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Wind speed (WS) and solar radiation (SR) are innately uncertain and bring about more uncertainties in
the power system. Therefore, due to the nonlinear nature of photovoltaic cells and wind turbines, the
mean values of solar radiation and wind speed cannot be assuredly measured and a small change in these
values alters the results of the study. Furthermore the mean values of WS and SR occur with a low
degree of probability, that is, if the mean values one utilized in system design, it will mean that not all
possible states have been considered. Therefore, in hybrid system analysis, it has been suggested that
the degree of uncertainty be taken into calculation in order for all possibilities to be covered. For this
purpose, the Monte Carlo Simulation Method and Particle Swarm Optimization Algorithm have been used
in this article. The proposed methodology is applied to a real case study and the results are discussed. In
this regard, an off-grid hybrid multisource system (photovoltaic–wind–battery) is considered, modeled,
optimally sized, and compared of different seasons in terms of the total annual cost and uncertainty in
WS, SR, and electricity demand.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

Being engaged with environmentally-friendly concerns obliges
that the pollutants emitted to our surrounding world must be
extremely lowered. The energy intensive sectors are of the highest
amount of polluters. Accordingly, based on the European 2050
energy roadmap, the European Union and the G8 aim to reduce
greenhouse gas emissions by at least 80% below 1990 levels by
2050 [1,2]. On this pathway, one solution is to utilize non-
emission energy conversion technologies or at least low-emission
ones, such as renewable energies, more frequently. It is aimed to
produce 20% of the final energy consumption of the European
Union from renewables by 2020 as an objective of 2020 projects
[1]. In recent years, the investigation of off-grid hybrid systems
based on renewable sources has attracted significant attention
[3–16]. One of the most important factors in the hybrid systems,
which leads to having a cost-effective system, is optimal sizing.
In the literature, Shrestha and Goel [3] have presented a
methodology for optimal sizing based on energy generation simu-
lation. Diaf et al. [4] have optimized a hybrid system size based on
the loss of power supply probability and the levelized cost of
energy. Roy et al. [5] have proposed a methodology to incorporate
wind speed (WS) uncertainty in sizing wind–battery system for
isolated applications. The uncertainty associated with the WS is
incorporated using chance constraint programming approach.
Lujano-Rojas et al. [6] have presented a mathematical model for
stochastic simulation and optimization of small wind energy
systems. This model is able to consider the operation of the charge
controller, the coulombic efficiency during charge and discharge
processes, the influence of temperature on the battery bank capac-
ity, the wind speed variability, and load uncertainty. Maheri [7] has
optimized a standalone wind–PV–diesel hybrid system in a multi-
objective optimization problem with conflicting objectives of cost
and reliability. Uncertainties in renewable resources, demand load,
and power modeling make deterministic methods of multi-
objective optimization fall short in optimal design of stand-alone
hybrid renewable energy systems. Ma et al. [8] have presented a
detailed feasibility study and techno-economic evaluation of a
stand-alone hybrid solar–wind system with battery energy storage
for a remote island. Sharafi and ELMekkawy [10] have presented a
novel approach for the optimal design of hybrid renewable energy
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Abbreviations

ACC annual capital cost
AMC annual maintenance cost
CRF capital recovery factor
DOD maximum depth of discharge
MCS Monte-Carlo Simulation
PSO Particle Swarm Optimization
PSOMCS Particle Swarm Optimization Algorithm-based Monte

Carlo Simulation

PV Photovoltaic
SOC State of Charge
SR Solar radiation
SD standard deviation
TAC total annual cost
WS wind speed
WT wind turbine
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systems including various generators and storage devices.
Although various aspects of photovoltaic (PV)/wind/battery-
based hybrid systems have been considered in the literature, an
informative model and efficient optimization tool for optimal siz-
ing is rarely found. Also, detailed inspection of the modeling, sizing
and cost analysis of a PV/wind/battery hybrid system considering
resource uncertainty and load uncertainty for electrification to a
remote area is rarely found. However, high variability and uncer-
tainty associated with renewable energy sources pose major chal-
lenges in designing isolated power systems. In order to overcome
the diurnal and seasonal fluctuations of power supplied by renew-
able energy technologies, integration of an energy storage device
becomes necessary. Many applications such as a remote telecom-
munication towers, hospitals, and commercial energy systems
are required to abide by rigorous norms of power supply reliability,
thus, making it obligatory to design the system by accounting for
uncertainty associated with various design variables. A
reliability-based technique will lead to higher customer satisfac-
tion and eventually bring societal acceptability of renewable based
technologies. A methodology for the designing of a stand-alone
PV–wind–battery power system by considering the uncertainty
in wind speed, solar radiation (SR), and electricity demand has
been proposed in this paper. Therefore, it is suggested in the anal-
ysis of hybrid systems that the uncertainty is considered in order
to check all possibilities. The Monte Carlo Simulation (MCS)
method is used in this article. MCS is a simulation-based approach
that uses random numbers and probability in order to solve the
problems having uncertainties in their parameters. It is a method
to iteratively solving a given problem using sets of random
numbers as inputs. This method is often used when the model is
complicated, nonlinear, or involves more than just a couple of
uncertain parameters. Hence, Particle Swarm Optimization
Algorithm-based Monte Carlo Simulation (PSOMCS) is the promise
of algorithms that have a higher chance than the others of finding
the optimal decision variables. The effectiveness of MCS has led to
its application to optimization problems in different areas [17–24].
Different approaches have been developed for simulating the intel-
ligent MCS [25–27]. In this paper, at first an informative mathe-
matical model is introduced for each system component and
then, Particle Swarm Optimization Algorithm-based Monte Carlo
Simulation (PSOMCS) is proposed to optimally find the number
of each component.
Unit sizing

The schematic drawing of a typical stand-alone (photovoltaic–
wind–battery) hybrid system is shown in Fig. 1. Battery chargers
connected to a DC/DC bus are used to charge the battery bank from
the respective wind turbines and photovoltaic panels input power
sources, wind turbines connected to an AC/DC and DC/DC bus, and
photovoltaic panels connected to a DC/DC bus. With regard to
design, the optimal sizing of a hybrid system is very important
and leads to a good ratio between performance and cost. The dif-
ference between the power generated (PGen(t)) and the demand
of renewable energies (PDmd(t)) according to Eq. (1) must be
minimum.

DP ¼ PGenðtÞ � PDmd ð1Þ
Resource and load data

The hourly wind speed data and solar insolation data during a
one-year period, which were collected in a remote area in Iran’s
southern (Rafsanjan) regions, are shown in Figs. 2 and 3, respec-
tively [28], which has the following geographical coordinates: lat-
itude = 30.29� (30�2402400N) and longitude = 56.05� (55�5903800E).
The mean elevation of the city is about 1469 m above sea level.
Average wind speed of 4.60 m/s, and a maximum wind speed of
about 22.39 m/s at 10 m high. Total annual solar irradiance of
2239.56 kW h/m2, and average ambient temperature of about
18.60 �C. The hourly load demand profile of ten typical residential
buildings with the total annual electrical energy consumption of
34556.5 kW h located in Iran is shown in Fig. 4. For better observa-
tion, the seasonal profile is shown in Fig. 5.

Wind turbine (WT)

For a wind turbine (WT), if the wind speed exceeds the cut-in
value, the wind turbine generator starts generating. If the wind
speed exceeds the rated speed of theWT, it generates constant out-
put power, and if the wind speed exceeds the cut-out value, the
wind turbine generator stops running to protect the generator.
The power of the WT is described in terms of the wind speed by
Eq. (2) [29,30]. The specifications of a typical wind turbine used
in the present work are shown in Table 1

PWT-EachðtÞ ¼

0 if v 6 Vi

aðvÞ � bðPrÞ if Vi < v < Vr

Pr if Vr 6 v < Vo

0 if v P Vo

8>>><
>>>:

ð2Þ

That the parameters a, and b calculated by Eq. (3).

a ¼ Pr=ðVr � ViÞ
b ¼ Vi=ðVr � ViÞ

�
ð3Þ

where PWT-Each(t) is the power generated by each WT; v is the wind
speed; Vi, Vo, Vr, are cut-in, cut-out, rated, or nominal speed of the
WT, respectively; and Pr is the wind turbine rated power.

Photovoltaic cells (PV)

The output power of each photovoltaic panel, with respect to
the solar radiation power, can be calculated by Eq. (4) [30,31].
The characteristics of PV panels used in the present study are pre-
sented in Table 2



DC/DC

DC Bus

DC/DCDC/DCAC/DC

DC/AC

PV Panel

Wind Turbine

Load

Battery

Fig. 1. Schematic of the PV/WT/battery-based hybrid system.

1000 2000 3000 4000 5000 6000 7000 8000
0

200

400

600

800

1000

1200

Time (h)

In
so

la
tio

n 
(W

/m
2 )

Fig. 2. Hourly profile of insolation during a year.
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Fig. 3. Hourly wind speed during a year (at height of 10 m).
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Fig. 4. Hourly load demand during a year.
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Fig. 5. The seasonal profile of the considered load.

Table 1
Wind turbine parameters.

Pr Vi Vo Vr Tp Tif CMain-WT Life span

1 kW 3 m/s 20 m/s 9 m/s $1443 0.25 � Tp 100 $/year 20 years

Table 2
PV panel parameters.

Prs Pp Pif CMain-PV Life span

260 W $312 0.5 � Pp 20 $/year 20 years
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PPV-EachðtÞ ¼
c � Prs if 0 6 r < RCR

d � Prs if RCR 6 r < RSRS

Prs if RSRS 6 r

8><
>: ð4Þ
That the parameters c, and d calculated by Eq. (5).
Table 3
Component parameters.

SBatt gBC gBF PBatt Life span DOD r Voltage
c ¼ r2=RSRS � RCR

d ¼ r=RSRS

(
ð5Þ
Battery
2.1 kWh 85% 100 % $170 5 years 0.8 0.0002 12 V

Rated power gInv Voltage PInv Life span

Inverter
2000 W 95% 24 V $751.24 10 years
where PPV-Each(t) is the power generated by each PV panel, Prs is the
PV rated power, r is the solar radiation factor, RCR is a certain radi-
ation point set usually as 150 (W/m2), and RSRS is the solar radiation
in the standard environment set usually as 1000 (W/m2).
Battery

Battery discharging or charging of the input power can be neg-
ative or positive. State of Charge (SOC) battery, according to the
calculations of productivity and time consumption, is obtained
thus:

If PPVðtÞ þ PWTðtÞ ¼ PDmdðtÞ, then the battery capacity will not
change. When the total output power of the photovoltaic panels
and wind turbines is more than the load power,
PPVðtÞ þ PWTðtÞ > PDmdðtÞ than the load power, the battery bank is
in charging state, and the charged amount of the battery at time
(t) is expressed by Eq. (6) [30,32].

SOCðtÞ ¼ SOCðt � 1Þ � ð1� rÞ þ ðPWTðtÞ þ PPVðtÞÞ � PLðtÞ
gInv

� �
� gBC

ð6Þ

In this equation, SOC(t) and SOC(t � 1) are the charge quantities of
battery bank at time t, and t � 1, r is the hourly self-discharge rate,
PPV(t) is the power generated by the photovoltaic panels, PWT(t) is
the power generated by the wind turbines, gInv is the efficiency of
the inverter, PL(t) is the energy demand for the particular hour,
and gBC is the charge efficiency of battery bank.

When PPVðtÞ þ PWTðtÞ < PDmdðtÞ, the total output powers of the
photovoltaic panels and wind turbines are less than the load
power, the battery is in the state of discharge, and the charged
quantity of the battery at time (t) is expressed by Eq. (7) [30,32].
The battery bank with the nominal capacity is only allowed to be
discharged to a limited extent.

SOCðtÞ ¼ SOCðt � 1Þ � ð1� rÞ

þ PLðtÞ
gInv

� ðPWTðtÞ þ PPVðtÞÞ
� ��

gBF � gInv ð7Þ

where gBF is the discharging efficiency of battery bank. The profile
battery banks used are shown in Table 3.
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Formulation of the optimum design problem

Objective function

In this section, the objective function of the optimum design
problem is the minimization of the total annual cost (TAC). The
TAC consists of the annual capital cost (ACC) and the annual main-
tenance cost (AMC). To optimally design the hybrid generation sys-
tem, the optimization problem defined by Eq. (8), should be solved
using an optimization method,

Minimize TAC ¼ ACCþ AMC ð8Þ
Capital cost occurs at the beginning of a project while mainte-

nance cost occurs during the project life.
In order to convert the initial capital cost (P) to the annual cap-

ital cost (A), capital recovery factor (CRF), defined by Eq. (9), is used
[30].

CRF ¼ A
P
¼ jð1þ jÞn

ð1þ jÞn � 1
ð9Þ

In this equation, j is the interest rate and n denotes the life span of
the system; in this paper n = 20 years and j is set at 6%.

Some components of PV/WT/battery system need to be replaced
several times over the project’s lifetime. In this paper, the lifetime
of battery is assumed to be 5 years. By using the single payment
present worth factor, we have

CBatt ¼ PBatt �
X

k¼0;5;10;15

1

ð1þ jÞk
ð10Þ

where CBatt is the present worth of battery, and PBatt is the battery
price.

In the same way, the lifetime of converter/inverter is assumed
to be 10 years. By using the single payment present worth factor,
we have

CConv=Inv ¼ PConv=Inv �
X

k¼0;10

1

ð1þ jÞk
ð11Þ

where CConv=Inv is the present worth of converter/inverter compo-
nents, and PConv=Inv is the converter/inverter price.

By breaking up the capital cost into the annual costs of the wind
turbine, photovoltaic panels, converter/inverter, battery, and
backup generator, Eq. (12) is obtained.

ACC¼ CRF

� NWT �CWT þNPV �CPV þNBatt �CBatt þNConv=Inv �CConv=Inv
� �

ð12Þ

In this equation, NWT is the number of wind turbines; CWT is the unit
cost of wind turbine, which is defined as the sum of turbine price
(Tp) and turbine installation fee (Tif); NPV is the number of photo-
voltaic panels; CPV is the unit cost of photovoltaic panels, which is
defined as the sum of panel price (Pp) and panel installation fee
(Pif); NBatt is the number of batteries; and NConv/Inv is the number
of converter/inverter systems.

For the annual maintenance cost, Eq. (13) is obtained.

AMC ¼ CMain-WT � NWT þ CMain-PV � NPV ð13Þ

In this equation, CMain-WT is the wind turbine maintenance cost and
CMain-PV is the PV panel maintenance cost. The maintenance costs of
inverter and battery bank are ignored.
Constraints

The ultimate of the optimization of the hybrid PV/WT/battery
system is the minimization of the system total cost (TAC) subject
to some restriction. Therefore, the restriction is defined by:

0 6 NPV 6 NPV-max ð14Þ

0 6 NWT 6 NWT-max ð15Þ

0 6 NBatt 6 NBatt-max ð16Þ
In this problem, three decision variables of NPV, NWT, and NBatt

should be optimally adjusted where NPV, NWT, and NBatt are integer
decision variables, NPV-max, NWT-max, and NBatt-max are the maximum
available number of PV panels, wind turbines, and batteries,
respectively.

At any time, the charge quantity of battery bank should satisfy
the constraint of SOCðtminÞ 6 SOCðtÞ 6 SOCðtmaxÞ
SOCðtminÞ ¼ ð1� DODÞ � SBatt ð17Þ
where SOC(tmin) is the minimum charge quantity of the battery
bank, SOC(tmax) is the maximum charge quantity of battery bank,
DOD is the obtained by maximum depth of discharge battery bank,
and SBatt is the value of nominal capacity of battery bank.

Methodology

Monte Carlo Simulation (MCS) method

Monte-Carlo Simulation (MCS) or Monte-Carlo method pro-
vides approximate solutions to quantitative problems by perform-
ing statistical sampling experiments [33]. Equations become
harder to define when interactions between elements grow more
intricate. In this case, a number of random configurations can be
utilized to generate data and sample to represent the system as a
whole. MCS, by specifying inputs as probability distribution, suc-
ceeds at explicitly depicting uncertainties [22,34]. More details
about this method can be found in [33,34]. The MCS presented in
the study mainly consists of ways to generate stochastic profiles.
MCS can be summarized as follows:

1. Create a parametric model.
2. Generate a set of random input using their probability density

function.
3. Evaluate the model using the generated input data.
4. Repeat steps 2 and 3.
5. Analyze the result.

Particle Swarm Optimization Algorithm (PSO)

Particle Swarm Optimization (PSO) originally invented by Ken-
nedy and Eberhart in 1995 [35], is a population-based metaheuris-
tic algorithm attempting to discover the global solution to an
optimization problem by simulating the animals’ social behavior
such as fish schooling and bird flocking. In PSO algorithm, each fea-
sible solution of the problem is called a particle which is specified
by a vector containing the problem variables. Particles have mem-
ory, and thus retain part of their previous state. There is no restric-
tion for particles to share the same point in belief space but their
individuality is protected. Each particle’s movement is the compo-
sition of two randomly weighted influences and an initial random
velocity: sociality, the tendency to move towards the neighbor-
hood’s best previous position and individuality, the tendency to
return to the particle’s best previous location.

The standard PSO algorithm utilizes a real-valued multidimen-
sional space as belief space, and evolves. The particles fly through
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the n dimensional domain space of the function to be optimized (in
this paper, minimization is assumed). The state of each particle is
represented by its position Xi = (Xi1, Xi2, . . . , Xin) and velocity Vi =
(Vi1, Vi2, . . . , Vin). The states of the particles are updated. The three
key parameters to particle swarm optimization algorithm are in
the velocity update equation. First is the momentum component,
which is the cognitive component. Here the acceleration constant
c1 controls how much the particle heads toward its personal best
position. The second component is the inertial constant w, which
controls how much the particle remembers its previous velocity
[36]. The third component, referred to as the social component,
draws the particle toward swarm’s best ever position; the acceler-
ation constant c2 controls this tendency. At the beginning of the
algorithm, a group of particles is randomly initialized in the search
space. Each particle makes use of its memory and flies through the
search space for obtaining a better position than its current one. In
its memory a particle memorizes the best experience found by
itself (pbest) as well as the group’s best experience (gbest) [35,36].
The position of each particle in that space is achieved using the fol-
lowing equations:

vkþ1
id ¼ wk:vk

id þ c1:rk1: pk
bestid

� xki
� 	

þ c2 � rk2 � gk
bestd

� xkid
� 	

ð18Þ

xkþ1
id ¼ xkid þ vkþ1

id ð19Þ

where vk
id is the component in dimension d of the ith particle veloc-

ity in iteration k, xkid is the component in dimension d of the ith par-
ticle position in iteration k, c1 and c2 are constant weight factors,
pk
bestid

is the best position achieved so far by particle i at its ‘‘k” times

and the d-dimension quantity of its position, gk
bestd

is the d-

dimension quantity of the swarm at its most optimal position, r1
and r2 are random factors in the interval between 0 and 1, and w
is known as inertia weight, which is starts from a positive initial
value (w0) and decreases during the iterations by wkþ1 ¼ b�wk.

Particle Swarm Optimization Algorithm-based Monte Carlo Simulation
(PSOMCS)

The procedure of PSOMCS is described in steps 1–4:

1. Compute mean value and standard deviation (SD) value for WS,
SR, and load data.

2. Generate randomly many arrays based on mean value and SD
value.

3. Run the optimization algorithm (PSO) for any arrays that were
already generated
3.1. A population is randomly generated in the search space.
3.2. The initial velocity of each particle is randomly generated.
3.3. Objective function value for each particle is calculated.
3.4. The initial position of each particle is selected as its pbest,

and the best particle among the population is chosen as
gbest.

3.5. Particles move to new positions based on Eqs. (18) and
(19).

3.6. If a particle exceeds the allowed range, it is replaced by its
previous position.

3.7. Objective function value for each particle is calculated.
3.8. pbest and gbest are updated.
3.9. The stopping criterion is checked. If it is satisfied, the algo-

rithm is terminated and gbest is selected as the optimal
solution. Otherwise, Steps 3.5–3.8 are repeated.

4. Compute mean value and SD of optimization algorithm’s
results.

The flowchart of PSOMCS algorithm is shown in Fig. 6.
Results and cost analysis

The experimental data used here for wind speed and solar inso-
lation are obtained from Rafsanjan located in the south of Iran. In
Tables 1–3, economic and technical data used in the system is
shown in dollar. Profile load of a 8760-h prototype, the model of
which is shown in Fig. 4. MATLAB environment is used to imple-
ment and code the proposed methodology. To calculate the accu-
racy of results, thousand independent runs are performed and
the results are reported. The parameter setting of PSOMCS is as
follows:

Np ¼ 50; c1 ¼ 2; c2 ¼ 2; b ¼ 0:99; w0 ¼ 1; itermax ¼ 200:

where Np is the size of population (number of particles), c1 is the
personal learning coefficient, c2 is the global learning coefficient, b
is inertia weight damping ratio, w0 is inertia weight, and itermax
is maximum number of iterations.

The algorithms attempt to find the optimum number of PV pan-
els, wind turbines, and batteries (NBatt) in PV/WT/battery system.
The minimum and maximum numbers of each component are set
to 0 and 4000, respectively. At initial moment, it is assumed that
the charge of each battery is 30% of its nominal capacity.

The optimum results of PSOMCS in the south of Iran have
been achieved individually. For this region, the results of
the hybrid systems, photovoltaic systems, and wind turbines
are individually investigated and shown in Tables 4–8. In these
tables, the mean (Mean), standard deviation (SD), minimum
(Min) and maximum (Max) indexes of each hybrid system for
each case are given.

Table 4 summarizes the results of optimum sizing for the PV/
WT/battery system for the first month (January). In this table, the
optimum sizes of PV/battery and WT/battery systems have also
been indicated. This table shows the mean numbers of the batter-
ies as 59, 1148, and 60 for hybrid, PV/battery, and WT/battery sys-
tems respectively. It is seen that from economical point of view,
the WT/battery system is a better choice since its mean total
annual cost is $17183.11 which is lower than that of the other
hybrid systems (PV/WT/battery and PV/battery). Fig. 7 shows the
number of WT and battery of the WT/battery-based hybrid system
for the first month (January); it can be concluded that the number
of WT and battery is very different in various situations and one of
the most effective components of hybrid systems.

Tables 5–7 show the optimal number of each component and
the system costs in detail for the hybrid systems for the fourth, sev-
enth and tenth month (April, July and October). The optimal sizes
of the systems are as follows:

April: PV/wind/battery NPV = 0, NWind = 34, NBatt = 103; PV/bat-
tery: NPV = 239, NBatt = 1166; wind/battery NWind = 33, NBatt = 100;
July: PV/wind/battery NPV = 46, NWind = 108, NBatt = 239; PV/bat-
tery: NPV = 219, NBatt = 1871; wind/battery NWind = 104, NBatt = 224;
and October: PV/wind/battery NPV = 0, NWind = 60, NBatt = 166;
PV/battery: NPV = 263, NBatt = 1115; wind/battery NWind = 45,
NBatt = 44. It is seen that economically speaking, the WT/battery
systems for the fourth, seventh and tenth month are a better choice
since their mean total annual cost is $13137.71, $36407.42, and
$13964.8, respectively, which are lower than those of the other
hybrid systems (PV/WT/battery and PV/battery). The systems
introduced to the listed area can ensure the required load with
high reliability and proper cost. Weather conditions and system
component prices are also important factors to be considered in
the selected hybrid systems.

Figs. 8–10 show the number of WT and battery of the
WT/battery-based hybrid system for the different months (April,
July and October); it also shows the maximum and minimum
number of WT and battery of the hybrid system for three months



Fig. 6. Flowchart of PSOMCS algorithm.
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as well as the mean line number of WT and battery of the hybrid
system (red1 line).

Table 8 reveals that for the site under study and the time period
considered (12 months), the hybrid WT/battery system is the best
configuration to use, needing minimum storage capacity. On the
other hand, regarding the unpredictable nature of wind energy
1 For interpretation of color in Figs. 8–10, the reader is referred to the web
version of this article.
resources, the hybrid system would certainly reduce the
probability of having no wind generation and would make the sys-
tem more reliable. Hence, this type of configuration is recom-
mended for the present case study in Rafsanjan. When a hybrid
system is used to supply the load demand, the mean optimum siz-
ing is NWind = 54, and NBatt = 85. As Table 8 shows, the minimum,
maximum, and mean total annual cost is $9001.15, $79472.67,
and $17934.79, respectively for Rafsanjan. This higher storage need
is due to the low efficiency of the PV/battery system compared to
the hybrid and WT/battery system. In this case, the mean numbers



Table 4
Summary of the results for the hybrid systems obtained by PSOMCS algorithm for the first month (January).

Hybrid systems Index NPV NWT NBatt PV cost ($) WT cost ($) Battery cost ($) Total cost ($)

PV/WT/battery Mean 0 55 59 0 14149.25 2381.09 17244.82
Min 0 32 21 0 8232.29 847.51 9794.28
Max 0 105 199 0 27012.21 8031.12 35757.82
SD 0 11.65 50.45 N/A N/A N/A N/A

PV/battery Mean 248 N/A 1148 15078.99 N/A 46330.28 61919.62
Min 16 N/A 729 972.84 N/A 29420.53 30903.72
Max 1066 N/A 1512 64815.33 N/A 61020.37 126346.05
SD 213.52 N/A 325.93 N/A N/A N/A N/A

WT/battery Mean N/A 55 60 N/A 14149.25 2421.44 17183.11
Min N/A 32 13 N/A 8232.29 524.65 9369.36
Max N/A 123 198 N/A 31642.87 7990.76 40246.05
SD N/A 11.33 52.61 N/A N/A N/A N/A

Table 5
Summary of the results for the hybrid systems obtained by PSOMCS algorithm for the fourth month (April).

Hybrid systems Index NPV NWT NBatt PV cost ($) WT cost ($) Battery cost ($) Total cost ($)

PV/WT/battery Mean 0 34 103 0 8746.81 4156.81 13618.11
Min 0 27 14 0 6946 565 8225.49
Max 398 176 2051 24199.34 45277.61 82773 152964.44
SD 12.59 9.81 96.4 N/A N/A N/A N/A

PV/battery Mean 239 N/A 1166 14531.77 N/A 47056.71 62098.83
Min 16 N/A 788 972.84 N/A 31801.62 33284.81
Max 528 N/A 2071 32103.65 N/A 83580.15 116194.15
SD 213.52 N/A 325.93 N/A N/A N/A N/A

WT/battery Mean N/A 33 100 N/A 8489.55 4035.74 13137.71
Min N/A 25 13 N/A 6431.48 524.65 7568.54
Max N/A 77 200 N/A 19808.95 8071.48 28492.85
SD N/A 6.07 61.24 N/A N/A N/A N/A

Table 6
Summary of the results for the hybrid systems obtained by PSOMCS algorithm for the seventh month (July).

Hybrid systems Index NPV NWT NBatt PV cost ($) WT cost ($) Battery cost ($) Total cost ($)

PV/WT/battery Mean 46 108 239 2796.91 27783.99 9645.42 40940.8
Min 0 54 38 0 13891.99 1533.58 16140.06
Max 1624 11 2972 98743.05 2829.85 119942.16 222229.55
SD 186.62 44.06 42.86 N/A N/A N/A N/A

PV/battery Mean 219 N/A 1871 13315.72 N/A 75508.67 89334.74
Min 27 N/A 1540 1641.66 N/A 62150.38 64302.39
Max 649 N/A 2602 39460.74 N/A 105009.92 144981.01
SD 180.08 N/A 281.94 N/A N/A N/A N/A

WT/battery Mean N/A 104 224 N/A 26754.95 9040.05 36407.42
Min N/A 60 17 N/A 15435.55 686.08 16734.04
Max N/A 32 2633 N/A 8232.29 106261 115105.71
SD N/A 34.73 303.61 N/A N/A N/A N/A

Table 7
Summary of the results for the hybrid systems obtained by PSOMCS algorithm for the tenth month (October).

Hybrid systems Index NPV NWT NBatt PV cost ($) WT cost ($) Battery cost ($) Total cost ($)

PV/WT/battery Mean 0 60 166 0 15435.55 6699.33 22849.36
Min 0 23 19 0 5916.96 766.79 7398.24
Max 29 258 1109 1763.27 66372.86 44756.34 113606.96
SD 0.91 12.29 49.95 N/A N/A N/A N/A

PV/battery Mean 263 N/A 1115 15991.02 N/A 44998.49 61499.86
Min 21 N/A 741 1276.85 N/A 29904.82 31692.02
Max 415 N/A 2196 25232.98 N/A 88624.82 114368.16
SD 221.83 N/A 324.75 N/A N/A N/A N/A

WT/battery Mean N/A 45 44 N/A 11576.66 1775.73 13964.8
Min N/A 25 16 N/A 6431.48 645.72 7689.61
Max N/A 195 348 N/A 50165.53 14044.37 64822.32
SD N/A 12.6 36.31 N/A N/A N/A N/A

A. Maleki et al. / Electrical Power and Energy Systems 83 (2016) 514–524 521



Table 8
Summary of the results for the hybrid systems obtained by PSOMCS algorithm for the whole year.

Hybrid systems Index NPV NWT NBatt PV cost ($) WT cost ($) Battery cost ($) Total cost ($)

PV/WT/battery Mean 0 55 81 0 14149.25 3268.95 18132.69
Min 0 31 21 0 7975.03 847.51 9537.02
Max 0 139 200 0 35759.02 8071.48 44544.98
SD 0 11.99 62.16 N/A N/A N/A N/A

PV/battery Mean 263 N/A 1338 15991.02 N/A 53998.19 70499.56
Min 20 N/A 859 1216.05 N/A 34666 36393.39
Max 1472 N/A 1115 89501.09 N/A 44998.49 135009.93
SD 220.31 N/A 315.64 N/A N/A N/A N/A

WT/battery Mean N/A 54 85 N/A 13891.99 3430.38 17934.79
Min N/A 29 23 N/A 7460.52 928.22 9001.15
Max N/A 163 915 N/A 41933.24 36927.01 79472.67
SD N/A 13.07 76.56 N/A N/A N/A N/A
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Fig. 7. The number of WT and battery of the WT/battery-based hybrid system for the first month (January).
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Fig. 8. The number of WT and battery of the WT/battery-based hybrid system for the fourth month (April).
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Fig. 9. The number of WT and battery of the WT/battery-based hybrid system for the seventh month (July).

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200
X: 156
Y: 195

N
um

be
r 

of
 W

T

X: 808
Y: 25

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

400 X: 156
Y: 348

States

N
um

be
r 

of
 B

at
te

ry

X: 808
Y: 16

Fig. 10. The number of WT and battery of the WT/battery-based hybrid system for the tenth month (October).
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Fig. 11. The number of WT and battery of the WT/battery-based hybrid system during a year.

A. Maleki et al. / Electrical Power and Energy Systems 83 (2016) 514–524 523



524 A. Maleki et al. / Electrical Power and Energy Systems 83 (2016) 514–524
of the batteries are 81, 1338, and 85 for hybrid, PV/battery, and
WT/battery systems, respectively Fig. 11 shows the number of
WT and battery of the WT/battery-based hybrid system during a
year.
Conclusion

This paper presents the modeling and optimization of a PV/WT/
battery-based hybrid system for electrification to an off-grid
remote area located in Rafsanjan, Iran by Particle Swarm Optimiza-
tion Algorithm-based Monte Carlo Method. Monte Carlo Simula-
tion generates stochastic demand and supply profiles, including
normal load profiles at households, solar PVs’ generation profiles,
and micro wind-turbine generation profiles. The results of the pre-
sent study prove that the Monte Carlo Simulation Method can pro-
vide a novel approach to the tools already present in the field of
optimization. For the case study, it is found that using WT/battery
is the most cost-effective system for different months (January,
April, July, and October) and the whole year.
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