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a b s t r a c t

This paper deals with the problem of observer-based stabilization for linear systems with parameter
inequality. A new design methodology is proposed thanks to a judicious use of the famous Young
relation. This latter leads to a less restrictive synthesis condition, expressed in term of Linear Matrix
Inequality (LMI), than those available in the literature. Numerical comparisons are provided in order to
show the validity and superiority of the proposed method.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Uncertainties and perturbations are frequently encountered in
practical control systems because it is often very difficult to obtain
exact mathematical models. This is due to environmental noises,
data errors, ageing of systems, uncertain or slowly varying param-
eters, etc. The presence of uncertainties may cause instability and
bad performances on a controlled system. Therefore, considerable
efforts have been assigned to the robust stability and stabilization
of linear systems with parameter uncertainties. For recent works,
we refer the readers to Arcak and Kokotovic (2001), Gao, Wang,
and Zhao (2003), Heemels, Daafouz, and Millerioux (2010), Ibrir
and Diopt (2008) and Lien (2004a).

In some realmodels, state feedback controlmight fail to guaran-
tee the stabilizability when some of the system states are not mea-
surable. This is why a state observer is required and included in the
feedback control (Atassi & Khalil, 2000; Hendricks & Luther, 2001;
Karafyllis & Kravaris, 2005; Pagilla, King, Dreinhoefer, & Garimella,
2000; Song & Hedrick, 2004). Observer-based controllers are of-
ten used to stabilize unstable systems or to improve the sys-
tem performances. The observer-based stabilization problem for
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both deterministic and stochastic linear systems is well character-
ized in Kalman et al. (1960) and Luenberger (1971). An optimal
observer-based control strategy is given in both cases. Neverthe-
less, for uncertain systems, there is no generic algorithm. Tremen-
dous research activities have beendeveloped in the recent years for
both linear and nonlinear systemswith uncertain parameters (Gao
et al., 2003; Heemels et al., 2010; Ibrir, 2008; Lin, Guan, Liu, & Shi,
2001; Lu, Tsai, Jong, & Su, 2003). However, the obtained methods
remain conservative (CRUSIUS, 1999; Lien, 2004a,b).

Furthermore, there are considerable approaches in the litera-
ture dealing with the solution of the problem of output feedback
controller design by directly using BMI conditions (Lens, 2009; Os-
tertag, 2008). However, it is well known that solving a BMI is an
NP-hard problem from the complexity point of view (Toker & Os-
bay, 1995),which is a drawback for numerical implementations. To
overcome this issue, some important and general dynamic output-
feedback approaches have been presented in Scherer, Gahinet,
and Chilali (1997) using relevant arguments and judicious math-
ematical tools. Nevertheless, in this paper we focus our study on
observer-based controllers design, which presents some difficul-
ties due to its particular structure.

Motivated by the above discussions, a new designmethodology
is proposed. By using the Lyapunov function approach combined
with a judicious use of the Young relation, we get a new LMI
synthesis methodology. This leads to a quite simple LMI condition
that is numerically tractable with any LMI software. It is important
to underline that the proposed LMI condition is solved without
any additional restrictive conditions, namely the a priori choice
of the Lyapunov matrix and the equality constraint (Lien, 2004a).
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Our approach is applied to the numerical example taken from
Lien (2004a) aiming to provide comparisons and to show the
superiority of the proposed new design methodology. A numerical
evaluation of the conservatism is also provided for more than
50000 randomly generated systems.

2. Problem formulation

Consider the continuous-time uncertain linear systems de-
scribed by the following equations

ẋ =


A + ∆A(t)


x + Bu (1a)

y =


C + ∆C(t)


x (1b)

where x ∈ Rn is the state vector, y ∈ Rp is the outputmeasurement
and u ∈ Rm is the control input vector. A, B and C are constant
matrices of adequate dimensions. First, we consider the following
assumptions:

• the pairs (A, B) and (A, C) are respectively stabilizable and
detectable;

• there exist matrices Mi,Ni, Fi(t), i = 1, 2, of appropriate di-
mensions so that

∆A(t) = M1F1(t)N1, ∆C(t) = M2F2(t)N2 (2)

where the unknown matrices Fi(t) satisfy the condition

F T
i (t)Fi(t) ≤ I, for i = 1, 2. (3)

The observer-based controller we consider in this paper is under
the form:

˙̂x = Ax̂ + Bu + L

y − Cx̂


(4a)

u = −Kx̂ (4b)

where x̂ ∈ Rn is the estimate of x, K ∈ Rm×n is the control gain,
L ∈ Rn×p is the observer gain. Hence, we can write

·
x
e


=


A − BK + ∆A(t)


BK

∆A(t) − L∆C(t)
 

A − LC
 

x
e


(5)

where e = x − x̂ represents the estimation error.
Now, consider the Lyapunov function candidate

V (x, e) =


x
e

T 
P 0
0 R

 
x
e


= xTPx + eTRe. (6)

Notice that the Lyapunov function (6) is well known in the litera-
ture for this problem, especially in Lien (2004a) which is the main
motivation of this paper. Of course, the block-diagonal structure
imposed in (6) can introduce conservatism, but it is difficult to give
an assessment on how much conservatism is introduced by this
structure.

After calculating the derivative of V along the trajectories of (5),
we have:

V̇ (x, e) =


x
e

T 
Σ11 Σ12
(⋆) Σ22


  

Σ


x
e


(7)

where the matrix Σ is given by (8):

Σ11 = (A − BK)TP + P(A − BK) + (∆A)TP + P(∆A) (8a)

Σ12 = PBK + (∆A − L(∆C))TR (8b)
Σ22 = (A − LC)TR + R(A − LC). (8c)

and (⋆) is used for the blocks induced by symmetry.
Notice that V̇ (x, e) < 0, ∀ x ≠ 0 and e ≠ 0 if the matrix in-

equality Σ < 0 holds. However, this matrix inequality is a BMI,
which is hardly tractable numerically. On the other hand, lineariz-
ing the BMI Σ < 0 is a very difficult task because of the pres-
ence of the coupling term PBK ; the congruence principle cannot
be applied to linearize it. In this paper, we focus on the method-
ology of Lien (2004a) which investigated the same challenge. To
clarify the different new developments of our work and the im-
provements with respect to existing results, we summarize, in
what follows, themethodology of Lien (2004a) which concerns the
same class of systems: first, in Lien (2004a, Theorem 1), the author
made the particular choice of P , namely P = I , in order to linearize
the BMIΣ < 0. In Lien (2004a, Theorem 2), to avoid the restriction
in the a priori choice of P = I , he introduced a new matrix P̂ satis-
fying the additional strong equality condition PB = BP̂ to linearize
Σ < 0. To overcome this difficulty, many research activities have
been recently proposed in the literature, but deals with systems in
discrete-time case (Heemels et al., 2010; Ibrir, 2008; Ibrir & Diopt,
2008). In the next section, we propose a novelmanner to overcome
the obstacle of the coupling PBK without equality constraint or an
a priori choice of the matrix P .

3. Main theoretical results

3.1. New LMI design methodology

Theorem 1. System (1) is asymptotically stabilizable by (4) if for a
fixed scalar ϵ4 > 0, there exist two positive definite matrices Z ∈

Rn×n, R ∈ Rn×n, two matrices K̂ ∈ Rn×m, L̂ ∈ Rp×n and positive
scalars ϵ1 > 0, ϵ2 > 0 and ϵ3 > 0 so that the LMI condition (9) given
in Box I is feasible. Hence, the stabilizing observer-based control gains
are given by K = K̂ TZ−1 and L = R−1L̂T .

Proof. We rewrite thematrixΣ as a sumof twomatrices, one con-
tains the uncertainties and an other one without the uncertainties,
that is:

Σ =


A11 PBK
(⋆) A22


+


B11 B12
(⋆) 0


where

A11 = (A − BK)TP + P(A − BK)

A22 = (A − LC)TR + R(A − LC)

B11 = (∆A)TP + P(∆A), B12 = (∆A − L(∆C))TR.

We pre and post multiply Σ by the matrix diag(P−1, I), putting
Z = P−1 and by developing ∆A and ∆C we obtain:

Σ =


A11 0
0 A22


+


BK
0

 
0 I


+


0
I

 
(BK)T 0


+


ZNT

1
0


F T
1 (t)


MT

1 0

+


M1
0


F1(t)


N1Z 0


+


NT

1
0


F T
1 (t)


0 MT

1 R


+


0

RM1


F1(t)


N1 0


+


−NT

2
0


F T
2 (t)


0 MT

2 L
TR


+


0

RLM2


F2(t)


−N2 0


(10)

where A11 = Z

A − BK

T
+


A − BK


Z.
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9)


Q1  
P(Z, K̂ , ϵ1, ϵ2, ϵ3) 0

0 ATR − CT L̂ + RA − L̂TC

 QT
2  

BK̂ T 0
0 I

 
ZNT

1
0

 
0 0

RM1 L̂TM2


Q2  


K̂BT 0
0 I



N1Z 0


0 MT

1 R
0 MT

2 L̂




Q3  


−

1
ϵ4

Z 0

0 −ϵ4Z


0 0

0 −ϵ1I 0

0 0

−ϵ2I 0
0 −ϵ3I





< 0 (

P(Z, K̂ , ϵ1, ϵ2, ϵ3) = ZAT
− K̂BT

+ AZ − BK̂ T
+ ϵ1M1MT

1 + ϵ2NT
1N1 + ϵ3NT

2N2

Box I.
Now, by applying the Young relation (Boyd, El Ghaoui, Feron, &
Balakrishnan, 1994) in a judicious manner to retrieve the variable
ZK T , we get the following inequality:

Σ ≤


A11 0
0 A22


+ ϵ4


BK
0


Z


BK
0

T

+
1
ϵ4


0
I


Z−1


0
I

T

+
1
ϵ1


ZNT

1
0

 
ZNT

1
0

T

+


ϵ1M1MT

1 0
0 0


+


ϵ2NT

1N1 0
0 0


+

1
ϵ2


0

RM1

 
0

RM1

T

+


ϵ3NT

2N2 0
0 0


+

1
ϵ3


0

L̂TM2

 
0

L̂TM2

T

(11)

where ϵ1, ϵ2, ϵ3 and ϵ4 are positive constants. Using the change of
variables K̂ = ZK T and L̂ = LTR, the right hand side of inequality
(11) takes the following form:

Q1 − Q2Q
−1
3 QT

2 (12)

where Q1, Q2 and Q3 are given in (9). Finally, from Schur’s Lemma
(see, e.g. Boyd et al., 1994), we deduce that the inequality Σ < 0
is satisfied if the LMI (9) is feasible.

Remark 2. Notice that the matrix inequality (9) is an LMI if the
scalar variable ϵ4 > 0 is fixed a priori. In order to overcome the
difficulty of the choice of ϵ4, we proceed as in Li and Fu (1997,
Remark 5) by using the gridding method. This latter consists to
scale ϵ4 by defining κ =

ϵ4
1+ϵ4

(and then ϵ4 =
κ

1−κ
). We know

that ϵ4 > 0 if and only if κ ∈]0, 1[. Then, we assign a uniform
subdivision of the interval ]0, 1[ and we solve the LMI (9) for each
value of this subdivision. On the other hand, using some additional
inequality constraints, we can obtain an LMI on ϵ4. For instance, we
can use the following constraint and approximation

Z > αI and −
1
ϵ4

I ≤ −(2 − ϵ4)I (13)

leading to an LMI on α and β = αϵ4. Indeed, thanks to (13), we
have

−
1
ϵ4

Z ≤ −(2 − ϵ4)Z ≤ −(2 − ϵ4)αI = −(2α − β)I

and

−ϵ4Z ≤ −ϵ4αI = −βI.

Hence, to have the resulting LMI, it suffices to replace in (9) the
blocks 1

ϵ4
Z and ϵ4Z by (2α − β)I and βI , respectively.
3.2. On the necessary conditions of the proposed design methodology

This part is devoted to some remarks about the feasibility of the
proposed LMI condition. A discussion on the necessary conditions
for the feasibility of (9) is provided. It should be noticed that the
necessary condition for the feasibility of the LMI (9) is Q1 < 0,
which is equivalent to the stabilizability and detectability of the
system (1) without uncertainties. However, in Lien (2004a, The-
orems 1 and 2), the necessary condition for the feasibility of (8)
and (10) is analytically more conservative than the stabilizability
of (A, B) for some systems.

To illustrate this statement, we consider the particular class
of systems with a matrix B =


B1
0


, where B1 is of appropriate

dimension. Now, we write

A =


A11 A12
A21 A22


, P =


P11 P12
PT
12 P22


, K =


K1 K2


.

The equality constraint PB = BP̂ , required in Lien (2004a,
Theorem 2, Eq. (11)), leads to P12 = B⊥PB = 0 with B⊥

=

0 I


,

which means that the Lyapunov matrix P is diagonal. On the other
hand, the LMI (10) in Lien (2004a) means that
A − BK

T
P + P


A − BK


< 0,

which can be rewritten under the detailed form
T + T T AT

21P22 + P11

A12 − B1K2


(⋆) AT

22P22 + P22A22


< 0,

where

T = P11

A11 − B1K1


.

Hence, A22 must be Schur stable to guarantee

AT
22P22 + P22A22 < 0. (14)

Notice also that the feasibility of the LMI (10) in Lien (2004a)
requires

AT
22 + A22 < 0 (15)

since, in particular, we have P22 = I . To sum up, for this type
of systems, in addition to the stabilizability and the detectability,
the necessary condition for the feasibility of (8) and (10)–(11)
in Lien (2004a) is the Schur stability of A22 in the sense of (14)
and (15), respectively. This shows analytically the superiority of
the proposed design methodology at least for this particular class
of systems.
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4. Numerical comparisons and conservatism evaluation

4.1. Numerical examples

In the sequel, we give two simple numerical examples in order
to show the superiority of our design method.

4.1.1. Example 1: on the necessary conditions
Consider the following example without uncertainties:

A =


−1 2
2 3


, B =


1
0


, C =


1 0


.

As shown in the previous section, the LMI design methodology
presented in Lien (2004a) does not work on this simple example.
Indeed, for P = I or to satisfy the equality constraint PB =

BP̂ required in Lien (2004a), we should have necessary AT
22P22 +

P22A22 = 6P22 < 0 which contradicts the definition of P22 > 0.
Otherwise, by using Matlab LMI toolbox, our LMI (9) provides the
following observer and controller gains:

K =

7.2159 19.1095


, L =


4.2678
19.7414


.

4.1.2. Example 2: about the example of Lien (2004a)
Wetake the sameexample than that of Lien (2004a). The system

has the following parameters:

A =

1 1 1
0 −2 1
1 −2 −5


, B =

1 0
0 1
0 0


,

∆A(t) =

 0 0 a(t)
0 b(t) 0

c(t) 0 0


C =


1 0 1


, ∆C(t) =


0 d(t) 0


where a(t) ≤ α, b(t) ≤ β, c(t) ≤ γ and d(t) ≤ δ. The
uncertainties can be rewritten under the form (2) with

F1(t) =


a(t)
α

0 0

0
b(t)
β

0

0 0
c(t)
γ

 , N1 =

0 0 α
0 β 0
γ 0 0



M1 = M2 = I, F2(t) =
d(t)
δ

, N2 =

0 δ 0


.

In Table 1, we test the feasibility of LMIs (8), (10)–(11) in Lien
(2004a) and our proposed LMI (9). The superiority of our approach
to that in Lien (2004a) is quite clear from this table. Assuming that
α = β = γ = δ, our design methodology provides solutions
for all α ≤ 5.54 with ϵ4 = 0.01, while the design methods given
in Lien (2004a) fail forα > 1.36. In fact, notice that for this example
we have used the gridding technique to tackle the constant ϵ4 of
LMI (9), and not the LMIs of Remark 2.

4.2. Numerical study and comparisons

This subsection is dedicated to show the superiority of our
proposed new design methodology. We will evaluate numerically
the conservatism of the LMI method considered in this paper and
their relation to the detectability and stabilizability conditions. For
this, we consider linear systems without uncertainties in order to
demonstrate that our designmethod is not restrictive compared to
the necessary conditions. The influence of the number of inputs is
also addressed.
Table 1
Superiority of the proposed LMI methodology.

Method LMI (8)
in Lien (2004a)

LMIs (10)–(11)
in Lien (2004a)

LMI (9)
ϵ4 = 0.01

αmax 1.32 1.36 5.54

Table 2
Percentage of systems for n = 3,m = 2, p = 1.

LMI (8) in Lien (2004a) LMI (10)–(11) in Lien (2004a) LMI (9)

40.4% 70.4% 100%

Fig. 1. Percentage of systems for different values ofmwith n = 5, p = 1.

4.2.1. Evaluation of the conservatism
We have randomly generated 1000 stabilizable and detectable

systems of dimension n = 3,m = 2 and p = 1. The results are
summarized in Table 2. The condition (9) of Theorem1provides an
observer-based controller for 100% of these systems. Nevertheless,
the LMIs (8) and (10)–(11) in Lien (2004a) succeeded for 40.4% and
70.4%, respectively.

4.2.2. Relationship with the number of inputs
The approach of Lien (2004a) depends on the input matrix B.

Indeed, the a priori choice of the Lyapunov matrix P = I and the
introduction of the strong equality constraint PB = BP̂ are due
to the presence of the bilinear term PBK . This latter depends on
the matrix B, and then on the number of inputs m. For this reason,
this part is devoted to the influence of the number of inputs on
the feasibility of the LMIs (8), (10)–(11) in Lien (2004a). We have
randomly generated 1000 detectable and stabilizable systems of
dimension n = 5, p = 1 and m ranging from 1 to n. The results
are presented in Fig. 1, which gives the percentage of systems for
which the different methods addressed in this note succeeded for
each value of m. It is well clear, from Fig. 1, that our proposed
design methodology succeeded for 100% of the systems and for
each m ≤ n. However, the results obtained by LMIs (8), (10)–(11)
in Lien (2004a) depend on the value ofm.

Remark 3. It should be noticed that more than 50000 randomly
generated detectable and stabilizable systems are tested. Indeed,
we have used 1000 randomly generated systems for each m =

1, . . . , 5 and for 10 different values of ϵ4. Our proposed design
method is found feasible for 100%of them. This shows, numerically,
the superiority of our LMI approach.
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5. Conclusion

In this paper, a linear matrix inequality approach to design
observer-based controllers for uncertain linear systems is ad-
dressed. We have shown that a judicious use of the Young relation
led to a less restrictive LMI condition. A comparison study of the
results established in this note with respect to those given in Lien
(2004a) and Lien (2004b) shows the superiority of the proposed
design methodology.
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