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Dynamic State Estimation in Power System
by Applying the Extended Kalman Filter With

Unknown Inputs to Phasor Measurements
Esmaeil Ghahremani and Innocent Kamwa, Fellow, IEEE

Abstract—Availability of the synchronous machine angle and
speed variables give us an accurate picture of the overall condition
of power networks leading therefore to an improved situational
awareness by system operators. In addition, they would be es-
sential in developing local and global control schemes aimed
at enhancing system stability and reliability. In this paper, the
extended Kalman filter (EKF) technique for dynamic state es-
timation of a synchronous machine using phasor measurement
unit (PMU) quantities is developed. The simulation results of the
EKF approach show the accuracy of the resulting state estimates.
However, the traditional EKF method requires that all externally
observed variables, including input signals, be measured or avail-
able, which may not always be the case. In synchronous machines,
for example, the exciter output voltage may not be available
for measuring in all cases. As a result, the extended Kalman filter
with unknown inputs, referred to as EKF-UI, is proposed for
identifying and estimating the states and the unknown inputs
of the synchronous machine simultaneously. Simulation results
demonstrate the efficiency and accuracy of the EKF-UI method
under noisy or fault conditions, compared to the classic EKF
approach and confirms its great potential in cases where there is
no access to the input signals of the system.

Index Terms—Dynamic state estimation, extended Kalman
filtering, phasor measurements, power grid monitoring, power
system operation, state estimation, synchronous generator.

I. INTRODUCTION

I N order to increase power system stability and reliability
during and after disturbances, new strategies for enhancing

operator situational awareness and power grid global and local
controllers must be developed [1]–[3]. But high-performance
monitoring and control schemes can hardly be built on the ex-
isting SCADA system which provides only steady, low-sam-
pling density and nonsynchronous information about the net-
work. SCADA measurements are too infrequent and nonsyn-
chronous to capture information about the system dynamics.
It is to remove these limitations that wide area measurements
and control systems (WAMAC) using phasor measurement units
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(PMUs) are being rapidly adopted worldwide. These systems
enable synchronous power system dynamics to be monitored on
a more refined time scale.

Building on the ability of WAMAC systems to capture
dynamic system information, the state estimators of a power
system can generate dynamic states, e.g., generator rotor angles
and generator speed, instead of (or in addition to) the static
states of voltage magnitudes and phase angles [4]. From this
point of view, this paper presents a dynamic state estimation
process based on Kalman filtering techniques to estimate the
dynamic states of the power system.

A number of papers and studies have focused on just one dy-
namic state of the power system at a time, typically the rotor
angle or speed which was estimated using artificial intelligence
(AI) methods such as neural networks [5], [6]. These AI-based
model-free estimators generate the estimated rotor angle or rotor
speed signal without requiring a mathematical model or any
machine parameters [5]. In the large-scale power system sta-
bility analysis, it is often preferable to have an exact model
for all elements of the power network including lines, trans-
formers, induction motors, FACTS, and also synchronous ma-
chines. Therefore, the physical model-based state estimator of
the generator including voltage states in addition to rotor angle
and speed would be more interesting in system monitoring and
control.

Use of the term “dynamic state estimation” can be traced
back to the 1970s [7] when Kalman filtering techniques were
first applied to improve the computational performance of the
traditional steady-state estimation process in power system ap-
plications. Since then, there have been several studies in this
area which have used different approaches to capture dynamic
states of the power system [8]–[10]. However, very few papers
on state estimators have set their focus on the synchronous gen-
erator which is at the heart of the power system. For example, a
gain-scheduling scheme was used in [11] for state observer de-
sign in a single-machine infinite-bus (SMIB) system while con-
stant voltages were assumed in the dynamic modeling, which
significantly reduces the ability to represent the full dynamics
of a power system. In [4], a dynamic state estimation method
was proposed for the second-order synchronous machine which
could be extended to a multi-machine system. The accuracy
of the proposed method was examined in terms of measure-
ment noise levels. But the problem lies in not including the field
voltage dynamic equations in the second-order system model
of a synchronous machine. Also reported in [12] is dynamic
state estimation scheme for a sixth-order power system with a
third order for synchronous machine. However, they assumed
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the exciter output voltage and rotor angle to be two mea-
surable signals, following on this respect, other papers in this
area [13]. More specifically, the latter proposed a parameter es-
timation procedure based on the unscented Kalman filter (UKF)
was presented for the third-order model of a synchronous gen-
erator assuming the output power as one of the states with
the and the constant as input signals of the machine
[13]. A third-order model was also assumed in [14] and approx-
imate algebraic equilibrium equations were used to derive the
quasi-steady states of the generator, assuming the field current

was available in addition to the terminal quantities.
A methodology for real-time dynamic monitoring of the elec-

tric power systems using optimal state estimators is presented
in [15], whereby the system state vector is extended to include
generator internal dynamic states (rotor speed and angle ),
in addition to algebraic states (e.g., terminal voltage, generator
internal voltage, output electric power, and so on). The measure-
ment set in [15] consists of and (both with magnitude and
phase), , , and the generator speed and acceleration (fre-
quency and rate of change of frequency at the substation). In
[16], the measurement set also includes the generator speed and
acceleration like [15] while for the modeling of the generator,
the authors proposed a physically based generator model. The
presented model was expressed in terms of the actual self and
mutual inductances of the generator windings as a function of
rotor position.

In contrast with the above approaches, this paper proposed
a dynamic state estimator method based on extended Kalman
filtering (EKF) applied to signals obtained from a PMU which
is assumed to be installed in the substation of a power plant.
The synchronous machine model is a fourth-order, nonlinear
state-space model with , , and as inputs and and
as outputs. In situations where the signal is not accessible
for measuring, a novel method is proposed based on extended
Kalman filtering with unknown inputs (EKF-UI). From experi-
mental test considerations, it could become a critical factor since
measuring the field current and voltage is not easily applicable
to brushless excitation systems. In any event, it will involve ad-
ditional wiring and labor costs using existing technologies.

This paper is organized as follows. The fourth-order nonlinear
model structure considered for modeling the synchronous ma-
chine is given in Section II. In Section III, assuming that the

signal is accessible, dynamic state estimation of the power
system will be presented using the EKF method. Section IV
includes an extended version of EKF, the EKF-UI method for
an inaccessible or unknown signal. To demonstrate the ro-
bustness of the EKF-UI method, detailed simulation studies are
presented in Section V. Section VI discusses the findings and
Section VII concludes the paper.

II. SINGLE-MACHINE INFINITE-BUS POWER SYSTEM

A general power system configuration can be simplified to
an equivalent circuit system with a single machine connected to
an infinite bus via transmission lines [1]. The so-called single-
machine infinite-bus (SMIB) system, shown in Fig. 1, will be
the basis for developing and validating our generator state esti-
mator. Assuming a classical synchronous generator model, let
define as the angle by which , the q-axis component of the

Fig. 1. Synchronous machine connected to an infinite bus via transmission
lines.

voltage behind transient reactance , leads the terminal bus
(or ). If the terminal voltage chosen as the reference phasor,
the generator in Fig. 1 can then be represented in the dqo domain
by the following fourth-order nonlinear equation:

(1)

where is the nominal synchronous speed (elec.
rad/s), the rotor speed (pu), the mechanical input torque
(pu), the air-gap torque or electrical output power (pu),
the exciter output voltage or the field voltage as seen from the
armature (pu), and the rotor angle in (elec.rad). Other vari-
ables and constants are defined in Table I in the Appendix. Based
on the phasor diagram associated to the network of Fig. 1, the
air-gap torque will be equal to the terminal electrical power

(or ) neglecting the stator resistance :

(2)

where the d-and q-axis voltages can be expressed as

(3)

Also, the d-axis and q-axis currents are

(4)

Replacing and by the state variables and , we obtain

(5)

Using (3) and (5) in (2) and after some mathematical simplifi-
cation, the electrical output power at terminal bus
with the state variables and can be obtained as

(6)

To summarize, using (6) and (5) in (1), the fourth-order non-
linear synchronous machine state space model is rewritten as
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Fig. 2. Overview of the dynamic state estimator for a synchronous machine.

(7), shown at the bottom of the page, in a form suitable for
state estimation purposes, with the electrical output power
as the single measurable system output, where all the parame-
ters and quantities other than state variables are (or assumed to
be) known and measurable.

We can therefore represent (7) in a global structure as (8):

(8)

where is the state variable vector defined in (1), the process
(state) noise, the measurement noise, the system function,

the output function, and the measurable output. After re-
placing the quantities , , and with the (5) and (6), which
include the terminal voltage , it appears that the vector
in (1) now needs to be modified in order to add as third
input as (7). Therefore, will have in (8) the vector defined as

.
In the nonlinear state space model (7), the terminal bus sig-

nals , , and are accessible from a PMU device which is
assumed to be installed at the generator terminal bus. The PMU
is a power system device that samples input voltage and
current waveforms using a common synchronizing signal
from the GPS and calculates the phasors (magnitude and angle)
using the discrete Fourier transform (DFT) [17].

The overall plan of the estimation process is illustrated in
Fig. 2. The dotted line of shows that one of the approaches
in this paper, the EKF-UI state estimator, does not need the
signal which is estimated with the states. The classic EKF-based
state estimator will first be developed for the case where the
signal is measurable and used as the second exogenous input in

(1). This assumption may be defendable for machines on which
the field voltage is accessible or for the next generation of syn-
chronous machines with embedded smart sensors. But in cases
where the signal is not available or measurable, the new ex-
tended version of EKF known as the EKF-UI will be employed.

III. EXTENDED KALMAN FILTER (EKF) METHOD

A. EKF Algorithm Description

To derive the discrete-time EKF algorithm, we start from the
basic definition of time derivation of a variable :

(9)

where is the time step, and indicate the time at
and , respectively. Replacing (8) in

(9), we easily obtain (10) and (11) below:

(10)

(11)

If rewritten properly, (11) gives us the discrete-time system
equations presented in (12):

(12)

where is the system state vector, is the known input vector
of the system, is either the process (random state) noise or
represents inaccuracies in the system model, is the noisy
observation or measured variable (output) vector, and is the
measurement noise. It is assumed that measurements are made
at by the PMUs, at discrete sampling time instants

. The noises sequences and are supposed
to be white, Gaussian, and independent of each other:

(13)

(14)

(15)

(16)

Equations (13) and (14) imply that and have a zero
mean, with covariance matrices and , respectively. Equa-

(7)
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tion (15) implies that the values of (respectively, ), at
different times instants, are not correlated while equation (16)
shows that the process (state) and measurement (observation)
noises are not cross-correlated [18].

Starting from these initial considerations, the discrete-time
EKF algorithm for the state estimation process consists of two
steps [18]:

Step I) Initialization of the filter at :

(17)

where indicates the expected value and the in super-
script denotes that the estimate is an a posteriori estimate.
Step II) For perform the following:

a) Compute the following partial-derivation matrices:

(18)

b) Perform the time update of the state estimate and es-
timation-error co-variance as follows:

(19)

c) Compute the following partial-derivative matrices:

(20)

d) Perform the measurement update of the state estimate
and estimation-error covariance as follows:

(21)

B. EKF Method Simulation Results

The discrete-time EKF algorithm has been implemented in
Matlab/Simulink using the embedded function programming
feature of Simulink. The simulation of the generator nonlinear
model is performed while including saturation assuming a two-
factor d-q saturation model [1], [2], with the parameters pre-
sented in Table I in the Appendix. On the other hand, the EKF-
based estimation of the dynamic states is carried out in par-
allel with the simulation, in a single run without any assumption
about saturation of the underlying generator. In the embedded
Matlab function block, the signals , , and and the
system observation signal (as ) are used as inputs for the
EKF. The EKF block has access to the values of these signals
( , , , and ) and known machine parameters at each
iteration. The embedded block then generates the state estimate
based on its inside algorithm which is described in the previous
section, while using the time step set through the Simulink con-
figuration panel .

The initial values for states and state covariance matrix are
and . Also,

the process and measurement noise covariance matrices are set
as and

Fig. 3. EKF state estimation results with noise. (a) Estimated states. (b) Esti-
mated output.

. The size of vector arises from the fact that
there are four states. For simulation near real system condi-
tions, white-noise sequences with covariance and

were added to the state process and output measure-
ment, respectively. Under these conditions, the EKF states es-
timates are presented in Fig. 3(a). The estimated output signal

compared with the real output signal is
shown in Fig. 3(b). To save space, we will present just the re-
sults in the presence of noise. It is obvious that accurate and
nearly perfect state and output estimates results were obtained
for the system without noise.

IV. EXTENDED KALMAN FILTER WITH UNKNOWN

INPUTS (EKF-UI) METHOD

A. EKF-UI Method Background

The EKF method of the previous section requires that both
the deterministic inputs in the model and the measurement equa-
tions be known, which sometimes may not be the case in reality.
The presence of unknown inputs could severely restrict the per-
formance of classical nonlinear filters since a high bias will be
introduced into the state estimation due to uncertainties from the
unknown inputs. On the other hand, it is not always appropriate
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to treat unknown inputs as random noise to fit those traditional
nonlinear filter approaches because 1) the unknown inputs could
be signals with an arbitrary type and magnitude so it is not ac-
ceptable to assume them to be stationary and zero-mean random
noise; and 2) some unknown inputs need to be estimated for
process control and optimization purposes.

In this regard, joint estimation of the states and unknown
inputs for nonlinear stochastic systems becomes a meaningful
task [19], which is often addressed as a constrained optimiza-
tion problem [20], [21] where the state unbiasedness is the con-
straint and a joint global optimization of states and unknown
inputs cannot be guaranteed [20]. To avoid the shortcomings of
those approaches, an EKF-UI [22] was proposed in the field of
civil engineering for earthquake damage estimation studies. Its
major novelty is that the unknown inputs are regarded as part of
the states instead of disturbances (see [20] and [21]). As a re-
sult, the EKF-UI approach can be directly derived from the un-
constrained objective function of the traditional EKF (weighted
least-squares objective function) and thus becomes a more gen-
eral version of EKF. Since no prior information about unknown
inputs is required, the proposed EKF-UI is quite suitable for
the state estimation of a nonlinear system in the presence of
unknown inputs. Therefore, it could be employed in state esti-
mation of a synchronous machine with the unknown input
signal.

B. EKF-UI Algorithm Description

An analytical solution for the proposed EKF-UI approach de-
rived and presented in [22] for earthquake damage estimation
studies will be modified and applied here based on the nonlinear
synchronous machine system. This proposed EKF-UI technique
[19] is applicable to both linear and nonlinear structures. Let the
continuous-time nonlinear system (8) be represented in the dis-
crete domain by the following (22), in which the subscripts
and indicate time instants and
respectively:

(22)

where denotes an n-dimensional nonlinear system function;
, a p-dimensional output function; and are the n-state

vector of the system; and are s-known input vectors;
is the r-unknown input vector; is the p-observation

(measured) output vector; and are n-model noise
(uncertainty) and p-measurement noise vectors assumed to be
mutually independent Gaussian white with the same charac-
teristic presented in (13)–(16). Based on the above system,
the EKF-UI approach can be used to estimate unknown state
and unknown input vectors and at given
the observation denoted as and ,
respectively. The derivations of the system which are essential
for the EKF-UI method [19], [22] are briefly explained below
from (23)–(29):

(23)

(24)

where

(25)

(26)

(27)

(28)

(29)

The estimates and can be determined by
minimizing the objective function of the summed square error
between and as follows:

(30)

where is a weighting matrix defined as the
inverse of the covariance matrix for model and measurement
noise; is a p-output error vector at

, and is a pk-vector
[19], [22]. By minimizing with respect to the unknown ex-
tended state vector (subscript “e” denotes extended):

(31)

to obtain the least-squares estimation (LSE) of at
and by taking the partial derivative of with respect to

and setting it equal to zero at
; we will have as (32) and in turn (33):

(32)

(33)

where is a [pk] known vector and is a
known matrix. After some algebra, the recursive so-

lution for and is obtained by the following steps
[19], [22]:

Step 0) Initialization of the filter at

(34)

where is a gain factor for the unknown input.
Step I) Prediction

(35)

where and are the estimation of states
and unknown inputs at .
Step II) Gain Computation
The computation at of the gain matrix for estima-
tion of the states and for the estimation of unknown input is
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given by (36) and (37), as shown at the bottom of the page.
In (36) for the gain matrix , we will have

(38)

and is the autocovariance function of the model
noise process vector .
Step III) Update
In this step, the estimation of state and unknown inputs
at , , and is updated from the com-
bination of the state prediction and current measurement
by (39) and (40), respectively, the latter of which is at the
bottom of the page:

(39)

The covariance matrix in (38) is updated at
using (41), which is shown at the bottom of the

page. , , and can be calculated
from (36)–(38) by replacing by , respectively [19],
[22].

Note that by checking the existence condition for
in (32), it can be concluded that the major

restriction of EKF-UI is that the number of output measure-
ments (p) should be larger than the number of unknown in-
puts (r). Based on this and because our system has just one un-
known input, we need to add a new output from possible can-
didates accessible from PMU measurements not yet involved
in the EKF-UI: and . Since we have chosen to compute
the gradients in (18), (20), and also in (27)–(29) analytically, as
presented in the Appendix, using as the second output would
require an appropriate and explicit equation of with respect
to the states and inputs to be able to compute its gradient for

matrix. By replacing (5) in (4), it appears that such an equa-
tion for with respect to the states and inputs would be highly
nonlinear and time consuming for analytical gradient calcula-
tion. Therefore, the reactive power of synchronous machine
has been added to the active power for a total of two system

outputs. Similarly the active power equation, the reactive power
equation, with the state variables and
can be derived as (42):

(42)

Thus, with the greater number of system outputs
than the number of unknown inputs , we can imple-
ment the described EKF-UI on the fourth-order synchronous
generator model.

C. EKF-UI Method Simulation Results

The EKF-UI algorithm was developed in Simulink using the
embedded function block, just as we did for the EKF method.
In the latter case, was the only measurable output signal
and , , and were the three input signals. But in the
EKF-UI method, and are the two output measurements
and the input signals and are still necessary. The input

is now assumed to be inaccessible or unknown. The ini-
tial values vector for states is and for the gain
factor matrix is . The initial
values related to the unknown input are: and .
Also, the mean and covariance of the state and output noise ma-
trices are as: and

. To better reflect real system con-
ditions, white noise was added to the state with (mean, covari-
ance) and to the measured output with (mean, co-
variance) . Under these assumptions, the results of
the EKF-UI algorithm for online state estimation of the fourth-
order nonlinear model of the synchronous generator subjected
to a step on are presented in Fig. 4(a). The estimated output
signals and the unknown input estimate are also shown in
Fig. 4(b) and (c), respectively.

The results obtained for the system without noise were even
better than Fig. 4, achieving a match near to perfect between
EKF-UI estimates and theoretical values.

(36)

(37)

(40)

(41)
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Fig. 4. EKF-UI state estimation results with noise. (a) Estimated states. (b) Es-
timated outputs. (c) Estimated unknown input and the error.

V. ROBUSTNESS CHECKING OF THE EKF-UI METHOD

For checking the effectiveness and robustness of the EKF-UI
method, especially under time variant unknown input, the

state estimation process will be performed assuming that
is a ramp signal. The EKF-UI performance under network fault
disturbances will also be analyzed.

A. Input Signal: Ramp

In the simulations of this section, all settings including the
initial values, time steps, and noise characteristics are the same
as in the previous section, except that we replaced the step
with a ramp signal having a . The simulation
results for the ramp signal are illustrated in Fig. 5. They
confirm that the proposed method is capable of tracking a time-
variant unknown input, while estimating the states correctly.
Again to save space, we present in Fig. 5 the first and third states
only.

B. Fault Analysis: Middle-Line Short Circuit Fault

Based on the equivalent circuit in Fig. 1, network distur-
bances impacts on the EKF-UI state estimator is studied by
applying a short-circuit contingency at the mid-point of the
transmission line at . The fault analysis relied on
the fourth-order synchronous machine described in Section II.
The synchronous machine model used in the fault simulation
includes a two-factor saturation model with the parameters
given in Table I in the Appendix. The analysis will be based on
two post-disturbance scenarios: 1) stable and 2) unstable. For
the first scenario, the fault is cleared after 0.1 (s) at
and the system remained stable.

The Simulink SMIB model settings and estimator initial
values are the same as in Sections IV and V studies, except that
we removed the noise in order to have clarity in the results and
be able to track the performance of the state estimator at the
time of fault occurrence. For this reason, we show the first 4 s
after the fault only. The results in the stable case are presented
in Fig. 6. To save space, a single output estimate, and two
states (first and third) are presented. From these results, it is
clear that the EKF-UI estimator generates the correct estimates
under network fault disturbance.

However, attentive verification of the fault time-period re-
vealed that, just after the fault occurrence, the estimator pro-
duces discontinuous responses and will track the actual outputs
only after fault clearing.

In the second scenario, the fault was cleared after 0.3 (s) only,
at , and the system therefore went into an unstable
condition. Like for the stable case, the state estimator gener-
ated the estimated states with appropriate accuracy as shown
in Fig. 7. Based on these two scenarios, we conclude that the
EKF-UI approach is capable of estimating the dynamic state of
the power system independently of the stability condition. Also
when the fault simulations were repeated with the noise added
of the same magnitudes as in Fig. 4, the results were satisfac-
tory, similar to Figs. 6 and 7 in terms of accuracy.

VI. DISCUSSION

By comparing the initial values of the states in the
EKF method and the EKF-UI method

, it is noticed that the latter is more robust
against a poor initial value of the rotor angle than the EKF
method, for which we cannot set far from the nominal rotor
angle.
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Fig. 5. EKF-UI state estimation results with ������ � �������� and ��������� �
���	. (a) Estimated states. (b) Estimated outputs. (c) Estimated unknown
input.

Noticing in Figs. 6 and 7 that some state estimates are wrong
during the fault, it could make sense to block the slow-changing
states at their pre-fault values during the fault, in order to reduce
the discontinuity-induced errors. The simulation studies were

Fig. 6. EKF-UI state estimation results in stable short-circuit fault. (a) Esti-
mated states. (b) Estimated output. (c) Estimated unknown input.

repeated for different sets of machine and external system pa-
rameters to verify the EKF-UI method capability with respect
to different sets of parameters and to analyze the influence of
changing parameters on the proposed method. As expected, we
obtained acceptable results in the simulations when we had dif-
ferent test machines (such as salient versus round rotor) and ex-
ternal systems with varying reactance. Lastly we performed ad-
ditional simulation studies at different operating points consid-
ering saturation factors, in order to check the accuracy of the
proposed EKF-UI method while varying the synchronous ma-
chine operating point. In all these sets of simulations, we again
obtained accurate estimation of the states, outputs, and unknown
input.
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Fig. 7. EKF-UI state estimation results in unstable short-circuit fault. (a) Esti-
mated states. (b) Estimated output. (c) Estimated unknown input.

Another interesting result, based on the estimated states of
synchronous machine, would consist to estimate the capability
curve of machine. First, let us define the internal generator
voltage, , as the voltage proportional to the field current :

(43)

Then, the relation between and third state of machine
can be expressed as

(44)

Based on and , which are now available through the
EKF-UI method estimation results, the value of and in turn

can be estimated. Then using the field current estimated
as above and assuming and to be known (including even-
tually the impact of a saturation model), the following equations
can be derived [1]:

(45)

where is the synchronous reactance, is the terminal
voltage, and is the field current. The equations in (45) can
be used to estimate one part of capability curve which is known
as field current heating limit [1].

VII. CONCLUSION

In this paper, two different approaches were presented for
dynamic state estimation of a power system including the syn-
chronous generator rotor angle and rotor speed. The first ap-
proach was the traditional nonlinear state estimator, the EKF
method, which includes linearization steps in its algorithm. Sim-
ulation results of the EKF estimator showed appropriate accu-
racy in estimating the dynamic states of a saturated fourth-order
generator connected to an infinite bus, under noisy processes
and measurements. However, the EKF method requires that all
input data be measured or available, which may not be the case
in some configurations (e.g., with brushless exciters) where the
field voltage is not easily measured from the power plant
control room. The EKF-UI was consequently proposed for ad-
dressing this issue. We implemented it to simultaneously esti-
mate the states of the system and the unknown input voltage

. The robustness and effectiveness of the proposed EKF-UI
approach was checked by successfully applying it to various
kinds of field voltage and mechanical torque inputs, ranging
from step to ramp signals. The developed EKF-based estima-
tors were effective as well under network fault conditions with
process and measurement noise included.

APPENDIX

Definitions of Variables and Constants: The main variables
and constants of the system presented in (1)–(7) and their values
in p.u are expressed in Table I. “No.” in the table means nominal
(or initial) value.

Gradient Calculation in the EKF and EKF-UI Methods:
The gradients in (18), (20), and also in (27)–(29) are computed
analytically. We now show the mathematical procedure of the
calculations. By using (8) in (27) to compute the gradient matrix

, we will have (46) and in turn (47):

(46)

(47)
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TABLE I
VARIABLES AND CONSTANTS DEFINITIONS

and therefore, taking the first state equation from (7), ,
the elements [ and ] can be calculated as (48):

(48)

Similarly, using the second state equation from (7),
some other elements of matrix can be calculated as (49):

(49)

while the value of is zero . Also, for the third
state equation, the elements of the matrix with
and can be calculated as (50):

(50)

and finally, for the fourth state equation, we will have

(51)

while the values of and are all zero.
For calculating the matrix in (29), we could do the same

as we did for , except that in the output matrix, we do not
have the factor in the discrete form of the equations. So, we
can easily calculate the gradients based on the main equations
in (7) and (8). From (8), the output equation of the system is

(52)

and for calculating in (29), we will have

(53)

Replacing from (7) in (49), the first row of the
gradient matrix can be calculated as (54):

(54)
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Similarly, we could compute the second-row elements of the
matrix by substituting (42) in (52) to obtain and

as follows in (55):

(55)

Finally, using the state equations from (7) for calculating the
matrix in (28), the elements of the matrix can be
computed as follows:

(56)

The vector in (56) which is related to the unknown
input estimation has just a single nonzero element. We have just
one unknown input and it is in the third equation of the system.
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