
An Efficient Fuzzy C-Means Clustering Algorithm

Ming-Chuan Hung and Don-Lin Yang
Department of Information Engineering, Feng Chia University

100 Wenhwa Rd., Taichung, Taiwan 407
E-mail: mchong@fcu. edu. tw, dlyang@fcu. edu. tw

Abstract

The Fuzzy C-Means (FCM) algorithm is commonly
used for clustering. The performance of the FCM
algorithm depends on the selection of the initial cluster
center and/or the initial membership value. r f a good
initial cluster center that is close to the actualfinal cluster
center can be found the FCM algorithm will converge
very quickly and the processing time can be drastically
reduced.

In this papec we propose a novel algorithm for eficient
clustering. This algorithm is a modrfied FCM called the
psFCM algorithm, which signrficantly reduces the
computation time required to partition a dataset into
desired clusters. We find the actual cluster center by using
a simplified set of the original complete dataset. It refines
the initial value of the FCM algorithm to speed up the
convergence time. Our experiments show that the
proposed psFCM algorithm is on average four times
faster than the original FCM algorithm. We also
demonstrate that the quality of the proposed psFCM
algorithm is the same as the FCM algorithm.

1. Introduction

Clustering is a process of partitioning or grouping a
given set of unlabeled patterns into a number of clusters
such that similar patterns are assigned to one cluster.
There are two main approaches to clustering. One method
is crisp clustering (or hard clustering), and the other one is
fuzzy clustering. A characteristic of the crisp clustering
method is that the boundary between clusters is fully
defined. However, in many real cases, the boundaries
between clusters cannot be clearly defined. Some patterns
may belong to more than one cluster. In such cases, the
hzzy clustering method provides a better and more useful
method to classify these patterns.

There are many fuzzy clustering methods being
introduced [I 1. The fuzzy C-means (FCM) algorithm is

widely used. It is based on the concept of h z z y
C-partition, which was introduced by Ruspini [2],
developed by Dunn [3], and generalized by Bezdek [4,5].
The FCM algorithm and its derivatives have been used
very successfully in many applications, such as pattern
recognition [6], classification [7], data mining [SI, and
image segmentation [9,10]. It has also been used for data
analysis and modeling [1 1,121 etc.

Normally, the FCM algorithm consists of several
execution steps. In the first step, the algorithm selects C
initial cluster centers from the original dataset randomly.
Then, in later steps, after several iterations of the
algorithm, the final result converges to the actual cluster
center. Therefore, choosing a good set of initial cluster
centers is very important for an FCM algorithm. However,
it is difficult to select a good set of initial cluster centers
randomly. If a good set of initial cluster centers is chosen,
the algorithm may take less iterations to find the actual
cluster centers.

To show that selecting a set of initial cluster centers
that approximates the actual cluster centers can reduce the
number of iterations and improve the system performance,
we use Figures 1 and 2 for illustration. Using the target
tracking by initializing each iteration in the procedure
with the clustering result from the previous one can speed
up the convergence significantly. Since the number of
iterations required in the FCM algorithm strongly depends
on the initial cluster centers, the goal of our proposed
method is to find a good set of initial cluster centers.

In [13], Cheng et al. propose the multistage random
sampling FCM algorithm. It is based on the assumption
that a small subset of a dataset of feature vectors can be
used to approximate the cluster centers of the complete
dataset. Under this assumption FCM is used to compute
the cluster centers of an appropriate size subset of the
original dataset. After obtaining the cluster centers of this
small subset, the subset of data is merged with an
additional small, randomly selected subset of the
remaining unprocessed feature vectors to form a larger
subset that is processed by FCM. The previously
calculated cluster centers are used for the initialization of

0-7695-1 119-8/01 $17.00 0 2001 IEEE 225

the fuzzy partition matrix of this newly formed set. The
procedure above is repeated until the size of the feature
vectors matrix used in calculations is large enough to
approximate the actual cluster center of the hll dataset.
The resulting cluster centers are then used for the
initialization of the fuzzy partition matrix used by FCM
when it is applied to the original dataset. This results in a
faster convergence for the FCM algorithm.

2 4 6 8 10 ' 12 14 16 18

-2 .2 /

4 '

rigure 1 . An example showing the convergence paths from
three distant initial cluster centers to the final actual cluster
centers after seven iterations by using the FCM algorithm.

2 4 6 8 IO " 12 I4 16 :I
.gure 2. An example of improved initial cluster centers that

are near the final cluster centers requiring only three FCM
iterations.

The FCM algorithm and its derivatives have the
iterative nature of an algorithm. In addition, their
calculation often involves a huge number of membership
matrices and candidate cluster centers matrices. It is a
computationally intensive method. In our study, we
mitigate the time problem by simplifying the computation
and reducing the number of iterations required to
converge. The idea of the proposed method is to simplify
the dataset and find an initial candidate set of cluster

centers as close as possible to the actual cluster centers.
This will reduce the number of iterations and improve the
execution performance. The initial cluster center found by
the proposed algorithm approximates the actual cluster
center very well.

This efficient algorithm for improving the FCM is
called the partition simpfrfication FCM (psFCM). It is
divided into two phases. In Phase I , we first partition the
dataset into some small block cells using the k-d tree
method [I41 and reduce the original dataset into a
simplrfied dataset with unit blocks as described in our
previous work [15]. All patterns in a unit block are
replaced by the centroid of these patterns. Then, the large
number of patterns in the original dataset is drastically
reduced to a small number of unit blocks' centroids, i.e.,
the simplified dataset. Secondly, we find the actual cluster
center of this simplified dataset by the FCM algorithm. In
Phase II, it is a standard process of the FCM with the
cluster centers initialized by the final cluster centers from
Phase I. The execution performance of the psFCM is
much better than that of the FCM and its derivatives.

The rest of the paper is organized as follows. The
review of the previously proposed approach for the FCM
algorithm is in Section 2. In Section 3, we discuss the
proposed algorithm. In Section 4, we show the
experimental results and discuss the time complexity and
accuracy issue. Finally, in Section 5, we conclude the
paper.

2. Related Work

In this section, we briefly describe the Fuzzy C-means
algorithm. Consider a set of unlabeled patterns
X={x,,x2, ..., x,~} , X,E A/, where N is the number of patterns
and f is the dimension of paftern vectors (features). The
FCM algorithm focuses on minimizing the value of an
objective function. The objective fbnction measures the
quality of the partitioning that divides a dataset into C
clusters.

The FCM algorithm measures the quality of the
partitioning by comparing the distance from pattern x, to
the current candidate cluster center wI with the distance
from pattern x, to other candidate cluster centers. The
objective hnction is an optimization hnction that
calculates the weighted within-group SUM of squared
errors (WGSS) as follows [5] :

where:
N : the number of patterns in X
C: the number of clusters

226

U: the membership function matrix; the elements of U Step 3 : Increase t by one. Compute the new cluster
are P.; center matrix (candidate) F@ by using (7). . *I

Step 4: Compute the new membership matrix v"! by

Step 5: If 1 1 rf"- fl-'))I < E then stop, otherwise go to

p, : the value of the membership function of the th

dg: the distance from x, to wJ, viz., d,,= IIx, - w ;) l l ; where

using functions (5) and (6).

step 3.
pattern belonging to thej* cluster

w:) denotes the cluster center of thej th cluster for

the t' iteration
W the cluster center vector
m: the exponent on pu ; to control fuzziness or amount

of clusters overlap

The FCM algorithm focuses on minimizing J,, subject
to the following constraints on U:

p,, E [0,1] ' i = l , ..., N a n d j = l , ..., c (2)

N

O < c p , , < N ' j = l , ..., C
,=I

(4)

Function (1) describes a constrained optimization
problem, which can be converted to an unconstrained
optimization problem by using the Lagrange multiplier
technique.

If d, =O then p,=1 and p,,=O for l # j (6)

The FCM algorithm starts with a set of initial cluster
centers (or arbitrary membership values). Then, it iterates
the two updating functions (5) and (7) at the ihiteration
until the cluster centers are stable or the objective function
in (1) converges to a local minimum. The complete
algorithm consists of the following steps:

Step 1 : Given a fixed number C, initialize the cluster
center matrix uXo' by using a random generator from the
original dataset. Record the cluster centers, set t=O, m = 2,
and decide E , where E is a small positive constant.

Step 2: Initialize the membership matrix do) by using
functions (5) and (6) .

3. Our Proposed Algorithm

In this section, we propose a novel method for the
clustering problem. The proposed psFCM algorithm can
speed up the overall computation time and reduce the total
number of calculations. The main idea of the proposed
algorithm is to refine the initial cluster centers (initial
prototypes). It finds a set of initial cluster centers that is
very close to the actual cluster centers of the dataset.

First, we give an introductory explanation of the
proposed algorithm followed by a formal description. The
psFCM algorithm consists of two phases. Phase I is a
sequence of processes that refines the initial cluster
centers. In the first stage, we partition the dataset into
several unit blocks by using the k-d tree method [14].
There must be at least one pattern in each unit block. Thus,
the actual number of unit blocks depends on the size and
pattern distribution of the dataset. For each unit block, we
calculate the centroid of patterns in the unit block. The
centroid of patterns will be used to represent all the
patterns in this unit block. By doing so, a dataset X, can
be drastically reduced to a simplified dataset X,,
containing the centroids of the original patterns.

In the second stage, we apply the FCM algorithm to
find the cluster centers of the simplified dataset
X,, = (T,,F2 ,..., Z p s) , 2, E R f . The number of centroids in
the simplified dataset is Nps. It is equivalent to the number
of unit blocks N,,h. Since NpJ<< N, we may reduce the
number of calculations of the norm distance. This reduces
the overall computation time.

The cluster centers found in Phase I are used in Phase
11. In Phase 11, we apply the FCM algorithm to find the
actual cluster center of the dataset. That is, the cluster
centers found in Phase I are the initial values of the fuzzy
partition matrix used by the FCM algorithm in Phase 11.
The process in Phase I1 converges quickly because the
initial cluster centers are near the location of the actual
cluster centers.

Before we show details of the psFCM algorithm, there
are several parameters that need to be defined. They are
the number of clusters C, the weight exponent m, the
number of unit blocks NIlh(the number of splits with the
k-d tree method), and the stopping conditions E and E

in Phases I and 11, respectively. Here, we let the weight
exponent m be 2. The number of unit blocks depends
on the total number of patterns N and the distribution of
the dataset. The value of E and E is decided from

-

227

experiments as explained in Section 4.

as follows:
The proposed psFCM algorithm consists of two phases R

3.1. Phase I : Refine initial prototypes for fuzzy
C-means clustering

: . i \ i- 7

Stepl:
First, we partition the dataset into unit blocks by using

the k-d tree method. The splitting priority depends on the
scattered degree of data values for each dimension. If one
dimension has a higher scattered degree, it has a higher
priority to be split. The scattered degree is defined as the
distribution range and the standard deviation of the feature.
The formula of the scattered degree is as follows:

7

G

5

4

i

1 -

0

R, = (X m a - XIn," 1, , = 1, , f (8)
0,

Where
R, : the scattered degree for the ith feature (dimension)
Xmm: the maximum value of pattern in the ith feature
X,,,,, : the minimum value of pattern in the ith feature
0,: the standard deviation of all patterns in the ith

f: the number of features (dimensions)
feature

The k-d tree is a kind of binary partition based on the
difference between the maximum and minimum values of
the partition dimension. Thus, we may easily acquire the
range of each block in each dimension. If the number of
splits isp, N,,hS2p.

After splitting the dataset into unit blocks, every unit
block may contain some sample patterns. There must be at
least one pattern in each unit block. If there is no sample
pattern in a unit block, the unit block will then be
discarded. We do not consider such a unit block in the
following steps. Figure 3 gives an example where a
two-dimension dataset is divided into several unit blocks.
Here, we only have to scan the database twice to identify
the location of each sample pattern.

Step 2:
After splitting the dataset into unit' blocks, we calculate

the centroid ,y, for each unit block that contains some
sample patterns. The centroid x, represents all sample
patterns in this unit block. Then, we use all of these
centroids 2, to denote the original dataset. Figure 4
gives an example in which original patterns are
represented by all the computed centroids z, .

,,LA . .L -/ I
0 1 7 7 1 5 6 7 A c J

Figure 3. Partitioning the original dataset into several unit
blocks.

Figure 4. The simplified dataset of Figure 3.

In addition, each centroid contains statistical
information of the patterns in each unit block. These
include the number of patterns in a unit block (WUB) and
the linear sum of all patterns in a unit block (LSUB).
When we scan the database the second time, it also finds
the statistics of each dimension. These statistics will be
used when the algorithm calculates new candidate cluster
centers, which improves the system performance.

The formula of calculating the centroid in the i lh unit
block is as follows:

- LSUB, x, =-
WUB,

(9)

The algorithm to split a dataset into unit blocks and to
form the simplified dataset is shown in Figure 5.

Step 3:
Initialize the cluster center matrix do' by using a

random generator from the dataset, record the cluster
centers, and set FO.

Step 4:
Initialize the membership matrix cfo) by using

functions (5) and (6) with the simplified dataset
X, = (X,, Z2 ,..., Z P s) and i = 1 ,..., N , .
-

228

Phase 11.
Proc partition-dataset (original dataset)

for each dimension D., of the dataset

I* Find the range for dimension D., */

Range-MaxV] = the maximum value of dimension D

Range-MinV] = the minimum value of dimension D
I* Calculate the interval of segment it would partition for
dimension D.f *I

I* Num-of-SplitV] is the number of splits for dimension

Interval-of-SegV] = (Range-MuxV] - Range-MinV]) I
Num-of-Split V]

/* Calculate the UB to which pattern ,y, [f] belongs *I

for each dimension D,/ of X, , named x,[fl
Point-in-DimV] = (x,[f] - Range-MinV]) I

Interval-of-Seg V]
/* Use the value of Point-in-DimV] to calculate the ,y4
to which ,y,[fl belongs, named UB-Location of x,[f]
*I

J

.I

D.f */

for each pattern X,

I* Calculate LSUB and CVUB for each UB, *I

UBgrocess (,y, if], UB-Locution)

/* Compute ,i, : Centroid of Unit Block i *I
- LSUBz x, =-

WUBz
End partition-dataset

Figure 5. The algorithm to partition the original dataset to form
the simplified dataset.

Step 5:

matrix (candidate) do by using function (1 0).
Increase t (i.e., t=t+l); compute a new cluster center

where n, denotes the number of patterns of the ifh unit
block.

Step 6:
by using

functions (5) and (6) with the simplified dataset
X , = (XI ,X2 ,..., Xp,,) and i = 1 ,..., NI,> .

Compute the new membership matrix

-

Step'7:
2~1, go to Step 5, otherwise go to II

3.2. Phase 11: Find the actual cluster centers for
the dataset

Stepl:
Initialize the fuzzy partition matrix U''' by using the

results of ux" from Phase I with functions (5) and (6) for
the dataset X.

Step 2:

discussed in Section 2 using the stopping condition E ~ .

Follow Step 3 to Step 5 of the FCM algorithm

4. Experiments and Results

In this section, we discuss our experimental results, the
time complexity of the proposed method, and its accuracy.
The datasets used in the experiments are described in
Section 4.1. Section 4.2 shows the experimental results. In
Section 4.3, we discuss our findings.

4.1 Dataset Description

In this paper, we focus on improving the time
complexity of the fuzzy C-means algorithm. To show that
the result of our proposed algorithm is correct and more
efficient than the other algorithms, we performed a series
of experiments. Table I shows the datasets used in the
experiments, where N is the number of patterns, C is the
number of clusters, and f is the dimension of pattern
vectors (features).

The datasets are generated by using the following
criteria:
1) The datasets from DI to Dlo are generated from a

normal distribution. Here, we generate normally
distributed data points (patterns) by using the
Marsaglia 's Polar method [171. The standard deviation
of these data points in each cluster is 1. We randomly
select C data points from the range [0,4c]. These C
data points may be treated as the mean value of the
normal distribution of each cluster. Every cluster has
the same number of data points NIC that is around a
specific mean value, and clusters can overlap.

2) The datasets from RI to R, are generated from a
unijorm distribution. Any two clusters cannot overlap.
The number of data points (patterns) in each cluster is
the same, which is NIC.

3) The datasets from R5 to RIO are also generated from a
uniform distribution. However, clusters can overlap.
The number of data points in each cluster is different.
Each cluster has N = i x 2 N data points, where i

= 1,2 ,...) c.
' C(C + 1)

229

Dg

1 R,,, I 32k I 2 I 16 1 Random I 10.11 I

~~

64k 2 32 I N o r m a l I [0,4C]

4.2 Experimental Results

D7 1 64k I 2

The experiment datasets (D, - Dlo and RI - R I O) are
used to run on two personal computers. One is a Pentium
ZZZ personal computer with the following specification: a
clock rate of 800MHz and memory size of 512 Mbytes.
The other is a Ceferon personal computer with a clock rate
of 433Hz and memory size of 64 Mbytes.

When we run the experiments using the FCM
algorithm, different random initialization sets may result
in different numbers of convergence iterations. Therefore,
we run the proposed psFCM algorithm and the FCM
algorithm with each dataset in ten trials. In each trial, the
initial cluster centers are initialized in a random fashion.
The same initial cluster centers are used by both the
psFCM algorithm and the FCM algorithm.

The execution performance of the psFCM algorithm
and the FCM algorithm is shown in Tables 2 and 3. Here,
the comparison is based on the two factors: the factor
reduction in overall time (FRT) and the factor reduction in
distance calculations (FRD) [16]. From the results in
Tables 2 and 3, the execution performance of the psFCM
algorithm is approximately four times better than that of
the FCM algorithm.

In the experiment of the psFCM algorithm, the
stopping condition E~ of Phase I is set to 0.1. The number
of convergence iterations may be reduced in Phase I1 if we
let E~ have a smaller value. The stopping condition E~ for
Phase I1 in the psFCM algorithm and the FCM algorithm
is 0.4 for both.

64 1 Normal I [0,4C]

Table 2. The overall result of the normal distribution
datasets D, to D,,, where the number of splits for the k-d

Rj
&,
R,

tree in the psFCM is 14.
1 No. of I FCM I osFCM I

4 86 870400 23 240277 3 7 4 3 6 2
8 418 4069382 86 869598 4.86 4.68
16 1192 10848973 339 3106970 3 52 3 49

(DatasetslClustersl Total time I Distance /Total time1 Distance I FRT I FRD 1

Rx 4 126 1305600
R, 8 631 6143232
RIO 16 2277 20679629

I Dr I 8 I 2283 I149504001 348 I2658806 I 6.56 I 5.62 I

30 343549 4 2 3 8
86 929968 7 3 4 6 6 1

395 3727757 5 76 5 5 5

D, I 16 I 5423 1335872001 1153 I7894640 I 47 I 4 2
Dlo I 32 1 12051 1876544001 3038 1237942781 3 9 7 [3 6 8

Table 3. The overall result of the uniform distribution
datasets R, to RJo where the number of sulits for the k-d
tree in thepsFCM is 13.

I No. of I FCM I osFCh1 I
IDatasetslClurterst Total time I Distance j Total time1 D i s t k e I FRT I FRD I

To get the simplified dataset, the original dataset is
divided into many equal size unit blocks by the psFCM
algorithm. As mentioned in Section 3, all the patterns in
one unit block are replaced by the centroid of the unit
block. From the results of the experiments, we show that
the proposed algorithm reduces a significant amount of
time in Phase I.

To understand the relationship between the number of
splits with the k-d tree method and the execution
performance (speedup), we select some datasets (with
different N or C) and compare the execution performance
of these datasets by splitting them into a different number
of unit blocks. Here, we measure the execution
performance by using FRT. The results are shown in
Figures 6 and 7. Figure 6 depicts the relationship between
the number of splits and the speedup of execution time for
datasets R2 and R4 whose sizes are 16k and 32k,
respectively, while the number of clusters is the same (8
clusters). Figure 7 shows the relationship between the
number of splits and the speedup of execution time for
datasets Rl and R2 whose sizes are the same (1 6k) while
the numbers of clusters are 4 and 8 clusters, respectively.
We find the optimal number of splits is around 12. We

230

also investigate the relationship between the number of
clusters and the speedup of execution time. The
experiment result is shown in Figure 8. The normal
distribution dataset has a size of 64K, and the number of
splits is 14. The decline of the speedup at 32 and 64
clusters can be rectified by increasing the number of splits.
For example, when we adjust the number of splits to 16,
the performance for the 64 clusters can be improved to a
speedup of 3.81.

I
IO I I 12 13 14 15 16

The number of splits by using the k d tree method

Figure 6. The relationship between the number of splits and the
speedup of execution time for datasets R2 and RI.

I
IO I I 12 13 14 I5 16

The number of splits by using the k-d tree method

Figure 7. The relationship between the number of splits and the
speedup of execution time for datasets RI and R2.

E O I
4 8 16 32 64

The number of clusters

Figure 8. The relationship between the number of clusters and
the speedup of execution time.

4.3 Discussions

From the experimental results described in the last
section, the proposed psFCM algorithm has approximately
the same speedup for the patterns of normal distribution as
well as uniform distribution. In general, our method works
well for most kinds of datasets.

In Phase I of the psFCM algorithm, the cluster centers
found by using the simplified dataset is very close to the
actual cluster centers. Phase I1 converges quickly if we
use these cluster centers from Phase I as the initial cluster
centers of Phase 11. From the experiments, in most cases,
Phase I1 converges in only a few iterations. For the
psFCM algorithm, the system requires more iterations to
converge if the stopping condition is smaller. However,
the number of patterns used in Phase I of the proposed
algorithm is Np.,. The total number of norm distance
calculations by the proposed algorithm is much smaller
than the FCM algorithm because N,,<< N .

For the FCM algorithm, the system has to calculate the
norm distance from each pattern to every candidate cluster
center in each iteration. After calculating the norm
distance, the system computes the membership matrix.
Therefore, if the dimension of a dataset is f, the time
complexity to calculate the distance is 00. If there are N
patterns and C clusters, the time complexity to calculate
the membership matrix for each iteration is OcfNc). Thus,
the time complexity is proportional to the number of
patterns N and the number of clusters C. However, we
have demonstrated that the time complexity to calculate
the membership matrix for each iteration using the psFCM
algorithm is Oylv,,C).

Here, we randomly select the initial cluster centers in
Step 3 of the psFCM algorithm. Generally, the density of
patterns near the cluster center is high. As mentioned in
Section 3, the psFCM algorithm divides the dataset into
unit blocks. The number of patterns in each unit block
may be different. That is, the density of patterns in each
unit block is different. We may randomly select C initial
cluster centers W,(O) from the unit blocks with a higher
pattern density. This will provide a better result.

The FCM algorithm does not guarantee that the cost
fimction will converge to the local minimum, but it may
converge to some saddle point.

5. Conclusions

In this paper, we proposed a novel method for efficient
clustering that is better than the FCM algorithm. We
reduce the computation cost and improve the performance
by finding a good set of initial cluster centers.

The psFCM algorithm divides a dataset into several
unit blocks. The centriods of unit blocks replace the
patterns and form a new dataset, the simplified dataset. As
mentioned in Section 4, the simplified dataset decreases

23 1

the time complexity of computing the membership matrix
from Oylvc) to Oulv,lC) in every iteration. The number
of iterations needed to converge in Phase I1 of the psFCM
algorithm is also less than the number of convergence
iterations of the FCM algorithm. From the experimental
results, we have shown that the proposed algorithm
improves the speedup in the execution time and the
distance calculation. For large datasets, the psFCM
algorithm improves the performance even more. We also
demonstrate that the quality of our algorithm is the same
as the FCM algorithm.

For a fair comparison, the initialization in Phase I of
the psFCM algorithm and the FCM algorithm is
determined randomly. We have also found in the psFCM
algorithm that an initial cluster center selected from a unit
block with a higher density is closer to the actual cluster
center. This is a feature that cannot be found using the
FCM algorithm and its derivatives. In future work, we
will study this feature more thoroughly.

Reference

[1 1 F. Hoppner, F. Klawonn, R. Kruse, and T. Runkler, “Fuzzy
cluster analysis,” Wiley Press, New York, 1999.
[2] E. Ruspini, “.Vumerical methods for fuzzy clustering,“
Information Sciences, Vol. 2, 1970, pp. 3 19-350.
[3] J.C. Dunn, ”Aftizzy relative of the ISODATA process and its
use in detecting compact, well separated clusters,’’ Cybernetics,

[4] J.C. Bezdek, “Cluster validity with fuzzy sets,” Cybernetics,

[5] J.C. Bezdek, “Pattern recognition with fuzzy objective
f’iinction algorithms,” Plenum Press, New York, 198 1.
16lK.H. Chuang, M.J. Chiu, C.C. Lin, and J.H. Chen,
“Model-free functional MRI analysis using Kohonen clustering
neural network and fuzzy C-means,“ IEEE Trans. On Medical
Imaging, Vol. 18 (12), 1999, pp. 1117-1128.
[7]N.S. Iyer, A. Kandel, and M. Schneider, “Feature-based fuzzy
classijkation for interpretation of mammograms,” Fuzzy Sets
and Systems, Vol. 114, 2000, pp. 271-280.
[8]K. Hirota and W. Pedrycz, ”Fuzzy computing for data
mining,“ Proceedings of the IEEE, Vol. 87(9), 1999, pp.

[9] W.E. Phillips, R.P. Velthuizen, S. Phuphanich, L.O. Hall, L.P.
Clark, and M.L. Silbiger, “Application of fuzzy c-means
segmentation technique for tissue differentiation in MR images
of a hemorrhagic glioblastoma multifrome,“ Magnetic
Resonance Imaging, Vol. 13(2), 1995, pp. 277-290.
[lo] M.R. Rezaee, P.M.J. Zwet, B.P.E. Lelieveldt, R.J. Geest,
and J.H.C. Reiber, ” A multiresolution image segmentation
technique based on pyramidal segmentation and fuzzy
clustering,” IEEE Trans. On Image Processing, Vol. 97, 2000, pp.

[I l l P. Teppola, S.P. Mujunen, and P. Minkkinen, “Adaptive
fuzzy c-means clustering in process monitoring,” Chemometrics
and Intelligent Laboratory System, Vol. 45, 1999, pp. 22-38.
[I21 X. Chang, W. Li, and J. Farrell, “ A C-means clustering
based f u z q modeling method,” The Ninth IEEE International
Conference on Fuzzy Systems, Vol. 2, 2000, pp. 937-940.

Vol. 3, 1974, pp. 95-104.

Vol. 3, 1974, pp. 58-73.

1575-1600.

1238-1 248.

[13] T.W. Cheng, D.B. Goldgof, and L.O. Hall, “Fast f u z q
clustering,” Fuzzy Sets and Systems, Vol. 93, 1998, pp. 49-56.
[141 J.L. Bentley, “Multidimensional binary search trees used

for associative searching,” Communications of the ACM, Vol.

[15] D.L. Yang, J.H. Chang, M.C. Hung, and J.S. Liu, “An
efficient K-means-based clustering algorithm,” Proceedings of
The First Asia-Pacific Conference on Intelligent Agent
Technology, Dec. 1999, pp. 269-273.
[16] K. Alsabti, S. Ranka, and V. Singh, “An Eflcient K-Means
Clustering Algorithm,” PPS/SPDP Workshop on High
Performance Data Mining, 1997.
[171 G. Marsaglia, “Random variables and computers,“
Information Theory Statistical Decision Functions Random
Process, 1962, pp. 499-5 10.

18(9), 1975, pp. 509-517.

232

