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In this article an attempt has been made to solve load frequency control (LFC) problem in an inter-
connected power system network equipped with classical PI/PID controller using gray wolf optimization
(GWO) technique. Initially, proposed algorithm is used for two-area interconnected non-reheat thermal-
thermal power system and then the study is extended to three other realistic power systems, viz. (i) two-
area multi-units hydro-thermal, (ii) two-area multi-sources power system having thermal, hydro and gas
power plants and (iii) three-unequal-area all thermal power system for better validation of the effec-
tiveness of proposed algorithm. The generation rate constraint (GRC) of the steam turbine is included in
the system modeling and dynamic stability of aforesaid systems is investigated in the presence of GRC.
The controller gains are optimized by using GWO algorithm employing integral time multiplied absolute
error (ITAE) based fitness function. Performance of the proposed GWO algorithm has been compared
with comprehensive learning particle swarm optimization (CLPSO), ensemble of mutation and crossover
strategies and parameters in differential evolution (EPSDE) and other similar meta-heuristic optimization
techniques available in literature for similar test system. Moreover, to demonstrate the robustness of
proposed GWO algorithm, sensitivity analysis is performed by varying the operating loading conditions
and system parameters in the range of 750%. Simulation results show that GWO has better tuning
capability than CLPSO, EPSDE and other similar population-based optimization techniques.

& 2015 Published by Elsevier B.V.
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1. Introduction

Owing to the importance of the distribution of electrical power,
the power companies are responsible for providing uninterrupted,
reliable, efficient and effective power supply to their customers
with an acceptable quality. Modern power system network is
made up of several controlled areas and for stable operation of
power system units, the total generation of each controlled area
must match with total load demands plus associated system losses
and regulates system frequency and exchanges tie-line power
accordingly. This is called as load frequency control (LFC) or
automatic generation control (AGC), which plays an important role
in power system operation and control [1]. LFC is continuously
monitoring the system frequency and tie-line power and calculate
net changes of same from their nominal values (known as area
control error, ACE), and accordingly control the valve settings of
generators so as to keep ACE to its minimum value. AGC drives ACE
87
88
89
90a).

oad frequency control of in
tp://dx.doi.org/10.1016/j.swe
to zero, automatically both frequency and tie-line power will
automatically move to zero [2,3].

Hitherto, several control strategies have been proposed in the
area of LFC to improve the system dynamics under the occurrence
of the load perturbation. A critical literature review on LFC of
conventional and distributed power system networks is available
in [4]. It is observed from the literature that due to its simple and
user friendly structure, most of the research papers are deal with
proportional integral derivative (PID) controller or its alternative
to solve LFC problem [1,2,5–7]. In [7], authors proposed several
classical controllers like integral (I), proportional integral (PI),
integral derivative (ID), PID and integral double derivative (IDD) to
solve LFC problem in a multi-area thermal power system. Con-
troller gains were optimized using bacteria foraging optimization
algorithm (BFOA) and showed the superiority of the proposed
method. Variable structure fuzzy gain scheduling based LFC is
proposed in [8] for an interconnected multi-area multi-sources
hydro-thermal power system network. Interval type-2 fuzzy con-
troller for four-area LFC is available in [9]. The scaling factor and
footprint uncertainties in interval type-2 fuzzy controllers were
91
92
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Fig. 1. Block diagram of two-area interconnected non-reheat thermal–thermal power system (test system-1).
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optimized using big-bang big crunch (BB-BC) optimization tech-
nique. Various others controller based on modern control theory
were proposed in the area of LFC to improve system performances
under the occurrence of load perturbation like μ-synthesis con-
troller [10], sliding mode controller [11], ANFIS controller [12],
non-integer controller [13], observer-based controller [14], neural
network controller [15], predictive controller [16], fuzzy logic
controller [17], etc.

The modern power system networks are more complex with a
large number of uncertainties. The main drawback of LFC is the choice
of secondary controller gains. If the gains are not optimally selected,
system responses may exhibit large momentary oscillations that may
propagate into thewide area resulting in awide area blackout [18]. This
motivates the researchers to design effective and optimum stabilization
techniques to die out these large oscillations and retains the system
stability. In this context, several meta-heuristic population-based opti-
mization techniques have been introduced in the area of LFC over the
last few decades. In [6], teaching learning based optimization (TLBO)
technique was proposed for optimal design of classical controller in
multi-sources multi-units power system and potentiality of the algo-
rithmwas checked with differential evolution (DE) and optimal output
feedback controller. DE based LFC was proposed in [19,20] to tune the
settings of classical controllers for a multi-area mixed power system
network and comparative performances between the classical con-
trollers were also investigated. Farhangi et al. [21] in their recent
endeavor, presents a novel approach based intelligent controller on
emotional learning for LFC system of a two-area power system with
generation rate constraint (GRC) and superiority of the proposed
algorithm was investigated with PI, fuzzy logic, hydro-neuro fuzzy
(HNF) controller. In [22], authors applied firefly algorithm (FA) with
online wavelet filter for an interconnected unequal three area reheat
thermal power system considering nonlinearities of the power system.
Authors of [23] designed biogeography based optimization (BBO)
technique for optimal design of classical controllers and frequency
stabilizer like superconducting magnetic energy storage (SMES) to get
better dynamic performances of three area hydro-thermal power sys-
tem with governor dead band (GDB) nonlinearity and investigation
revealed that proposed technique effectively died-out the oscillations
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
in frequency and tie-line power compared to ANFIS controller. In [24],
artificial bee colony (ABC) algorithm was implemented to solve AGC
and effectiveness of the proposed technique was examined with par-
ticle swarm optimization (PSO) algorithm using transient analysis
method. Shau et al. [25] suggested gravitational search algorithm (GSA)
to design PI/PIDF (PID controller with derivative filter) with several
classical objective functions for AGC system and showed the super-
iority of GSA by comparing the results with those of DE, BFOA and
genetic algorithm (GA). Later, the study is forwarded to a real system
with reheat turbine, GRC and GDB. Panda et al. designed hybrid BFOA–
PSO in [26] and effectiveness of same was tested for AGC system and
the superiority of hybrid BFOA–PSO was investigated by comparative
analysis with PSO, BFOA and GA. Beside this, there are some other
optimization algorithms like krill herd algorithm (KHA) [27], chemical
reaction optimization [28], oppositional TLBO [29], etc., which are
designed and successfully applied to other fields of power system.

Due to the randomness and uncertain dynamic behavior of the
power system network, occasionally optimal controllers are also unable
to provide better system performances. After the advancement of
power electronics components, several researchers proposed various
flexible AC transmission systems (FACTS) as frequency stabilizers such
as SMES [23,30], thyristor controlled phase shifter (TCPS) [30–32],
thyristor controlled series compensator (TCSC) [33], static synchronous
series compensator (SSSC) [30], interline power flow controller (IPFC)
[34], etc. to give additional damping to the transient responses.

In view of the above discussion, the main aim of the present study
is to design and implement a new evolutionary algorithm (EA) known
as gray wolf optimization (GWO) for optimal design of PI/PID con-
troller to solve LFC problem. Four different interconnected power
system networks with steam turbine nonlinearity are considered to
test the effectiveness of proposed GWO algorithm and simulation
results are investigated. Integral time multiply of absolute error (ITAE)
based fitness function is considered for fine tuning of PI/PID controller
gains. The superiority and effectiveness of proposed algorithm is
established by comparing transient responses with other population-
based meta-heuristic optimization techniques reported in literature
such as PSO based fuzzy controller, pattern search (PS) based fuzzy
controller, BFOA, DE, GA, hybrid BFOA–PSO, FA, hybrid FA–PS, TLBO,
terconnected power system using grey wolf optimization, Swarm
evo.2015.10.004i
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Zeigler–Nichols (ZN) for the similar test system with same controller
structure. Finally, the robustness of the GWO based designed con-
troller is validated under different loading conditions and system
parameter variations.

The rest of the paper is organized as follows: The mathematical
model of the test systems is illustrated in Section 2. A brief outline
of GWO algorithm is available in Section 3. Section 4 gives con-
troller structure with a choice of objective function. Section 5
presents different algorithmic steps of GWO applied to LFC system.
Section 6 reports the different simulation results compare to dif-
ferent methodologies. Finally, Section 7 concludes this article.
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2. Mathematical model of test system

Initially, a two-area non-reheat thermal–thermal power plant
(test system-1) as shown in Fig. 1 is considered for design and
analysis purpose. The concerned power system model is widely
used in the literature [2,3,5] for investigation of the dynamic
behavior of the interconnected system under normal and dis-
turbed condition. Each area has rating of 2000 MW with nominal
loading of 1000 MW. Both the control areas are equipped with the
speed governor, non-reheat type steam turbine, and power system
units. It is assumed that all generators in each area are coherent. In
Fig. 1, Tg is the time constant of speed governor, Tt is the time
constant of steam turbine, Kps is the gain of power system unit, Tps

is time constant of power system unit, B1 and B2 are the frequency
bias parameter of the respective areas, R1 and R2 are the
speed regulation parameter of speed governor in area-1 and area-
2, respectively, T12 is the synchronizing time constant of tie-line,
ΔPD is the load disturbance, Δf 1 and Δf 2 are deviation of fre-
quency in area-1 and area-2, respectively. Nominal values of sys-
tem parameters are taken from [2,3] and specified in Table 1. The
appropriate value of GRC of the steam turbine is included in the
system modeling. In practical power system scenario, power
generations can only change at a specified maximum limit and
therefore, GRC is always considered with steam turbine, otherwise
system will experience large momentary disturbances that may
cause instability in power system network. The limiting value of
GRC in the thermal power plant is 2–5% [2].
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3. Optimization techniques

3.1. Gray wolf optimization (GWO)

In today’s scenario, computational challenges may exist in finding
globally optimized solution from an immensely large solution space.
Heuristic optimization techniques have therefore been forwarded
which can find the candidate solution from the very large solution
space. In the recent time, different meta-heuristic optimization algo-
rithms, as mentioned in Section 1, are proposed to solve nonlinear,
complex, real-time problems. In this context, one question may arise:
why meta-heuristic optimizations have become more popular? The
answer to this question can be summarized into four groups, these are:
(i) simplicity, (ii) flexibility, (iii) derivative-free-mechanism, and (iv)
local optima avoidance.

Nearly all the well-known meta-heuristic optimization meth-
ods are (i) nature inspired, (ii) randomly initialized, and (iii) they
have several input parameters those need to be fitted to the pro-
blem in hand. The main drawback of conventional methods is the
proper selection on input parameters and premature convergence,
which results in degradation of computational efficacy and search
capability. Beside these, they are also suffering from the long
computational time, poor convergence rate, large dimension, no
terconnected power system using grey wolf optimization, Swarm
vo.2015.10.004i
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Fig. 2. Flowchart of GWO-algorithm.

Table 2
Optimum values of controller parameters for test system-1.

Controllers Ki1 Ki2 Kp1 Kp2 Kd1 Kd2 ITAE value

GWO: PI 0.5565 0.0199 0.0630 0.0730 � � 0.1388
EPSDE: PI 0.8502 0.0334 0.0145 0.0478 � � 0.1539
CLPSO: PI 0.9661 0.1147 0.0244 0.0150 � � 0.1949
GWO: PID 1.9107 0.0400 1.0569 1.7486 0.4221 1.1988 0.1340
EPSDE: PID 1.7733 0.1650 0.8599 1.0411 0.3883 1.0110 0.1497
CLPSO: PID 1.7056 0.4286 1.0148 1.7206 0.3844 0.5831 0.1569

Table 3
Comparative performance of ITAE value and settling times for test system-1.

Techniques/parameters ITAE value Settling time (s)

Δf1 Δf2 ΔPtie

Proposed GWO tuned PID 0.1340 1.06 3.17 3.34
EPSDE tuned PID 0.1497 2.88 3.37 3.56
CLPSO tuned PID 0.1569 1.89 3.60 3.80
Proposed GWO tuned PI 0.1388 1.70 3.25 3.40
EPSDE tuned PI 0.1539 6.22 7.80 6.67
CLPSO: PI 0.1949 7.19 8.80 7.64
PSO tuned fuzzy PI [3] 0.4470 5.13 6.22 4.83
PS tuned fuzzy PI [3] 0.6334 6.05 7.10 5.56
hPSO-PS tuned fuzzy PI [3] 0.1438 2.26 3.74 2.94
DE tuned PI [20] 0.9911 8.96 8.16 5.75
BFOA tuned PI [20] 1.7975 5.52 7.09 6.35
GA tuned PI [20] 2.7475 10.59 11.39 9.37
Conventional PI [20] 3.7568 45 45 28
hBFOA–PSO tuned PI [26] 1.1865 7.39 7.65 5.73
PSO tuned PI [26] 1.2142 7.37 7.82 5

Bold signifies best results.
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guarantee to give the global optimum solution, growing need
more computer resources.

The main advantage of GWO algorithm over most of the well-
known meta-heuristic algorithms is that the GWO algorithm
operation requires no specific input parameters. Additionally, it is
straightforward and free from computational complexity. Further,
its advantages include – ease of transformation of such concept to
the programming language and ease of comprehensibility. In the
line of ‘no-free-lunch’ theorem, there is no meta-heuristic opti-
mization technique well suited for all optimization problems and
there is always a room for improvement. Having knowledge of the
aforesaid discussion, authors made an attempt to design and
implement of load frequency controller utilizing novel optimiza-
tion method called gray wolf optimization. In the following sec-
tion, first encouragement of GWO technique is discussed and
afterward mathematical modeling of same is presented.

3.1.1. Encouragement of GWO
Gray wolf, also known as timber wolf or western wolf belongs to

Canidae family and its scientific name is Canis lupus. Gray wolves are
normally considered as apex predators (at the top of the food chain)
and popularly available in remote areas of North America, Eurasia and
northern, eastern and western Africa. The gray wolf optimization
(GWO) algorithm is a novel meta-heuristic optimization technique
developed by Mirjalili et al. in 2014 [35]. GWO simply mimic the
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
leadership hierarchy and hunting mechanism of gray wolves in nature.
Gray wolves mostly prefer to live in the pack (5–12 on average). Four
types of gray wolves such as alpha (α), beta (β), delta (δ), and omega
(Ω) are employed for simulating the leadership hierarchy, as shown in
[35]. Additionally, the hunting mechanism in GWO algorithm involves
three main strategies, viz. searching for prey, encircling prey, and
attacking prey.

Gray wolves present at the top of the hierarchy are called alpha
category wolves and they are the leader of the whole pack. This
category of wolves may be male or female and has decision-
making power about hunting, sleeping place, time to wake, etc.
Their decisions are directed to the pack. However, some kind of
democratic behavior is also observed in which they follow other
wolves in the pack. In gatherings, the entire pack acknowledges
the alpha by holding their tails down. The alpha wolf is also called
terconnected power system using grey wolf optimization, Swarm
evo.2015.10.004i
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Fig. 3. Changes of frequency with 10% SLP in area-1 for test system-1.

Fig. 4. Changes of tie-line power with 10% SLP in area-1 for test system-1.

Fig. 5. Convergence profile of proposed algorithms for test system-1 with PI-controller structure.
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the dominant wolf since his/her direction should be followed by
the entire pack. Interestingly, alpha is not necessarily the strongest
member in the hierarchy, it only manages the pack. This shows
that the organization and discipline of a pack are much more
important than strength.

In the second level of the hierarchy, the gray wolves are named
as beta category wolves and they are subordinate of alpha category
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swe
wolves. They help alphas in the decision-making process and/or
other pack activities. The beta wolves can be either male or female.
They are probably the best candidate and may transform into the
alpha category wolves in case one of the alpha wolves passes away
or become very old. The beta wolves respect alpha, but dominant
other wolves in the pack. It plays the role of an advisor to alphas
and discipliner in the pack.
terconnected power system using grey wolf optimization, Swarm
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Fig. 6. Convergence profile of proposed algorithms for test system-1 with PID-controller structure.

Table 4
Optimum values of GWO based PID-controller parameters for test system-
1with GRC.

Controller gains GRC¼70.05 GRC¼70.025

GWO FA [2] hFA–PS [2] GWO FA [2] hFA–PS [2]

Kp1 0.9843 0.3259 0.3834 1.0751 0.5262 0.1898
Kp2 1.9892 0.3259 0.3834 1.7904 0.5262 0.1898
Ki1 1.9766 0.5743 0.6127 1.9571 0.3404 0.3164
Ki2 0.2150 0.5743 0.6127 0.3608 0.3404 0.3164
Kd1 0.3463 0.4024 0.4021 0.4165 0.6500 0.4528
Kd2 1.0085 0.4024 0.4021 0.7602 0.6500 0.4528
ITAE value 0.1308 0.3240 0.2782 0.1294 0.8023 0.7405

Bold signifies best results.

Table 5
Comparative performance between different optimization techniques in terms of
ITAE value and settling times for test system-1 with GRC.

Optimization
algorithms

GRC¼70.05 p.u. GRC¼70.025 p.u.

Δf1 Δf2 ΔPtie ITAE Δf1 Δf2 ΔPtie ITAE

GWO 2.64 2.86 3.14 0.1308 2.52 3.17 3.34 0.1294
hFA–PS [2] 2.8 4.5 4 0.2782 6.9 5.2 7.5 0.7405
FA [2] 3.1 4.9 4.3 0.3240 7.8 6.3 7.9 0.8023
BFOA [2] 4.7 6.4 5.1 0.4788 9 7.9 8.3 1.5078
GA [2] 6.9 8.0 5.7 0.5513 11.1 11.2 11 2.4668
ZN [2] 8.1 9.2 6.7 0.6040 15.3 14.1 15.3 3.4972

Bold signifies best results.
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The lowest stage of the hierarchy is occupied by the omega
types of wolves. They are basically used as a scapegoat and always
follow the decision made by other dominant wolves. They are the
worst category of wolves those are allowed to eat. It is noted that
omega types of wolves are not so much important in the pack, but
the whole pack may face internal fighting in case of losing the
omega. This is due to the venting of violence and frustration of all
wolves by the omegas. Omegas are always maintaining the
dominant structure in the hierarchy and in some cases the omega
is also the babysitters in the pack.

The wolves which do not come under alpha, beta and omega
categories are grouped under delta or subordinate category. Delta
types of wolves always follow the alphas and betas but dominate
omegas. Five basic functions performed by delta wolves in the
hierarchy, viz. (i) scouts, (ii) sentinels, (iii) elders, (iv) hunters and
(v) caretakers. Scouts are responsible for watching the boundaries
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
of the region and aware the pack in case of any hazard. Sentinels
protect and promise the safety of the pack. Elders are the
experienced wolves (alphas or betas) and their experiences are
used to attack prey or any target elements. Hunters help alphas or
betas when hunting prey and providing food for the pack. Finally,
caretakers are responsible for caring the feeble, sick and injured
wolves in the pack.

The main steps of gray wolf hunting are as follows [35]:

(i) Tracking, chasing and approaching the prey.
(ii) Pursuing, encircling and harassing the prey until it stop

moving.
iii) Attack towards the prey.

3.1.2. Mathematical modeling of GWO
In this section, the social hierarchy of wolves, tracking, encir-

cling and attacking prey are discussed followed by the mathema-
tical modeling of GWO algorithm.

3.1.2.1. Social hierarchy. For modeling of the social behavior of the
gray wolf, alpha is considered to be the fittest solution followed by
beta and delta, respectively, and the rest of the solutions are
grouped under omega. In GWO, the hunting (optimization) pro-
cess is guided by alpha, beta and delta, whereas omega always
follows these three wolves.

3.1.2.2. Encircling. To model an encircling behavior of gray wolves
around the prey, following equations are considered [35].

D
!¼ C

!
Uxp
!ðtÞ� x!ðtÞ

��� ��� ð1Þ

x!ðtþ1Þ ¼ xp
!ðtÞ� A

!
D
! ð2Þ

where t is the current iteration, xp
!ðtÞ denotes the current position

of the victim, and the coefficient vectors A
!

and C
!

are computed
using (3) and (4), respectively.

A
!¼ 2 a!r1

!� a! ð3Þ

C
!¼ 2r2

! ð4Þ
where r1

! and r2
! are two random vectors between [0, 1] and the

component of a! is linearly decreasing from 2 to 0 over each
course of the iteration.

3.1.2.3. Hunting. In hunting phase which is basically guided by
the alphas, the positions of the gray wolves are updated. Though
alphas are the main agents in hunting phase, still occasionally
terconnected power system using grey wolf optimization, Swarm
evo.2015.10.004i
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betas and deltas also participate in the hunting process. So far
we have the candidate solutions of gray wolves in terms of
alphas, betas and deltas but we do not know the exact or opti-
mum position of prey. To find the optimum positions, three best
solutions (obtained so far) in terms of alpha, beta and delta are
saved and remaining solutions including omega are competed.
Following formulas are used to update the wolf positions
around the prey [35].

Dα
�!¼ C1

�!
Xα
�!� X

!��� ���; Dβ
�!¼ C2

�!
Xβ
�!� X

!��� ���; Dδ
�!¼ C3

�!
Xδ
�!� X

!��� ���
ð5Þ

X1
�!¼ Xα

�!� A1
�!

Dα
�!� �

; X2
�!¼ Xβ

�!� A2
�!

Dβ
�!� �

;

X3
�!¼ Xδ

�!� A3
�!

Dδ
�!� �

ð6Þ

X
!ðtþ1Þ ¼ X1

�!þ X2
�!þ X3

�!
3

ð7Þ

It would be observed that final position is random in nature
within the circle which is completely defined by the alpha, beta
and delta in the search space, whereas other wolves update their
position by estimating the prey position.

3.1.2.4. Attacking prey (exploitation). In the above sections, it is
discussed that how the gray wolves finish the hunt by attacking
Fig. 8. Changes of tie-line power with 5% SLP in a

Fig. 7. Changes of frequency with 5% SLP in are

Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swe
prey when it stops moving. In order to mathematically express the
model approaching the prey, two parameters, as described below
are considered. a! is linearly decreasing from 2 to 0 and fluctua-
tions of A

!
is also decreased with a!. In other words A

!
is a random

value between �a; a½ �. When random value of A
!

is between [�1,
1] the next position of search agent can be any position between
the current position and prey position.

3.1.2.5. Search for prey (exploration). Optimum search in gray wolf
algorithm is based on the positions of alpha, beta and delta. They
diverge from each other when they search for prey and converge
during attacking the prey. Mathematically, when the random value
of A

!
is greater than 1 or less than �1 then search agent diverges

to prey. This emphasizes exploration behavior in GWO algorithm.
One more variable in GWO technique helps exploration process is
C
!

. The random value of C
!

varies between [0, 2], as evident from
(4), which effects the prey of defining the distance as in (1). Thus,
GWO shows more random behavior throughout the optimization
and favoring exploration and local optima avoidance.

Finally, the algorithm steps of GWO may be summarized as
follows:

(a) The search process is started with random initialization of
candidate solutions (wolves) in the search space.

(b) Alpha, beta and delta wolves are estimated based on the
position of prey.
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rea-1 considering 0.05 GRC for test system-1.

a-1 considering 0.05 GRC for test system-1.
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Fig. 10. Changes of tie-line power with 5% SLP in area-1 considering 0.025 GRC for test system-1

Table 6
Optimum gains of GWO based PID-controller, ITAE value, settling time and overshoot using GWO of test system-1 under wide variations of load.

Parameters ITAE value Controller gains Settling time (s) Overshoot

Ki1 Ki2 Kp1 Kp2 Kd1 Kd2 Δf1 Δf2 ΔPtie Δf1 Δf2 ΔPtie

Nominal 0.1340 1.9107 0.0400 1.0569 1.7486 0.4221 1.1988 1.06 3.17 3.34 0.0020 9.3�10�5 2.18�10�5

þ50% 0.1901 1.9701 0.3942 1.0517 1.9225 0.3767 0.4995 2.35 3.17 3.32 0.0084 9.02�10�5 2.48�10�5

þ25% 0.1582 1.9855 0.5456 1.0909 1.9887 0.4040 0.7051 1.31 3.12 3.34 0.0043 6.73�10�5 2.2�10�5

�25% 0.0959 1.9651 0.4395 1.0830 1.8745 0.3922 0.5921 2.30 3.18 3.38 0.0029 3.32�10�5 1.03�10�5

�50% 0.0667 1.8993 0.3813 1.0454 1.8127 0.3822 0.5443 1.28 3.27 3.40 0.0017 2.08�10�5 6.08�10�6

Fig. 9. Changes of frequency with 5% SLP in area-1 considering 0.025 GRC for test system-1.

D. Guha et al. / Swarm and Evolutionary Computation ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
(c) To find the optimum location of prey, each wolf updates its
position.

(d) A control parameter, a! linearly decreases from 2 to 0 for
better exploitation and exploration of candidate solutions.

(e) Candidate solutions tend to diverge when A
!

41 and to con-
verge when A

!o1 and at the end GWO gives the optimum
solution.

The general flowchart of GWO algorithm is shown in Fig. 2 and
for more details about the GWO algorithm; readers are referred to
[35].

3.2. Comprehensive learning particle swarm optimization (CLPSO)

As a novel evolutionary computation technique, particle swarm
optimization (PSO) has attracted much attention and wide appli-
cation in the complex optimization fields over the last few
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
decades. PSO mimics the swarm behavior and individual represent
points in the d-dimensional search space. In conventional PSO, the
velocity Vd

i

� �
and position Xi

d
� �

of the ith-particle are updated
using (8) and (9) [36].

Vi
d ⟸
update

Vi
dþc1rand

d
i pbestdi �Xi

d
� �

þc2rand
d
i gbestd�Xi

d
� �

ð8Þ

Xd
i ⟸
update

Xd
i þVd

i ð9Þ

where Xi ¼ X1
i ;X

2
i ;…;Xd

i

h i
is the position of ith particle; Vi ¼

V1
i ;V

2
i ;…;Vd

i

h i
is the velocity of ith particle; pbest the best pre-

vious position of particle yielding the best fitness value; gbest the
best position discovered by the whole population; c1 and c2 are
acceleration term that pull each particle toward their optimal
position; rand is the random number selected between [0, 1].
terconnected power system using grey wolf optimization, Swarm
evo.2015.10.004i
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Table 7
Sensitivity analysis of test system-1 wiQ3 th GWO based PID-controller.

Parameter variation % of change Proposed GWO based PID-controller Hybrid PSO–PS based fuzzy PI-controller [3] DE optimized PI-controller [3]

Settling time (s) ITAE value Settling time (s) ITAE value Settling time (s) ITAE value

Δf1 Δf2 ΔPtie Δf1 Δf2 ΔPtie Δf1 Δf2 ΔPtie

Nominal No change 1.06 3.17 3.34 0.1340 2.26 3.74 2.94 0.1438 8.96 8.16 5.75 0.9962

Tg þ50 2.44 3.17 3.33 0.1312 2.21 3.64 2.81 0.1321 11.13 11.08 7.57 0.9955
þ25 1.71 3.2 3.4 0.1308 2.22 3.70 2.88 0.1386 9.14 9.98 7.45 0.9847
�25 1.34 3.25 3.36 0.1250 2.28 3.76 2.96 0.1460 7.09 8.06 5.73 1.0012
�50 1.80 3.59 3.37 0.1342 2.31 3.77 2.97 0.1469 7.03 7.94 5.77 1.0860

Tt þ50 1.89 3.26 3.6 0.1329 1.98 3.61 2.80 0.1348 14.86 14.84 11.05 1.1767
þ25 2.58 3.27 3.49 0.1326 2.16 3.69 2.88 0.1409 11.47 11.45 8.75 1.0028
�25 1.54 3.08 3.17 0.1257 2.33 3.76 2.95 0.1422 6.66 6.26 5.74 1.0366
�50 1.31 3.03 3.47 0.1269 2.39 3.74 2.91 0.1354 5.26 6.54 6.00 1.0860

T12 þ50 1.63 2.33 2.73 0.1084 2.73 3.51 2.70 0.1361 9.68 9.61 7.33 0.9901
þ25 2.35 2.56 2.90 0.1145 2.56 3.60 2.80 0.1399 9.20 9.35 7.04 0.9875
�25 2.94 3.61 3.58 0.1497 1.92 3.98 3.14 0.1513 7.74 8.67 6.24 1.0029
�50 3.04 3.36 3.35 0.1898 3.02 4.48 3.53 0.1917 7.34 7.61 6.69 1.0322

Fig. 11. Block diagram of two-area interconnected multi-units hydro-thermal power system (test system-2).
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PSO does not use any evolution operators like crossover and
mutation, which may result is degradation of computational ability
and search capability. It may easily get trapped in a local optimum
when solving multimodal complex problems. To avoid premature
convergence and to improve the performance of original PSO, Liang
et al. presented a new learning strategy by incorporating a compre-
hensive learning method into original PSO, namely comprehensive
learning particle swarm optimization (CLPSO) [36] in 2006. This
strategy ensured that the diversity of the swarm was preserved to
discourage premature convergence of original PSO.

In original PSO, pbest and gbest assist each particle to learn from
others and social learning factor is limited to gbest. Since all the par-
ticles in the swarm learn from the gbest even if the current gbest is far
from the global optimum, particles may easily be absorbed and trap-
ped to the local optimum value if search environment is complex with
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swe
numerous local solutions. Thus to avoid premature convergence and to
accelerate the convergence rate, a comprehensive learning strategy is
included in original PSO. In this new technique, particles are allowed
to learn from one paradigm pbestð Þ for a few iterations instead of
learning from two paradigms, namely, pbest and gbest for all
dimensions. In CLPSO, for each particle, in addition to its own pbest,
other particles’ pbest are also used as paradigms. In CLPSO, velocity
updating equation is modified as [36]

Vi
d ⟸
update

w*Vi
dþc*randdi pbestdf iðdÞ �Xi

d
� �

ð10Þ

where pbestdf iðdÞ may be any particles’ pbest or its own pbest; w is the
inertia weight to balance global and local search ability. For more
details regarding CLPSO, readers are referred to [36].
terconnected power system using grey wolf optimization, Swarm
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3.3. Ensemble of mutation and crossover strategies and parameters
in differential evolution

The effectiveness of differential evolution (DE) is highly
depends on the selection of mutation and crossover strategy and
associated parameter values. However, different optimization
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ble 8
timum values of PI/PID controller for test system-2 with 1.5% SLP in area-1.

Controller
parameter

GWO:PI (ISE) hFA–PS:PI
(ISE)[2]

GWO:
PI
(ITAE)

hFA–PS:
PI (ITAE)
[2]

GWO:
PID
(ITAE)

hFA–PS:
PID
(ITAE)
[2]

Kp1 0.5155 0.0476 0.0407 0.0490 1.1641 1.8457
Kp2 0.1783 �1.9441 0.0792 �0.7220 1.6009 �0.4525
Kp3 1.6259 1.1591 0.8287 1.3594 1.0571 1.2922
Kp4 0.0547 �0.5823 0.3354 �1.7002 1.3800 �1.0720
Ki1 0.8058 1.4093 0.9747 0.6533 1.8087 1.6563
Ki2 1.7824 �0.2675 0.0799 �0.0301 0.0325 0.1378
Ki3 0.2142 0.4211 0.2642 0.1119 1.7595 1.8748
Ki4 1.7868 �0.4942 1.9854 �0.0827 0.8378 �1.3785
Kd1 – – – – 0.6055 0.6109
Kd2 – – – – 0.6957 0.4120
Kd3 – – – – 0.9952 0.4041
Kd4 – – – – 0.4954 0.4541
Fitness
value

67.99�10�6 801�10�6 0.0564 0.2285 0.0139 0.0870

ble 9
ttling time and performance index of different optimization techniques for test
stem-2 with 1.5% SLP in area-1.

Optimization
techniques

Settling time (s) ISE (10�6) ITAE
(10�3)

ITSE (10�6)

Δf1 Δf2 ΔPtie

hFA–PS tuned PID:
ITAE [2]

3.29 5.20 3.92 118.4 87.0 85.7

hFA–PS tuned PI:
ITAE [2]

6.43 8.60 5.98 805.0 228.5 862.9

hFA–PS tuned PI:
ISE [2]

9.48 15.25 7.15 801.0 333.8 899.9

GA tuned PI: ISE
[2]

16.03 25.72 9.84 905.8 625.8 1238

ZN tuned PI: ISE [2] 38.15 38.98 23.99 1079.0 1336 2890
Proposed GWO
tuned PID: ITAE

1.71 5.06 3.40 32.98 13.9 33.097

Proposed GWO
tuned PI: ITAE

4.09 6.97 3.59 238.86 56.4 251.86

Proposed GWO
tuned PI: ISE

6.06 12.7 11.02 67.990 82 73.67

ld signifies best results.

Fig. 12. Changes of frequency with 1.5

Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
problems have different mutation strategies with different para-
meter values depending on the nature of optimization problem.
Additionally, to solve a specific optimization problem, different
mutation strategies with different parameter settings may provide
better results during the evolution than a single mutation strategy
with unique parameter settings as in conventional DE.

Ensemble of mutation and crossover strategies and parameters in
differential evolution (EPSDE) algorithm consists of a pool of mutation
and crossover strategies along with a pool of values for each of asso-
ciated control parameters competes to produce successful offspring
population. EPSDE requires less computational time to generate high
quality of solutions and have a stable convergence performance. Each
member in the initial population is randomly assigned with a mutation
strategy and associated parameter values are taken from the respective
pools. The population members (target vectors) produce offspring (trial
vectors) using the assigned mutation strategy and parameter values. If
the generated trial vector produced is better than the target vector, the
mutation strategy and parameter values are retained with trial vector,
which becomes the parent in the next generation. The combination of
mutation strategy and the parameter values that produce better off-
spring than the parent are stored. If the target vector is better than the
trial vector, then the target vector is randomly reinitialized with a new
mutation strategy and associated parameter values from the respective
pools or from the successful combinations stored with equal prob-
ability. Four basic steps for successful implementation of EPSDE are
enumerated as follows [37]:

Step 1. Initialization: Initial population of size ‘np’ is generated
using the following pseudo code:

where d is the number of control variables; rand is a randomly gen-
erated number between [0, 1]; lband ub are the lower and upper
bounds of control variables.
Step 2. Mutation: DE mutates and recombines the population to

produce a population of ‘np’ trial vectors. For each trial
vector Ui

kþ1 at generation np, an associated mutant vector
ρðkÞ
i ¼ u1i;u2i;…;unif g can usually be generated by using any
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one of the five strategies as shown online available code
[38].

Step 3. Crossover: EPSDE employs a uniform crossover strategy to
generate trial vector tðkÞi

� �
, which is defined as follows:

tðkÞi ¼
ρðkÞ
i;j ; if randjrCr

� �
uðkÞ
i;j ; otherwise

8<
:

where Cr is the crossover probability.
Step 4. Selection: Fitness function is evaluated for trial vector and

target vector, trial vector is selected if it provides better
value of the function than target vector as follows:

Ukþ1
i ¼

tki ; if f tki
� �

Z f Uk
i

� �h i
Uk

i ; otherwise

8<
:

The aforesaid procedure, i.e. mutation, crossover and selection,
is executed for all target vectors and a new population is created
until the termination criterion is met.
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4. Controller structure with problem formulation

The main aim of the secondary controller is to regulate frequency
and tie-line power deviations to zero as fast as possible after sudden
load perturbation and for this, an optimal PI/PID controller is designed
using GWO approach. When the controlled areas are interrupted by
any sudden load perturbation, the required ACE in each area is used to
invoke the controller action such that ACE is reduced to zero.
Fig. 13. Changes of tie-line power with 1

Table 10
Optimum values of GWO based PID-controller under varied conditions (load, TH and Tt)

Controller parameters Loading condition TH

þ50% þ25% �25% �50% þ50%

Ki1 1.9146 1.9020 1.8851 1.8316 1.9645
Ki2 0.0573 0.0373 0.0885 0.1193 0.1475
Ki3 1.7238 1.8905 1.9702 1.9321 1.5416
Ki4 1.1233 1.3032 1.5179 1.2418 1.1446
Kp1 1.4042 1.0641 1.3152 1.3304 1.4453
Kp2 1.9705 1.7331 1.8356 1.9140 1.7351
Kp3 0.6632 1.0664 1.1337 0.4161 0.9743
Kp4 0.3241 1.3761 1.9696 1.4228 1.7597
Kd1 0.6419 0.5652 0.6209 0.6304 0.6804
Kd2 0.5659 0.9622 0.4529 0.3912 0.1725
Kd3 0.7710 0.6192 0.8951 0.9329 0.8382
Kd4 1.1993 1.3377 0.6808 1.6145 1.3585

Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swe
According to IEEE recommended definition of terms of AGC, the ACE
in an interconnected power system is defined as a quantity that
reflects the deficiency or excess of power within a control area.
Mathematically it is defined as in (11).

ACE1 ¼ B1Δf 1þΔPtie

ACE2 ¼ B2Δf 2�ΔPtie

)
ð11Þ

where ACE1; ACE2 are the area control error of area-1 and area-2,
respectively. The controlled inputs u1;u2ð Þ to the plant are obtained as
under:

u1ðtÞ ¼ KpACE1þKi

Z
ACE1dtþKd

dðACE1Þ
dt

u2ðtÞ ¼ KpACE2þKi

Z
ACE2dtþKd

dðACE2Þ
dt

ð12Þ

where Kp, Ki, Kd are the proportional, integral and derivative gains of
PID-controller, respectively, which need to be optimized using pro-
posed GWO algorithm. For the optimal selection of PID-controller
gains, choice of performance index according to the problem structure
is very important so that good dynamic responses under all operating
conditions can be achieved. A common problem encountered in
control system design is the selection of controller gains. In general,
the low value of controller gains offers sluggish system performance,
while high value causes an unduly oscillatory system response with
the possibility of instability. Somewhere between these extreme levels
is the general choice of controller gains that may provide satisfactory
system performance.
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.

Tt

þ25% �25% �50% þ50% þ25% �25% �50%

1.9029 1.9153 1.9366 1.9948 1.8340 1.7927 1.9222
0.2335 0.0650 0.0383 0.0284 0.0804 0.0360 0.0377
1.7694 1.8084 1.8357 1.9592 1.9136 1.9137 1.1109
1.4534 1.4265 1.1812 0.7498 0.6052 1.7778 1.8008
1.2911 1.3784 1.2110 1.3881 1.3259 1.0079 1.0083
1.9372 1.9095 1.8542 1.5146 1.9519 1.6303 1.7940
1.5107 1.0956 0.5633 1.9100 1.4020 0.5201 0.1282
1.4359 1.3789 0.9632 1.8514 0.9758 0.8071 1.2262
0.6452 0.5967 0.6000 0.8585 0.7371 0.4853 0.4089
0.6677 0.5939 0.9261 0.8684 0.8495 0.8973 1.3624
0.7495 0.9699 0.4146 0.9441 0.9212 0.6689 0.2542
0.6052 1.0045 0.9767 1.2536 1.4995 1.3408 1.7280
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Table 11
Optimum values of GWO based PID-controller under varied conditions (T1, T2 and TR).

Controller parameters T1 T2 TR

þ50% þ25% �25% �50% þ50% þ25% �25% �50% þ50% þ25% �25% �50%

Ki1 1.7600 1.9451 1.9406 1.8815 1.8467 1.9508 1.9510 1.9006 1.9593 1.9356 1.8757 1.9220
Ki2 0.0240 0.0831 0.0971 0.1189 0.1773 0.0603 0.0437 0.0557 0.0367 0.1991 0.0189 0.0576
Ki3 1.8261 1.9153 1.8512 1.6565 1.7950 1.4881 1.9505 1.9289 1.5970 1.8119 1.9161 1.9296
Ki4 1.6466 0.8806 1.0662 1.5096 1.9280 1.9414 1.7395 1.2148 1.6009 1.5581 0.7184 1.4295
Kp1 1.1614 1.3102 1.4926 1.4540 1.3218 1.5994 1.2925 1.3730 1.3641 1.6570 1.2282 1.4120
Kp2 1.7455 1.9610 1.9366 1.8580 1.8049 1.8573 1.9546 1.7402 1.7213 1.8805 1.0068 1.8560
Kp3 0.9011 0.6948 0.6050 1.0375 0.8936 0.9518 1.0610 1.0286 0.9016 0.6624 1.2755 0.5330
Kp4 0.7042 1.1357 0.9239 0.9080 1.5193 0.6465 1.0350 1.7614 1.6647 0.9079 1.5046 0.0344
Kd1 0.5289 0.5550 0.8010 0.7856 0.5730 0.5941 0.6145 0.6331 0.6915 0.8025 0.5443 0.5479
Kd2 0.6535 0.3155 0.6876 0.7075 0.6838 0.2808 0.4198 0.1769 0.5699 0.3774 0.4195 0.1429
Kd3 0.7702 0.7400 0.7344 0.9073 1.3458 0.7602 0.5793 0.9336 0.7838 0.8717 0.6766 0.6087
Kd4 0.9663 1.3680 0.5058 1.2165 0.9066 0.3485 0.7573 0.5902 0.8597 0.9355 0.0066 0.9858

Table 12
ITAE value and settling time of transient responses under variation of loading condition and system parameter.

Parameter % of change Proposed GWO based PID controller hFA–PS based PID controller [2]

ITAE value Settling time in seconds (2% error band) ITAE Value Settling time in seconds (2% error band)

Δf1 Δf2 ΔPtie Δf1 Δf2 ΔPtie

Nominal No changes 0.0139 1.71 5.17 4.38 3.1077 48.44 44.44 35.68

Loading condition þ50% 0.0201 1.71 5.33 4.51 3.1718 48.36 44.79 35.73
þ25% 0.0163 2.36 4.53 4.02 3.1098 48.41 44.43 35.69
�25% 0.0108 1.58 5.10 4.42 3.0536 48.36 44.23 35.62
�50% 0.0078 1.67 5.29 4.44 3.0479 48.39 44.20 35.65

TH þ50% 0.0154 2.21 4.99 4.29 3.6068 53.65 54.57 38.40
þ25% 0.0177 1.65 4.75 4.25 3.3034 48.42 49.25 35.75
�25% 0.0135 1.51 5.37 4.62 2.7961 48.24 39.97 32.89
�50% 0.0129 2.54 4.80 4.23 2.6265 47.98 39.85 30.19

Tt þ50% 0.0131 2.33 4.34 3.99 5.4230 45.22 66.01 44.41
þ25% 0.0148 1.75 4.95 4.43 3.9785 53.84 55.00 38.64
�25% 0.0138 1.54 5.00 4.32 2.7684 48.27 40.07 32.92
�50% 0.0128 1.84 5.05 4.32 2.2550 47.57 39.57 32.79

T1 þ50% 0.0143 1.98 5.00 4.38 3.1071 56.55 52.27 34.22
þ25% 0.0136 1.48 4.91 4.25 3.1044 52.59 53.27 35.04
�25% 0.0139 1.85 5.37 4.51 3.7196 43.74 50.89 31.61
�50% 0.0139 1.17 5.75 4.86 5.7071 44.91 48.72 31.06

T2 þ50% 0.0170 1.16 5.47 4.56 3.1916 53.68 45.40 35.74
þ25% 0.0133 1.98 5.67 4.81 3.2640 53.24 44.80 35.62
�25% 0.0127 2.42 4.77 4.27 3.4983 48.42 49.75 38.43
�50% 0.0135 1.94 5.10 4.48 4.4884 53.57 55.12 43.71

TR þ50% 0.0128 1.55 5.34 4.51 3.4059 60.14 51.09 38.04
þ25% 0.0166 1.82 5.63 4.73 3.1091 51.63 47.26 36.56
�25% 0.0135 1.74 4.68 4.18 5.2457 42.70 49.28 41.55
�50% 0.0133 1.80 4.86 4.22 16.0689 103.24 103.24 92.64
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The essential function of LFC is to minimize the area control
error (ACE) and its demanded value to zero as fast as possible. In
an optimal control system, the selection of objective function is
done either by (i) taking few points of the time response, or (ii) by
taking the entire time response, i.e. integral criterion. The integral
criterion is the most commonly used performance index in opti-
mal control theory. The commonly used performance indices
based on integral criterions are: integral square error (ISE), integral
absolute error (IAE), integral time multiplies of square error (ITSE)
and ITAE. For any of the possible aforesaid performance indices,
best response corresponds to the minimum value of selected
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
objective function and better system specifications like rise time,
settling time, overshoot, undershoot, etc.

ISE is a measure of system performances formed by integrating
the square error over fixed interval of time. ISE will penalize large
errors more than small errors. It exhibits smaller overshoot but
albeit large settling time.

IAE is error taken absolute and added over time. It is often used
where the digital simulation of a system is being employed;
however it is irrelevant to real-time analytical work, because the
determination of the absolute value of the error in analytic form is
somewhat difficult. It produces slow system response.
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ITAE and ITSE have an additional time multiplier of the error
function, which emphasis long duration errors and gives faster
time response compare to ISE and IAE. ITAE, what is done is to
weight errors which exist after a long time much more heavily
than those at the start of the response, resulting faster setting
time of system oscillations. ITAE criterion also provides mini-
mum peak overshoot. On the other hand, ITSE criterion based
controller offers large controller output for a sudden change in
reference value, which is not wanted from the controller design
point of view.

It is reported in [2,3,20] that ITAE based objective function
remarkably improved system performance compared to aforesaid
indices and therefore, it is used as an objective function for opti-
mal design of proposed PI/PID controller. The fitness function or
objective function (J) is depicted in (13).

J ¼
Z tf inal

t ¼ 0
t Δf 1
�� ��þ Δf 2

�� ��þ ΔPtie
�� ��� �

dt ð13Þ

In this context, LFC may be viewed as constrained optimization
problem and its constraints are bounded by the controller
parameters.

The design problem is formulated as follows:
Minimize J
Subjected to:

Kp;minrKprKp;max

Ki;minrKirKi;max

)
for PI�controller ð14Þ
Fig. 14. Changes of frequency with 1% SLP in area-1

Fig. 15. Changes of tie-line power with 1% SLP in area

Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.swe
Kp; minrKprKp; max

Ki; minrKirKi; max

Kd; minrKdrKd; max

9>=
>; for PID�controller ð15Þ

where, KPID;min; KPID;max are the minimum and maximum gains of
PI/PID controller parameters, respectively.
5. Implementation of GWO in LFC problem

In this paper, GWO algorithm is implemented to solve LFC
problem in multi-area power system network. The algorithmic
steps of the proposed method in enumerated as below.

Step 1. Initialize input parameters of GWO algorithm such as sea
rchagents_no (population size), number of control vari-
ables (dimension of the problem) according to the con-
troller structure, upper and lower bounds of the search
space, number of elitism parameters and total number of
generations.

Step 2. In the initialization process, search agents or gray wolves
(i.e., controller parameters such as KP ; KI ; KD) are ran-
domly generated between upper and lower bounds in the
search space.

Step 3. Evaluate the fitness function using (13) and assign alpha,
beta, delta wolves in the search space.
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for test system-3 considering AC tie-line only.

-1 for test system-3 considering AC tie-line only.
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Step 4. Update the positions of alpha, beta and delta using the
following pseudo code.

Step 5. Defining two random numbers r1; r2 between [0, 1] and a!
linearly decreasing from 2 to 0.
Fig. 16. Changes of frequency with 1% SLP in area-1

Fig. 17. Changes of tie-line power with 1% SLP in are

Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
Step 6. Update the positions of search agents including omega
using (5) and (6). Finally, modify the control variables
(KP ; KI ; KD) for the each search agents using (7).

Step 7. Check whether any search agent goes beyond the search
space or not and infeasible solutions are replaced by the
randomly generated feasible solution set.

Step 8. Sort the positions of search agents obtained in step 6 from
the best value to worst value and use for next generation.

Step 9. Go to step 4 until the termination criterion is fulfilled.
6. Simulation results and discussion

To test the effectiveness and superiority of proposed algorithm,
four different interconnected power system networks are con-
sidered in the present study. Transfer-function model of the test
systems are developed in MATLAB/SIMULINK environment and opti-
mization algorithm (GWO) is written in the m file. ITAE criterion
based objective function (ACE) is minimized using GWO algorithm
to find optimum gains of controller parameters. Simulations were
conducted on an Intel core (TM) i3 processor 2.4 GHz and 2 GB
memory computer in the MATLAB 7.8.0 (R2009a) environment. The
dynamic performances of test systems are investigated with 1%
SLP in area-1. For successful implementation of GWO algorithm, 40
population size and maximum 100 iterations are taken for the
present study.
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a-1 for test system-3 considering AC–DC tie-line.
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6.1. Case study 1 – transient analysis of test system-1

6.1.1. Linear model
At the first instant of study, GWO tuned PI-controller is incor-

porated to the linearized model of test system-1 as shown in Fig. 1.
The nominal values of system parameters are taken from [2,3] and
listed in Table 1. The optimum gains of PI-controller using GWO
algorithm are provided in Table 2. The performance of proposed
GWO technique is compared with other recently published con-
ventional and meta-heuristic techniques such as: CLPSO, EPSDE,
PSO tuned fuzzy PI controller [3], PS tuned fuzzy PI controller [3],
hPSO–PS tuned fuzzy PI controller [3], DE tuned PI controller [20],
BFOA tuned PI controller [20], GA tuned PI controller [20], ZN
tuned PI controller [20], hBFOA–PSO tuned PI controller [26], PSO
tuned PI controller [26] for the identical power system with
similar fitness function and the comparative performances are
tabulated in Table 3. It is clearly noted from Table 3 that minimum
ITAE value is obtained with GWO technique (ITAE¼0.1388) com-
pared to CLPSO (ITAE¼0.1949), EPSDE (ITAE¼0.1539), hPSO–PS
based fuzzy PI-controller (ITAE¼0.1438), PSO based fuzzy PI-
controller (ITAE¼0.4470), PS based fuzzy PI-controller
(ITAE¼0.6334), DE (ITAE¼0.9911), BFOA (ITAE¼1.7975), GA
(ITAE¼2.7475), ZN (ITAE¼3.7568), hBFOA–PSO (ITAE¼1.1865),
PSO (ITAE¼1.2142). The ITAE value with GWO algorithm is
improved by 9.81% (EPSDE), 28.8% (CLPSO), 3.48% (hPSO–PS tuned
fuzzy), 69.94% (PSO tuned fuzzy), 78.08% (PS tuned fuzzy), 85.9%
(DE), 92.77% (BFOA), 94.9% (GA), 96.3% (ZN), 88.3% (hBFOA–PSO),
Table 13
Optimum values of controller parameters and performance index with GWO optimized

Evolutionary algorithm
(EA)

Controller gains

Ki1 Ki2 Ki3 Kp1 Kp2 Kp3

hGSA–PS [37] �0.2950 �1.6073 �0.7871 0.1535 0.9489 �1.2751
Proposed GWO 0.2961 0.0434 0.3325 0.0020 0.0747 0.1622
hGSA–PS [37] �0.6539 �1.2491 �0.7123 0.1297 0.8660 �1.2828
Proposed GWO 1.9851 1.9507 1.9895 1.9635 1.9072 1.9859

Settling time of system frequencies and tie-line power oscillations

EA’s Δf1 Δf2 Δf3 ΔP12 ΔP23 ΔP13

hGSA–PS: PI [37] 14.66 13.65 13.67 14.14 11.23 12.09

GWO: PI [Proposed] 12.04 13.62 8.10 14.10 10.93 11.32
% of improvement 18.14 0.219 40.75 0.283 2.74 6.37

Fig. 18. Changes of frequency with PI-controlle
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and 88.56% (PSO). Hence, it can be concluded from the aforesaid
discussion that GWO algorithm gives minimum fitness value
compared to EPSDE, CLPSO and other optimization algorithms as
shown in Table 3.

The dynamic performance of test system-1 is evaluated with
10% SLP in area-1 and the output responses are presented in
Figs. 3 and 4. To investigate the superiority of proposed algorithm,
the simulation results are compared with BFOA [20], DE [20],
hBFOA–PSO [26] optimized PI-controller for the similar test sys-
tem are also shown in Figs. 3 and 4. The settling time of frequency
and tie-line power oscillations with the proposed GWO and other
optimization techniques are listed in Table 3. It is clearly noted
from Figs. 3 and 4 and Table 3 that proposed GWO algorithm gives
better transient performances compared to other optimization
approaches reported in the literature.

For further improvement of dynamic responses, PID-controller
is introduced in LFC loop and its gains are optimally determined by
the proposed GWO method. At the end of the optimization, opti-
mal controller settings are noted down and shown in Table 2.
Critical observation of Table 3 reveals that minimum fitness value
is obtained with GWO based PID controller (ITAE¼0.1340) com-
pared to CLPSO based PID controller (ITAE¼0.1569), EPSDE based
PID controller (ITAE¼0.1497) and improvement of fitness value
with GWO is 14.6% (CLPSO), 10.5% (EPSDE). The convergence
characteristics of GWO algorithm with PI and PID controller
structure are shown in Figs. 5 and 6, respectively. For the better
comparison, the convergence characteristics of CLPSO and EPSDE
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PI/PID controller for test system-4 after 1% SLP in area-1.

ITAE value Minimum damping ration

Kd1 Kd2 Kd3

— — — 4.6435 0.0028
— — — 2.6168 0.0219
0.3846 0.1943 1.8050 0.6508 0.1563
0.9432 1.7668 1.2111 0.1083 0.1083

EA’s Δf1 Δf2 Δf3 ΔP12 ΔP23 ΔP13

hGSA–PS: PID
[37]

8.26 8.16 9.37 11.84 7.47 9.40

GWO: PID 6.26 6.78 4.70 10.59 5.74 6.70
% of
improvement

24.21 16.91 49.83 10.55 23.16 28.72

r after 1% SLP in area-1 for test system-4.
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Fig. 19. Changes of tie-line power with PI-controller after 1% SLP in area-1 for test system-4.

Fig. 20. Changes of frequency with PID-controller after 1% SLP in area-1 for test system-4.
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are also given in Figs. 5 and 6 for the similar controller structure.
Critical observation of Figs. 5 and 6 reveals that GWO algorithm
yields greater convergence performance in terms of fitness value,
the rate of convergence and computational efficiency. Settling
times of Δf 1; Δf 2 and ΔPtieoscillations are noted down from the
output responses and given in Table 3. Percentage of improvement
of settling time with GWO optimized PID controller is 37.6% Δf 1

� �
,

2.46% Δf 2
� �

and 1.76% ΔPtie
� �

, respectively, compared to GWO
based PI-controller. It is clearly observed from the simulation
results, Table 2 and Figs. 5 and 6, that dynamic stability of con-
cerned power system is improved remarkably with GWO-tuned
PID-controller. Hence, in the succeeding sections, the study is
carried out with GWO based PID-controller.

6.1.2. Non-linear model with GRC
In order to establish the superiority of proposed GWO algo-

rithm, the study is extended to a nonlinear system considering the
appropriate value of GRC of the steam turbine. GRC imposes a
practical constraint on response speed of the turbine. In actual
practice, power generation can only be changed at a specified rate
and therefore, it is realistic to consider a limiter in the form of GRC
with the steam turbine. If it is not taken into consideration, then
generators will experience a large momentary oscillation which
may cause instability to the power system. Two GRC values of 7
0:025 p:u: and 70:05 p:u:[2] are considered for the present study
and dynamic behavior of the test system is investigated with 5%
SLP in area-1. The optimum settings of PID-controller with GRC
(70.025, 70.05) are listed in Table 4. The performance of pro-
posed GWO algorithm is compared with some recently published
Please cite this article as: D. Guha, et al., Load frequency control of in
and Evolutionary Computation (2015), http://dx.doi.org/10.1016/j.sw
[2] meta-heuristic optimization techniques such as hFA–PS, FA,
BFOA, GA, ZN and comparative results are shown in Table 5.
It is clearly viewed from Table 5 that with identical controller
structure, objective function (ITAE) and same GRC value (70.05),
a minimum ITAE value is obtained with GWO algorithm
(ITAE¼0.1308) compared to hFA–PS (ITAE¼0.2782), FA
(ITAE¼0.3240), BFOA (ITAE¼0.4788), GA (ITAE¼0.5513) and ZN
(ITAE¼0.6040). Improvement of objective function with GWO is
52.9% (hFA–PS), 59.6% (FA), 72.7% (BFOA), 76.3% (GA) and 78.3%
(ZN) compared to other optimization techniques listed in Table 5.
The dynamics of the nonlinear test system with 70.05 GRC after
5% SLP are shown in Figs. 7 and 8. The settling times of Δf 1; Δf 2
and ΔPtie with proposed GWO algorithm is noted down from
Figs. 7 and 8 and compared with hFA–PS, FA, BFOA, GA, ZN, which
is shown in Table 5. It is concluded from Table 5 and Figs. 7 and 8
that proposed GWO outperform other optimization techniques
reported before.

A similar study is performed with 70.025 value of GRC and
optimum settings of PID controller, ITAE value and settling time of
Δf 1; Δf 2, ΔPtie are reported in Tables 4 and 5. Changes in fre-
quency and tie-line power after 5% SLP in area-1 are displayed in
Figs. 9 and 10. It is further observed from Tables 4 and 5 and
Figs. 9 and 10 that with the lower value of GRC, GWO technique
gives superior performance than that obtained with hFA–PS, FA,
BFOA, GA, and ZN.

6.1.3. Sensitivity analysis of test system-1
Sensitivity analysis is performed to exhibit the robustness of

proposed GWO based PID controller for variations of loading
terconnected power system using grey wolf optimization, Swarm
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Fig. 21. Changes of tie-line power with PID-controller after 1% SLP in area-1 for test system-4.
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conditions and system parameters in the range of 750% in step of
25% taking one at a time. The PID-controller employed in both
areas are optimized simultaneously by using GWO algorithm and
optimum values of controller gains, minimum ITAE values, over-
shoots and settling times of frequency, tie-line power deviations
under different loading conditions are depicted in Table 6. It is
clearly observed from Table 6 that system performances are barely
changed when loading condition is varied between 750% from
their nominal settings, especially the setting time of frequency and
tie-line power oscillations.

Additionally, to show the ability and efficacy of designed PID-
controller, system parameters are also varying in the range of 7
50% from their nominal settings. The changed parameters are the
time constant of speed governor Tg

� �
, time constant of steam tur-

bine Ttð Þ and synchronizing time constant of tie-line T12ð Þ. Mini-
mum fitness value, setting time of frequency and tie-line power
oscillations under these uncertainty conditions are presented in
Table 7. An extensive comparative analysis is made with the
results obtained by GWO algorithm and those of hPSO–PS based
fuzzy controller [3], DE [3] for the identical test system and same
rages of parameter variations as shown in Table 7. The analysis
reveals that proposed GWO tuned PID controller gives superior
performances as compared to hPSO–PS based controller, DE-based
controller. Hence, it can be concluded from the aforesaid discus-
sion that GWO-based PID controller performs satisfactorily under
uncertainty conditions and is also quite robust.

6.2. Case study 2 – transient analysis of test system-2

To demonstrate the superiority of proposed GWO algorithm,
authors have conducted another simulation. This time, multi-area
multi-source hydro-thermal power system network [2,3] as shown
in Fig. 11 is considered and dynamic responses are investigated.
The nominal settings of system parameters are tabulated in Table 1
and 1.5% SLP in area-1 is considered to study the dynamic behavior
of same. Two more objective functions based on ISE and ITSE
criterion are considered in addition with (13) for better compar-
ison of proposed algorithm. The objective functions are defined as
follows:

ISE¼ J ¼
Z tsim

t ¼ 0
Δf 1
� �2þ Δf 2

� �2þ ΔPtie
� �2h i

dt ð16Þ

ITSE¼ J ¼
Z tsim

t ¼ 0
t Δf 1
� �2þ Δf 2

� �2þ ΔPtie
� �2h i

dt ð17Þ

PI/PID-controllers are simultaneously optimized using pro-
posed GWO algorithm and at the end of the optimization, the
optimum gains of designed controller are depicted in Table 8.
Please cite this article as: D. Guha, et al., Load frequency control of in
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Minimum fitness value and settling time of frequency and tie-line
power deviations are shown in Table 9. The tuning ability of pro-
posed GWO algorithm is established by comparing the results with
some recently published [2] optimization techniques like hFA–PS,
GA and ZN for the similar test system and same controller struc-
ture. Figs. 12 and 13 and Table 9 show the comparative analysis
between proposed GWO algorithm and hFA–PS, GA, ZN methods.
Critical examination of Figs. 12 and 13 and Table 9 clearly reveals
that minimum objective function (both ISE and ITAE) is achieved
with GWO based PI-controller compared to hFA–PS, GA and ZN
tuned PI-controllers. The ISE is further minimized by 91.5% (hFA–
PS), 92.49% (GA) and 93.69% (ZN) with GWO technique. Similarly,
ITAE is minimized with GWO by 75.3% (hFA–PS), 90.9% (GA) and
95.8% (ZN). Improvement of settling time of Δf 1; Δf 2; and ΔPtie

with GWO optimized PI-controller is 56.8%, 54.3% and 49.8%,
respectively, as compared to hFA–PS tuned PI-controller. Having
knowledge of the aforementioned discussion, it is concluded that
proposed GWO algorithm exhibits better performance than that of
classical and modern optimization techniques reported in Table 9.

GWO tuned PID-controller is added to the existing test system
for further improvement of system dynamics. Optimum settings of
PID-controller, fitness values and settling times of Δf 1;Δf 2; and
ΔPtie are given in Tables 8 and 9. It is clearly noted from Table 8
that fitness value with GWO optimized PID-controller is reduced
by 84% as compared to hFA–PS based PID-controller. Transient
responses of the concerned power system with proposed con-
troller is shown in Figs. 12 and 13. System performance index, i.e.
settling time of Δf 1; Δf 2;and ΔPtie are noted down from Figs. 12
and 13 and presented in Table 9. The settling time of frequency
and tie-line power oscillations is improved by 48%, 2.69% and
13.3%, respectively, with GWO based PID-controller compared to
hFA–PS tuned PID-controller.

Additionally, sensitivity analysis is performed to evaluate the
effectiveness and robustness of designed controller for wide var-
iations of loading conditions and system parameters in the range
of 750% of nominal setting. The changed parameters are time
constants of speed governor Tg

� �
, steam turbine Ttð Þ, hydro-

governor T1ð Þ, hydraulic amplifier T2ð Þ, reset time of hydraulic
amplifier TRð Þ and in all cases ITAE based objective function is
employed to tune the controller gains. The tuned parameters
under normal and varied conditions are given in Tables 10 and 11.
To illustrate the superiority of designed controller, ITAE value,
settling times of Δf 1; Δf 2; and ΔPtie are compared with the results
obtained by hFA–PS based PID-controller [2] and depicted in
Table 12. The transient analysis reveals that proposed GWO based
PID-controller outperforms hFA–PS based PID-controller and
terconnected power system using grey wolf optimization, Swarm
vo.2015.10.004i
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controller gains are robust to wide variations of system parameters
and loading conditions.

6.3. Case study 3 – transient analysis of test system-3

One more complicated and realistic test system of two-area
multi-units multi-sources interconnected power system network
having thermal, hydro and gas power plants is considered for
further verification of the effectiveness of the proposed GWO
algorithm. The transfer-function model of test system-3 is avail-
able in [6] and nominal values of system parameters are tabulated
in Table 1. GWO algorithm is applied to tune the settings of PID-
controller without and with DC link between two controlled areas.
1% SLP in area-1 is considered for the present study. To illustrate
the superiority of designed controllers, changes of frequency and
tie-line power obtained using GWO tuned PID-controller are
compared with TLBO based PID-controller [6] and are shown in
Figs. 14–17. It is clearly evident from Figs. 14–17 that proposed
GWO based PID-controller gives better system dynamics than
TLBO based PID-controller.

6.4. Case study 4 – transient analysis of test system-4

To demonstrate the ability of proposed GWO algorithm in LFC
area, the study is further extended to complicated, nonlinear and
realistic power system unit which is widely available in the lit-
erature [39,40]. The investigation has been made on three-
unequal-area all thermal power plant of area-1: 2000 MW, area-
2: 4000 MW and area-3: 8000 MW. Classical PI/PID controllers are
used as a secondary controller for the concerned test system and
its gains are optimally selected by applying proposed GWO algo-
rithm employing ITAE based fitness function. The time delay is one
of the most important physical constraints encountered in the
power system. With the rapid progression of the power system
network, growing of physical setup, functionality and complexity
of the system, the time delay is now become a major issue in LFC
system design and synthesis. However, to get an accurate insight
of the system dynamics, it has to be considered during the study.
The time delay in transmission system can be expressed by the
following transcendental equation:

GTDðsÞ ¼ e� sT ¼ 1�sT=2þs2T2=12

1þsT=2þs2T2=12
ð18Þ

The linear transfer function form of time delay nonlinearity, as
defined in (18), is obtained using 2nd order Pade approximation
method and T in (18) is the amount of time delay given to the output
response, whose value is set to 50 ms for present study [39]. Gen-
eration rate constraint (GRC) of steam turbine and governor dead band
(GDB) nonlinearities are also included in the system modeling for
better assessment of the concerned power system unit. The nonlinear
model of three-unequal-area all thermal power system is available in
[39] and nominal values of system parameters are specified in Table 1.
1% step load perturbation (SLP) is applied to area-1 for examining the
dynamic behavior of the test system and to establish the superiority of
GWO algorithm, output results are compared with hybrid gravitational
search algorithm (hGSA)–pattern search (PS) optimized PI/PID con-
troller. Optimal controller parameters, minimum ITAE value with
proposed GWO algorithm are listed in Table 13. It is clearly evident
from Table 13 that minimum ITAE value is obtained with GWO-tuned
PID controller (ITAE¼0.1083) compare to hGSA–PS (ITAE¼0.1563) and
percentage of improvement is 30.71%. Similarly, the percentage of
improvement of ITAE value with GWO based PI-controller is 46.3%
than hGSA–PS optimized PI-controller. The change in frequency and
change in tie-line power after SLP with GWO-optimized PI/PID con-
trollers are displayed in Figs. 18–21 (only four figures are shown). For
Please cite this article as: D. Guha, et al., Load frequency control of in
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the better comparison between GWO and hGSA–PS algorithms, the
output results are displayed on the same figures. The system perfor-
mance, i.e. setting time of frequency and tie-line power oscillations are
noted down from Figs. 18 to 21 and presented in Table 13. Critical
observation of Table 13 and Figs. 18–21 reveals that proposed GWO
optimized PID controller gives better system response in terms of
minimum settling time, minimum fitness value than that obtained
with hGSA–PS algorithm. Hence, it may be concluded from the
aforesaid discussion that proposed GWO outperforms hGSA–PS
algorithm.
7. Conclusion

This article presents design and implementation of a new
evolutionary algorithm namely GWO for the first time to find an
effective and optimal solution of LFC problem in the power system.
An extensively used two-area non-reheat thermal power system
without and with GRC of the steam turbine is considered at the
first instant and PI/PID controller parameters are optimized
employing GWO, CLPSO and EPSDE algorithms using ITAE based
objective function. To show the superiority of the proposed GWO
algorithm, simulation results are compared with those of some
classical and meta-heuristic optimization techniques like CLPSO,
EPSDE, hFA–PS, FA, hPSO–PS, PSO, DE, hBFOA–PSO, GA, ZN, etc. for
the similar test system and significant improvement is observed
with GWO optimized PID controller. Sensitivity analysis is per-
formed to illustrate the robustness of designed controller by
varying the system parameters and operating loading conditions.
Time domain simulation yields that proposed controller is quite
robust and gives satisfactory performance under uncertainty
conditions. Additionally, three realistic test systems, viz. two-area
multi-units hydro-thermal system, two-area multi-units multi-
sources thermal–hydro-gas system and three-unequal-area all
thermal power plant, are investigated for validations of the
effectiveness of proposed GWO algorithm in LFC area. To make the
study realistic, different power system nonlinearities like GRC,
GDB, and time delay of the transmission system are included in
the system. Simulation results exhibit that proposed GWO tuned
PID-controller can effectively handle the aforesaid nonlinearities
and improved system performance remarkably.

Some advanced control algorithm may be applied to the pro-
posed area in LFC system to improve the system dynamics under
the disturbed condition in future. In the present analysis, authors
have considered single load perturbation, i.e. 1% of nominal value
at t¼0 s to identify the effectiveness and robustness of designed
controller. But, in actual practice power system is always experi-
ences random load variation with different magnitude during the
whole day. So, in future we will consider such type of load pattern
to revise the dynamics of given power systems. Additionally, we
will include different power system stabilizers in coordination
with LFC for further advancement of system stability. This research
work can further be extended by considering the contingency
analysis.
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