's Polar method [ 171. The standard deviation 
of these data points in each cluster is 1. We randomly 
select C data points from the range [0,4c]. These C 
data points may be treated as the mean value of the 
normal distribution of each cluster. Every cluster has 
the same number of data points NIC that is around a 
specific mean value, and clusters can overlap. 

2) The datasets from RI to R, are generated from a 
unijorm distribution. Any two clusters cannot overlap. 
The number of data points (patterns) in each cluster is 
the same, which is NIC. 

3) The datasets from R5 to RIO are also generated from a 
uniform distribution. However, clusters can overlap. 
The number of data points in each cluster is different. 
Each cluster has N = i x  2 N  data points, where i 

= 1,2 ,...) c. 
' C(C + 1) 
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Dg 

1 R,,, I 32k I 2 I 16 1 Random I 10.11 I 

~~ 

64k 2 32 I N o r m a l  I [0,4C] 

4.2 Experimental Results 

D7 1 64k I 2 

The experiment datasets (D,  - Dlo and RI - R I O )  are 
used to run on two personal computers. One is a Pentium 
ZZZ personal computer with the following specification: a 
clock rate of 800MHz and memory size of 512 Mbytes. 
The other is a Ceferon personal computer with a clock rate 
of 433Hz and memory size of 64 Mbytes. 

When we run the experiments using the FCM 
algorithm, different random initialization sets may result 
in different numbers of  convergence iterations. Therefore, 
we run the proposed psFCM algorithm and the FCM 
algorithm with each dataset in ten trials. In each trial, the 
initial cluster centers are initialized in a random fashion. 
The same initial cluster centers are used by both the 
psFCM algorithm and the FCM algorithm. 

The execution performance of the psFCM algorithm 
and the FCM algorithm is shown in Tables 2 and 3. Here, 
the comparison is based on the two factors: the factor 
reduction in overall time (FRT) and the factor reduction in 
distance calculations (FRD) [16]. From the results in 
Tables 2 and 3, the execution performance of the psFCM 
algorithm is approximately four times better than that of 
the FCM algorithm. 

In the experiment of the psFCM algorithm, the 
stopping condition E~ of Phase I is set to 0.1. The number 
of convergence iterations may be reduced in Phase I1 if we 
let E~ have a smaller value. The stopping condition E~ for 
Phase I1 in the psFCM algorithm and the FCM algorithm 
is 0.4 for both. 

64 1 Normal I [0,4C] 

Table 2. The overall result of the normal distribution 
datasets D, to D,,, where the number of splits for the k-d 

Rj 
&, 
R, 

tree in the psFCM is 14. 
1 No. of I FCM I osFCM I 

4 86 870400 23 240277 3 7 4  3 6 2  
8 418 4069382 86 869598 4.86 4.68 
16 1192 10848973 339 3106970 3 52 3 49 

(DatasetslClustersl Total time I Distance /Total time1 Distance I FRT I FRD 1 

Rx 4 126 1305600 
R, 8 631 6143232 
RIO 16 2277 20679629 

I Dr I 8 I 2283 I149504001 348 I2658806 I 6.56 I 5.62 I 

30 343549 4 2  3 8 
86 929968 7 3 4  6 6 1  

395 3727757 5 76 5 5 5  

D, I 16 I 5423 1335872001 1153 I7894640 I 47 I 4 2  
Dlo I 32 1 12051 1876544001 3038 1237942781 3 9 7  [ 3 6 8  

Table 3. The overall result of the uniform distribution 
datasets R,  to RJo where the number of sulits for the k-d 
tree in thepsFCM is 13. 

I No. of I FCM I osFCh1 I 
IDatasetslClurterst Total time I Distance j Total time1 D i s t k e  I FRT I FRD I 

To get the simplified dataset, the original dataset is 
divided into many equal size unit blocks by the psFCM 
algorithm. As mentioned in Section 3, all the patterns in 
one unit block are replaced by the centroid of the unit 
block. From the results of the experiments, we show that 
the proposed algorithm reduces a significant amount of 
time in Phase I. 

To understand the relationship between the number of 
splits with the k-d tree method and the execution 
performance (speedup), we select some datasets (with 
different N or C )  and compare the execution performance 
of these datasets by splitting them into a different number 
of unit blocks. Here, we measure the execution 
performance by using FRT. The results are shown in 
Figures 6 and 7. Figure 6 depicts the relationship between 
the number of splits and the speedup of execution time for 
datasets R2 and R4 whose sizes are 16k and 32k, 
respectively, while the number of clusters is the same (8 
clusters). Figure 7 shows the relationship between the 
number of splits and the speedup of execution time for 
datasets Rl  and R2 whose sizes are the same (1 6k) while 
the numbers of clusters are 4 and 8 clusters, respectively. 
We find the optimal number of splits is around 12. We 
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also investigate the relationship between the number of 
clusters and the speedup of execution time. The 
experiment result is shown in Figure 8. The normal 
distribution dataset has a size of 64K, and the number of 
splits is 14. The decline of the speedup at 32 and 64 
clusters can be rectified by increasing the number of splits. 
For example, when we adjust the number of splits to 16, 
the performance for the 64 clusters can be improved to a 
speedup of 3.81. 

I 
IO I I  12 13 14 15 16 

The number of splits by using the k d  tree method 

Figure 6. The relationship between the number of splits and the 
speedup of execution time for datasets R2 and RI.  

I 
IO I I  12 13 14 I5  16 

The number of splits by using the k-d tree method 

Figure 7. The relationship between the number of splits and the 
speedup of execution time for datasets RI and R2. 

E O  I 
4 8 16 32 64 

The number of clusters 

Figure 8. The relationship between the number of clusters and 
the speedup of execution time. 

4.3 Discussions 

From the experimental results described in the last 
section, the proposed psFCM algorithm has approximately 
the same speedup for the patterns of normal distribution as 
well as uniform distribution. In general, our method works 
well for most kinds of datasets. 

In Phase I of the psFCM algorithm, the cluster centers 
found by using the simplified dataset is very close to the 
actual cluster centers. Phase I1 converges quickly if we 
use these cluster centers from Phase I as the initial cluster 
centers of Phase 11. From the experiments, in most cases, 
Phase I1 converges in only a few iterations. For the 
psFCM algorithm, the system requires more iterations to 
converge if the stopping condition is smaller. However, 
the number of patterns used in Phase I of the proposed 
algorithm is Np.,. The total number of norm distance 
calculations by the proposed algorithm is much smaller 
than the FCM algorithm because N,,<< N .  

For the FCM algorithm, the system has to calculate the 
norm distance from each pattern to every candidate cluster 
center in each iteration. After calculating the norm 
distance, the system computes the membership matrix. 
Therefore, if the dimension of a dataset is f, the time 
complexity to calculate the distance is 00. If there are N 
patterns and C clusters, the time complexity to calculate 
the membership matrix for each iteration is OcfNc). Thus, 
the time complexity is proportional to the number of 
patterns N and the number of clusters C. However, we 
have demonstrated that the time complexity to calculate 
the membership matrix for each iteration using the psFCM 
algorithm is Oylv,,C). 

Here, we randomly select the initial cluster centers in 
Step 3 of the psFCM algorithm. Generally, the density of 
patterns near the cluster center is high. As mentioned in 
Section 3, the psFCM algorithm divides the dataset into 
unit blocks. The number of patterns in each unit block 
may be different. That is, the density of patterns in each 
unit block is different. We may randomly select C initial 
cluster centers W,(O)  from the unit blocks with a higher 
pattern density. This will provide a better result. 

The FCM algorithm does not guarantee that the cost 
fimction will converge to the local minimum, but it may 
converge to some saddle point. 

5. Conclusions 

In this paper, we proposed a novel method for efficient 
clustering that is better than the FCM algorithm. We 
reduce the computation cost and improve the performance 
by finding a good set of initial cluster centers. 

The psFCM algorithm divides a dataset into several 
unit blocks. The centriods of unit blocks replace the 
patterns and form a new dataset, the simplified dataset. As 
mentioned in Section 4, the simplified dataset decreases 
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the time complexity of computing the membership matrix 
from Oylvc) to Oulv,lC) in every iteration. The number 
of iterations needed to converge in Phase I1 of the psFCM 
algorithm is also less than the number of convergence 
iterations of the FCM algorithm. From the experimental 
results, we have shown that the proposed algorithm 
improves the speedup in the execution time and the 
distance calculation. For large datasets, the psFCM 
algorithm improves the performance even more. We also 
demonstrate that the quality of our algorithm is the same 
as the FCM algorithm. 

For a fair comparison, the initialization in Phase I of 
the psFCM algorithm and the FCM algorithm is 
determined randomly. We have also found in the psFCM 
algorithm that an initial cluster center selected from a unit 
block with a higher density is closer to the actual cluster 
center. This is a feature that cannot be found using the 
FCM algorithm and its derivatives. In future work, we 
will study this feature more thoroughly. 
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