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Being able to forecast time series accurately has been quite a popular subject for researchers both in the
past and at present. However, the lack of ability of conventional analysis methods to forecast time series
that are not smooth leads the scientists and researchers to resort to various forecasting models that have
different mathematical backgrounds, such as artificial neural networks, fuzzy predictors, evolutionary
and genetic algorithms. In this paper, the accuracies of different grey models such as GM(1,1), Grey Ver-
hulst model, modified grey models using Fourier Series is investigated. Highly noisy data, the United
States dollar to Euro parity between the dates 01.01.2005 and 30.12.2007, are used to compare the per-
formances of the different models. The simulation results show that modified grey models have higher
performances not only on model fitting but also on forecasting. Among these grey models, the modified
GM(1,1) using Fourier series in time is the best in model fitting and forecasting.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A time series is a collection of data points which are generally
sampled equally in time intervals. Time series prediction refers
to the process by which the future values of a system is forecasted
based on the information obtained from the past and current data
points. Generally, a pre-defined mathematical model is used to
make accurate predictions. Time series prediction models are
widely used in financial area, such as predicting stock price in-
dexes, foreign currency exchange rates (FX rates) and so on. The
ability to do prediction with a reasonable accuracy can change
the economic policy of large companies and governments and en-
sure a more reasonable behavior by the financial actors.

Statistical and artificial intelligence (soft computing) based ap-
proaches are the two main techniques for time series prediction
seen in the literature. While AR (Auto Regressive), MA (Moving
Average), ARMA (Auto Regressive Moving Average), ARIMA (Auto
Regressive Integrated Moving Average) and Box–Jenkins models
(Box & Jenkins, 1976) can be mentioned as statistical models, neu-
ral network (NN) based models (Quah & Srinivasan, 1999; Rabiner,
1989; Roman & Jameel, 1996) are widely used as an artificial intel-
ligence-based approach, back propagation being the most widely
used technique for updating the parameters of the model. How-
ever, not only are the statistical models not as accurate as the neu-
ral network-based approaches for nonlinear problems, they may be
too complex to be used in predicting future values of a time series.
ll rights reserved.
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One major criticism about the NN model is that it demands a great
deal of training data and relatively long training period for robust
generalization (Jo, 2003). Other intelligent approaches seen in the
literature for the analysis of time series include Linear regression,
Kalman filtering (Ma & Teng, 2004), fuzzy systems (Kandel,
1991), hidden markov models (Rabiner, 1989) and the support vec-
tor machines (Cao, 2003). Some hybrid models are also seen in the
literature: in Versace, Bhatt, Hinds, and Shiffer (2004), a combina-
tion of genetic algorithms and neural networks has been proposed.
In Huang and Tsai (2009), support vector regression (SVR) and a
self-organizing feature map (SOFM) technique have been hybrid-
ized to reduce the cost of training time and to improve prediction
accuracies. High-order fuzzy logical relationships and genetic-sim-
ulated annealing techniques are combined in Lee, Wang, and Chen
(2008) for temperature prediction and the Taiwan futures ex-
change (TAIFEX) forecasting, where genetic-simulated annealing
techniques have been used to adjust the length of each interval
in the universe of discourse to increase the forecasting accuracy.

FX rates are highly nonlinear, stochastic and highly non-station-
ary financial time series, and as such, it is very difficult to fit a mod-
el to them by the use conventional linear statistical methods or
artificial neural networks. In this paper, the use of grey prediction
theory is proposed to alleviate the problem.

Grey system theory is an interdisciplinary scientific area that
was first introduced in early 1980s by Deng (1982). Since then,
the theory has become quite popular with its ability to deal with
the systems that have partially unknown parameters. As a superi-
ority to conventional statistical models, grey models require only a
limited amount of data to estimate the behavior of unknown
systems (Deng, 1989).
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During the last two decades, the grey system theory has been
developed rapidly and caught the attention of many researchers.
It has been widely and successfully applied to various systems such
as social, economic, financial, scientific and technological, agricul-
tural, industrial, transportation, mechanical, meteorological, eco-
logical, hydrological, geological, medical, military, etc., systems.
Some research studies in financial area are as follows: In one study
(Wang, 2002), the combination of fuzzification techniques and the
grey system theory (GM(1,1) model with adaptive stepsize) is pro-
posed to predict stock prices and it is shown that the approach is
very efficient. In another study, the moving average autoregressive
exogenous (ARX) prediction model is combined with grey predic-
tors for time series prediction in Huang and Jane (2009), and it is
proved that the hybrid method has a greater forecasting accuracy
than the GM(1,1) method. Another study (Chang & Tsai, 2008)
introduces a support vector regression grey model (SVRGM) which
combines support vector regression (SVR) learning algorithm and
grey system theory to obtain a better approach to time series pre-
diction. In these studies and the others, it is seen that grey system
theory-based approaches can achieve good performance character-
istics when applied to real-time systems, since grey predictors
adapt their parameters to new conditions as new outputs become
available. Because of this reason, grey predictors are more robust
with respect to noise and lack of modeling information when com-
pared to conventional methods.

The spread of this new theory has taken place as follows: In
early 1990s, some universities located in Australia, China, Japan,
Taiwan, USA, have started offering courses on grey system the-
ory. Chinese Grey System Association (CGSA) was established
in 1996. A conference on grey system theory and applications
is held by CGSA every year. For dissemination of research results,
an academic periodical; ‘‘The Journal of Grey System” is started
to be published in England in 1989. Additionally, more than
300 different academic periodicals accept and publish the grey
system related articles in the world (Liu & Lin, 1998). When
all the literature above is investigated, it can be seen that grey
system theory has aroused the interest of the scientists mostly
from the far eastern countries since it was introduced into the
scientific arena. Almost all the journal and conference papers
have been published by eastern scientists; the scientists from
the Western world have, to date, given only a limited attention
to this theory. Although a number of academic books and lecture
notes written in eastern languages can be found in the literature,
there are only two books in English which are also written by
eastern scientists.

In systems theory, a system can be defined with a color that
represents the amount of clear information about that system.
For instance, a system can be called as a black box if its internal
characteristics or mathematical equations that describe its dynam-
ics are completely unknown. On the other hand if the description
of the system is, completely known, it can be named as a white sys-
tem. Similarly, a system that has both known and unknown infor-
mation is defined as a grey system. In real life, every system can be
considered as a grey system because there are always some uncer-
tainties. Due to noise from both inside and outside of the system of
our concern (and the limitations of our cognitive abilities!), the
information we can reach about that system is always uncertain
and limited in scope (Lin & Liu, 2004).

There are many situations in which the difficulty of incomplete
or insufficient information is faced. Even a simple motor control
system always contains some grey characteristics due to the
time-varying parameters of the system and the measurement dif-
ficulties. Similarly, it is difficult to forecast the electricity consump-
tion of a region accurately because of the various kinds of social
and economic factors. These factors are generally random and
make it difficult to obtain an accurate model.
2. Fundamental concepts of grey system theory

2.1. Grey system based prediction

Grey models predict the future values of a time series based
only on a set of the most recent data depending on the window size
of the predictor. It is assumed that all data values to be used in grey
models are positive, and the sampling frequency of the time series
is fixed. From the simplest point of view, grey models which will be
formulated below can be viewed as curve fitting approaches.

2.2. Generations of grey sequences

The main task of grey system theory is to extract realistic
governing laws of the system using available data. This process
is known as the generation of the grey sequence (Liu & Lin,
1998).

It is argued that even though the available data of the system,
which are generally white numbers, is too complex or chaotic, they
always contain some governing laws. If the randomness of the data
obtained from a grey system is somehow smoothed, it is easier to
derive any special characteristics of that system.

For instance, the following sequence that represents the price of
a product might be given:

Xð0Þ ¼ ð820;840;835;850;890Þ:

It is obvious that the sequence does not have a clear regularity.
If accumulating generation suggested in grey system theory is ap-
plied to this sequence, Xð1Þ is obtained which has a clear growing
tendency.

Xð1Þ ¼ ð820;1660;2495;3345;4235Þ:
2.3. GM(n,m) model

In grey systems theory, GM(n,m) denotes a grey model, where n
is the order of the difference equation and m is the number of vari-
ables. Although various types of grey models can be mentioned,
most of the previous researchers have focused their attention on
GM(1,1) models in their predictions because of its computational
efficiency. It should be noted that in real time applications, the
computational burden is the most important parameter after the
performance.

2.4. GM(1,1) model

GM(1,1) type of grey model is the most widely used in the liter-
ature, pronounced as ‘‘Grey Model First Order One Variable”. This
model is a time series forecasting model. The differential equations
of the GM(1,1) model have time-varying coefficients. In other
words, the model is renewed as the new data become available
to the prediction model.

The GM(1,1) model can only be used in positive data sequences
(Deng, 1989). In this paper, since all the primitive data points are
positive, grey models can be used to forecast the future values of
the primitive data points.

In order to smooth the randomness, the primitive data obtained
from the system to form the GM(1,1) is subjected to an operator,
named Accumulating Generation Operator (AGO) (Deng, 1989).
The differential equation (i.e. GM(1,1)) is solved to obtain the
n-step ahead predicted value of the system. Finally, using the pre-
dicted value, the Inverse Accumulating Generation Operator
(IAGO) is applied to find the predicted values of original data.

Consider a time sequence Xð0Þ that denotes the price of a
product in USD (see Fig. 1)
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Fig. 1. The original data set.
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Xð0Þ ¼ ðxð0Þð1Þ; xð0Þð2Þ; . . . ; xð0ÞðnÞÞ; n P 4; ð1Þ

where Xð0Þ is a non-negative sequence and n is the sample size of
the data. When this sequence is subjected to the Accumulating Gen-
eration Operation (AGO), the following sequence Xð1Þ is obtained. It
is obvious that Xð1Þ is monotonically increasing (see Fig. 2).

Xð1Þ ¼ ðxð1Þð1Þ; xð1Þð2Þ; . . . ; xð1ÞðnÞÞ; n P 4; ð2Þ

where

xð1ÞðkÞ ¼
Xk

i¼1

xð0ÞðiÞ; k ¼ 1;2;3:::::; n: ð3Þ

The generated mean sequence Zð1Þ of Xð1Þ is defined as:

Zð1Þ ¼ ðzð1Þð1Þ; zð1Þð2Þ; . . . ; zð1ÞðnÞÞ; ð4Þ

where zð1ÞðkÞ is the mean value of adjacent data, i.e.

zð1ÞðkÞ ¼ 0:5xð1ÞðkÞ þ 0:5xð1Þðk� 1Þ; k ¼ 2;3; . . . ;n: ð5Þ

The least square estimate sequence of the grey difference equa-
tion of GM(1,1) is defined as follows (Deng, 1989):

xð0ÞðkÞ þ azð1ÞðkÞ ¼ b: ð6Þ

The whitening equation is therefore, as follows:
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Fig. 2. The accumulated data set.
dx1ðtÞ
dt

þ axð1ÞðtÞ ¼ b: ð7Þ

In above, ½a; b�T is a sequence of parameters that can be found as
follows:

½a; b�T ¼ ðBT BÞ�1BT Y; ð8Þ

where

Y ¼ ½xð0Þð2Þ; xð0Þð3Þ; . . . ; xð0ÞðnÞ�T ; ð9Þ

B ¼

�zð1Þð2Þ 1
�zð1Þð3Þ 1
� �
� �
� �

�zð1ÞðnÞ 1

2
666666664

3
777777775
: ð10Þ

According to Eq. (7), the solution of xð1ÞðtÞ at time k:

xð1Þp ðkþ 1Þ ¼ xð0Þð1Þ � b
a

� �
e�ak þ b

a
: ð11Þ

To obtain the predicted value of the primitive data at time
(k + 1), the IAGO is used to establish the following grey model.

xð0Þp ðkþ 1Þ ¼ xð0Þð1Þ � b
a

� �
e�akð1� eaÞ ð12Þ

and the predicted value of the primitive data at time (k + H):

xð0Þp ðkþ HÞ ¼ xð0Þð1Þ � b
a

� �
e�aðkþH�1Þð1� eaÞ: ð13Þ
2.5. The grey Verhulst model

The Verhulst model was first introduced by a German biologist
Pierre Franois Verhulst. The main purpose of Velhulst model is to
limit the whole development for a real system and it is effective
in describing some increasing processes, such as an S-curve which
has a saturation region.

The Grey Verhulst model can be defined as (Wen & Huang,
2004):

dxð1Þ

dx
þ axð1Þ ¼ bðxð1ÞÞ2: ð14Þ

Grey difference equation of Eq. (14) is

xð0ÞðkÞ þ azð1ÞðkÞ ¼ bðzð1ÞðkÞÞ2; ð15Þ
xð0ÞðkÞ ¼ �azð1ÞðkÞ þ bðzð1ÞðkÞÞ2: ð16Þ

Similar to the GM(1,1) model

½a; b�T ¼ ðBT BÞ�1BT Y; ð17Þ

where

Y ¼ ½xð0Þð2Þ; xð0Þð3Þ; . . . ; xð0ÞðnÞ�T ; ð18Þ

B ¼

�zð1Þð2Þ ðzð1Þð2ÞÞ2

�zð1Þð3Þ ðzð1Þð3ÞÞ2

� �
� �
� �

�zð1ÞðnÞ ðzð1ÞðnÞÞ2

2
6666666664

3
7777777775
: ð19Þ

The solution of xð1ÞðtÞ at time k:

xð1Þp ðkþ 1Þ ¼ axð0Þð1Þ
bxð0Þð1Þ þ ða� bxð0Þð1ÞÞeak

: ð20Þ
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Applying the IAGO, the solution of xð0ÞðtÞ at time k:

xð0Þp ðkÞ ¼
axð0Þð1Þða� bxð0Þð1ÞÞ

ðbxð0Þð1Þ þ ða� bxð0Þð1ÞÞeaðk�1ÞÞ

� ð1� eaÞeaðk�2Þ

ðbxð0Þð1Þ þ ða� bxð0Þð1ÞÞeaðk�2ÞÞ
: ð21Þ

As can be seen, in Eq. (21), if a < 0, then

lim
k!1

xð1Þp ðkþ 1Þ ! a
b
:

It means that the saturation point in Eq. (20) is a
b which limits

the prediction value. It is also the saturation point of xð0Þp ðkÞ (Wen
& Huang, 2004).

When k is sufficiently large, xð1Þp ðkþ 1Þ and xð1Þp ðkÞ will be very
close. Because of this feature of grey Verhulst model, it is com-
monly used to describe and to predict processes with a saturation
region.

2.6. GM(1,1) rolling model

GM(1,1) rolling model is based on the forward data of sequence
to build the GM(1,1). For instance, using xð0ÞðkÞ; xð0Þðkþ 1Þ; xð0Þ
ðkþ 2Þ and xð0Þðkþ 3Þ, the model predicts the value of the next
point xð0Þðkþ 4Þ. In the next steps, the first point is always shifted
to the second. It means that xð0Þðkþ 1Þ; xð0Þðkþ 2Þ; xð0Þðkþ 3Þ and
xð0Þðkþ 4Þ are used to predict the value of xð0Þðkþ 5Þ. This proce-
dure is repeated till the end of the sequence and this method is
called rolling check (Wen, 2004).

GM(1,1) rolling model is used to predict the long continuous
data sequences such as the outputs of a system, price of a specific
product, trend analysis for finance statements or social parameters.

3. Error modification of grey models

In order to improve the modeling accuracy of grey models, sev-
eral remedies have been discussed in the literature (Tan & Chang,
1996; Tan & Lu, 1996; Guo, Song, & Ye, 2005). In this study, fourier
series have been used to modify the grey models.

3.1. Modification of GM(1,1) model using fourier series of error
residuals

Consider the Xð0Þ sequence in Eq. (1) and the predicted values
given by the GM(1,1):

xð0Þp ðkþ 1Þ ¼ xð0Þð1Þ � b
a

� �
e�akð1� eaÞ ð22Þ

then, the error sequence of Xð0Þ can be defined as:

�ð0Þ ¼ ð�ð0Þð2Þ; �ð0Þð3Þ; . . . ; �ð0ÞðnÞÞ; ð23Þ

where

�ð0ÞðkÞ ¼ xð0ÞðkÞ � xð0Þp ðkÞ; k ¼ 2;3 . . . ;n: ð24Þ

The error residuals in (24) can be expressed in Fourier series as
follows:

�ð0ÞðkÞ ffi 1
2

a0 þ
Xz

i¼1

aicos
2pi
T

k
� �

þ bisin
2pi
T

k
� �� �

; k ¼ 2;3 . . . n;

ð25Þ

T ¼ n� 1 and z ¼ n� 1
2

� �
� 1:

It is obvious that T will be an integer number and z will be se-
lected as an integer number (Guo et al., 2005).
Eq. (25) can be rewritten as follows:

�ð0Þ ffi PC ð26Þ

P and C matrixes can be defined as follows:

P¼

1=2 cos 22p
T

� �
sin 22p

T

� �
cos 22p2

T

� �
sin 22p2

T

� �
��� cos 22pz

T

� �
sin 22pz

T

� �
1=2 cos 32p

T

� �
sin 32p

T

� �
cos 32p2

T

� �
sin 32p2

T

� �
��� cos 32pz

T

� �
sin 32pz

T

� �
��� ��� ��� ��� ��� ��� ��� ���

1=2 cos n2p
T

� �
sin n2p

T

� �
cos n2p2

T

� �
sin n2p2

T

� �
��� cos n2pz

T

� �
sin n2pz

T

� �

2
6664

3
7775;

ð27Þ
C¼ a0 a1 b1 a2 b2 ��� an bn½ �T : ð28Þ

One can use least-squares method to solve the Eq. (26), and cal-
culate the matrix C:

C ffi ðPT PÞ�1PT�ð0Þ: ð29Þ

Fourier series correction can be obtained as follows:

xð0Þpf
ðkÞ ¼ xð0Þp ðkÞ � �ð0Þp ðkÞ; k ¼ 2;3; . . . nþ 1: ð30Þ
3.2. Modification of GM(1,1) model using fourier series in time

In order to denote the residual time series, the difference be-
tween the real time k and the model fitted kð0Þp ðkÞ is obtained as fol-
lows (Guo et al., 2005):

qð0Þ ¼ ðqð0Þð2Þ; qð0Þð3Þ; . . . qð0ÞðnÞÞ; ð31Þ

where

qð0ÞðkÞ ¼ k� kð0Þp ðkÞ; k ¼ 2;3 . . . n; ð32Þ

kð0Þp ðkÞ ¼ 1� 1
a

ln
xð0Þp ðkÞ

xð0Þð1Þ � b
a

� 	
ð1� eaÞ

 !
; k ¼ 2;3 . . . n: ð33Þ

Eq. (32) can be expressed in the Fourier series as follows:

qð0ÞðkÞ ffi 1
2

a0 þ
Xz

i¼1

ai cos
2pi
T

k
� �

þ bi sin
2pi
T

k
� �� �

; k

¼ 2;3 . . . n: ð34Þ

Similar to the derivations in Section 3.2, Fourier series correc-
tion in time domain can be obtained as follows (Guo et al., 2005):

kð0Þpf
ðkÞ ¼ k� qð0ÞðkÞ; k ¼ 2;3; . . . n: ð35Þ
4. Simulation results

4.1. The data

The prediction of the foreign currency exchange rates (FX rates)
is a very important topic in financial area. The estimated daily trad-
ing volume of FX rates is about 1 trillion US dollars (Hussain,
Knowles, Lisboa, & El-Deredy, 2008) On the other hand, it is very
difficult to develop good mathematical models and thus make
accurate predictions for FX rates, because of the fact that the statis-
tical properties of the data change over time (Magdon-ismail, Nich-
olson, & Abu-mustafa, 1998).

Time series prediction in financial area is generally very difficult
because of the factors listed below (Hussain et al., 2008):

1. The statistical properties of the data change over time
(Nonstationary).

2. It is difficult to use mathematical prediction models with linear
parameters (Nonlinearity).

3. Random, day-to-day variations (Highly noisy).



0 50 100 150 200 250 300
1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

day

E
ur

o 
to

 D
ol

ar
 p

ar
ity

2007

2006

2005

Fig. 3. The data set.

1788 E. Kayacan et al. / Expert Systems with Applications 37 (2010) 1784–1789
Fig. 3 shows Euro to the United States dollar parity between the
dates 01.01.2005 and 30.12.2007. The time series have been
formed using the daily rates which are the data points at the end
of the each day. It can be seen that the data are highly nonlinear
and nonstationary.

4.2. Moving Average Filter (MAF)

MAF is the most common filters in signal processing in order to
reduce the random noise because of its simple structure. In this
study, a MAF with different window sizes is used to make the
primitive data smoother. By this way, the effect of MAFs on differ-
ent grey models are investigated. The impulse response of the filter
used in this study is as follows:

h½n� ¼ 1
5

d½n� þ 1
5

d½n� 1� þ 1
5

d½n� 2� þ 1
5

d½n� 3� þ 1
5

d½n� 4�: ð36Þ
4.3. Model accuracy examination

To demonstrate the accuracy of the proposed forecasting mod-
els, the actual value xð0ÞðkÞ and the forecasted value xð0Þp ðkÞ can be
compared.
Table 1
The accuracy of the models with GM and GVM window size = 5.

The dates The standards GM EFGM

01.01.2005–01.01.2006 ARPE (%) (Int.) 0.1517 0.08
ARPE (%) (Ext.) 0.5396 0.51

01.01.2006–01.01.2007 ARPE (%) (Int.) 0.1285 0.06
ARPE (%) (Ext.) 0.4386 0.42

01.01.2007–01.01.2008 ARPE(%) (Int.) 0.0972 0.05
ARPE (%) (Ext.) 0.3439 0.32

Table 2
The accuracy of the models MAF window size = 4 and GM and GVM window size = 5.

The dates The standards GM EFG

01.01.2005–01.01.2006 ARPE (%) (Int.) 0.3413 0.10
ARPE (%) (Ext.) 0.6105 0.72

01.01.2006–01.01.2007 ARPE (%) (Int.) 0.2741 0.08
ARPE (%) (Ext.) 0.4806 0.59

01.01.2007–01.01.2008 ARPE (%) (Int.) 0.2175 0.06
ARPE (%) (Ext.) 0.3903 0.47
Eqs. (37)–(39) are the three accuracy evaluation standards that
are used to examine the accuracy of the models in this study.

� ¼ xð0ÞðkÞ � xð0Þp ðkÞ; ð37Þ

RPE ¼ j�ðkÞj
xð0ÞðkÞ100%; ð38Þ

ARPE ¼ 1
n� 1

Xn

k¼2

j�ðkÞj
xð0ÞðkÞ ; ð39Þ

where �;RPE and ARPE represent the error, the relative percentage
error and the average relative percentage error, respectively.

4.4. The different grey models used in this study

In order to test the accuracies of different grey models, various
models are formed in this paper:

� GM(1,1): GM(1,1) model.
� EFGM: Modified GM(1,1) model using modeling errors and Fou-

rier series.
� TFGM: Modified GM(1,1) model at time domain using Fourier

series.
� GVM: Grey Verhulst model.
� EFGVM: Modified Grey Verhulst model using modeling errors

and Fourier series.
� TFGVM: Modified Grey Verhulst model at time domain using

Fourier series.

4.5. Simulation results

Table 1 shows that GM(1,1) model is better on both interpola-
tion and extrapolation when compared to GVM model without
using a filter. Modified GM(1,1) models, TFGM(1,1) and EFGM(1,1),
are giving better performances when compared to GM(1,1) model
as expected. However, the performance of interpolation has in-
creased more than the performance of extrapolation.

Tables 2 and 3 show that while the performances of GM(1,1)
models are decreasing, the performances of GVM models are
increasing when a moving average filter (MAF) has been used.
However, when the window size of the MAF is increased, the per-
formance of GM(1,1) models has been decreased dramatically. This
is because while GVM models give better performances S-type
TFGM GVM EFGVM TFGVM

04 0.0804 1.5634 0.8625 0.1682
10 0.5110 29.8774 28.9847 4.9612

99 0.0699 2.5034 1.4239 0.1418
07 0.4206 12.2847 12.1073 6.0883

43 0.0543 2.9236 1.8276 0.1052
42 0.3241 15.2324 14.5963 5.1995

M TFGM GVM EFGVM TFGVM

38 0.3378 2.1249 1.8136 0.3497
97 0.5770 4.3561 6.3879 0.9807

70 0.2699 1.1888 0.9265 0.2793
61 0.4549 4.1610 4.2929 1.7863

72 0.2165 0.7365 0.5162 0.2201
62 0.3687 8.9730 8.5258 2.6013



Table 3
The accuracy of the models MAF window size = 10 and GM and GVM window size = 5.

The dates The standards GM EFGM TFGM GVM EFGVM TFGVM

01.01.2005–01.01.2006 ARPE (%) (Int.) 0.5997 0.1153 0.5969 1.094 0.2767 0.6050
ARPE (%) (Ext.) 0.8207 0.8099 0.8113 6.5260 6.6278 1.7241

01.01.2006–01.01.2007 ARPE (%) (Int.) 0.4657 0.0949 0.4632 0.5979 0.1812 0.4643
ARPE (%) (Ext.) 0.6284 0.6143 0.6196 3.0732 2.9493 1.2397

01.01.2007–01.01.2008 ARPE (%) (Int.) 0.4117 0.0763 0.4105 0.8473 0.3287 0.4143
ARPE (%) (Ext.) 0.5609 0.5101 0.5534 1.9357 1.5517 1.1361

Table 4
The accuracy of the models MAF window size = 10 and GM and GVM window size = 20.

The dates The standards GM EFGM TFGM GVM EFGVM TFGVM

01.01.2005–01.01.2006 ARPE (%) (Int.) 0.7098 0.0817 0.7205 0.8640 0.0961 0.7252
ARPE (%) (Ext.) 1.0977 1.1850 1.0369 1.7255 1.7582 1.4868

01.01.2006–01.01.2007 ARPE (%) (Int.) 0.5702 0.0590 0.5637 0.7281 0.0760 0.5671
ARPE (%) (Ext.) 0.9002 0.9476 0.8018 1.5701 1.5638 1.0448

01.01.2007–01.01.2008 ARPE (%) (Int.) 0.4851 0.0480 0.4893 0.5725 0.0596 0.4908
ARPE (%) (Ext.) 0.7733 0.8030 0.6669 1.2067 1.2309 0.7326
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data, GM(1,1) models are good at monotonically increasing data
sets.

Table 4 is used to check the performances of GVM models when
the filter and prediction window size are increased. In this situa-
tion, GMV models give satisfactory performances both in interpo-
lation and extrapolation. On the other hand, GM(1,1) models give
dramatically unsuccessful results.

5. Conclusion and future works

This paper compares the performances of the various modified
grey models in time series prediction. It is shown that the perfor-
mance of the grey predictors can be further improved by taking
into account the error residuals. Highly noisy data, the United
States dollar to Euro parity, are used to show the efficiency of the
various error corrected grey models for this purpose. The model
accuracy examination results show that GM(1,1) model is able to
make accurate predictions for forecasting of the monotonous type
of processes. However, the model GM(1,1) cannot give the same
performance when the primitive data sequence increases like as
in an S-curve (like the data with a MAF used in this project) or it
has a saturation region. The simulation results show that modified
grey models have higher performances not only on model fitting
but also on forecasting. Among these grey models, the modified
GM(1,1) using Fourier series in time is the best in model fitting
and forecasting.
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