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robust unknown input observer for a nonlinear system whose
onlinear function satisfies the Lipschitz condition is designed
ased on linear matrix inequality approach. Both noise and un-
ertainties are taken into account in deriving the observer. A com-
onent fault detection and isolation scheme based on these ob-
ervers is proposed. The effectiveness of the observer and the fault
iagnosis scheme is shown by applying them for component fault
iagnosis of an electrohydraulic actuator.
DOI: 10.1115/1.2936857�

Introduction
A standard observer fails to estimate the states of a system

hen it is influenced by noise and uncertainties. Linear matrix
nequality �LMI� based observers �1,2� are widely used for state
stimation of uncertain and noisy systems. When the measure-
ents of all the input signals are not possible, an unknown input

bserver �UIO�, which is capable of estimating states irrespective
f unknown inputs, is used to estimate the states. Researchers
ave developed different types of UIOs for ideal linear and non-
inear systems �3–8�. Significant research works have been carried
ut to include noise and uncertainties in the estimation process for
he systems with unknown inputs �9–11�. Koenig �11� developed
n UIO for nonlinear noisy systems via convex optimization.
owever, an UIO for a nonlinear system with both noise and
ncertainties is still lacking.

The UIOs have become a multipurpose diagnosis tool in the
eld of fault detection and isolation �FDI� �2,5,7,9,10�. Different

ypes of model based FDI techniques have been developed to
iagnose various kinds of faults �1,2,5,7,9,10,12,13�. LMI based
bservers have been successfully used to diagnose different types
f faults of nonlinear systems �1,2,9,10�.

In this work, first, a robust UIO for nonlinear systems with
oise and uncertainties is presented. The observer is designed for
nonlinear system whose nonlinear function satisfies Lipschitz

ondition. Second, a component fault detection and isolation
CFDI� technique, which consists of two steps, is developed using
hese observers. In Step 1, fault is detected and the faulty zone is
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isolated. In the next step, the faulty parameter is isolated. The
main advantages of this FDI technique is that Step 2 is carried out
only when a fault occurs in any of the subsystems. So the com-
plexity of fault isolation is significantly reduced in comparison
with standard parameter identification based FDI techniques �13�
where all the system parameters are estimated at every time in-
stant. The FDI algorithm is applied for detecting component fault
of an electrohydraulic actuator. The simulated results show the
effectiveness of the observer as well as the FDI technique.

2 Robust Unknown Input Observer
In this section, a robust UIO for nonlinear systems is derived.
Consider a nonlinear system

ẋ�t� = �A + �A�x�t� + �B + �B�u�t� + Ed�t� + f�x�t�� + Gw�t�
�1�

y�t� = Cx�t� + Dw�t� �2�

where x�t��Rn, u�t��Rm, y�t��Rp, d�t��Rq, and w�t��Rr are
state, input, output, unknown input, and disturbance vectors, re-
spectively. The matrices A, B, C, D, E, and G of suitable dimen-
sions are known and f�x�t�� is a nonlinear function. Define spaces
�1 and �2 for time-varying uncertainty matrices �A and �B as

�1 = ��A�t���A�t� = M��t�N1,��t�T��t� � I� �3�

and

�2 = ��B�t���B�t� = M��t�N2,��t�T��t� � I� �4�

The following assumptions are used in designing the observer:

�a� �A + �A� is asymptotically stable for ∀ �A � �1

�b� �A,C� is detectable

�c� rank�CE� = rank�E� = q �5�

�d� f�x�t�� satisfies the Lipschitz condition:

�f�x� − f�x̂�� � ��x − x̂� �6�
and

�e� there exists a matrix S such that �fT�x�f�x�� � �xTSTSx�
�7�

An UIO for systems �1� and �2� is described as

ż�t� = Nz�t� + Ly�t� + Ju�t� + Pf�x̂�t�� �8�

x̂�t� = z�t� − Hy�t� �9�

Assuming e�t�=x�t�− x̂�t�, the error dynamics can be written as

ė = ẋ − ẋ̂ = Pẋ + HDẇ − ż �10�

where P = In + HC �11�
Using Eqs. �1�, �8�, and �9�, one gets

ė = Ne + �PA − LC − NP�x + �PB − J�u + Pf�x� − Pf�x̂� + PEd

+ P�Ax + P�Bu + �PG − NHD − LD�w + HDẇ �12�
Now, it is assumed that the following conditions are satisfied:

PA − LC − NP = 0 �13�

PB − J = 0 �14�
and

PE = 0 �15�
Solving Eqs. �11�, �14�, and �15�, one gets

+ +
H = − E�CE� + Ya�Ip − �CE��CE� � �16�
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P = In + �− E�CE�+� + Ya�Ip − �CE��CE�+�C �17�

J = �In + �− E�CE�+� + Ya�Ip − �CE��CE�+�C�B �18�

here �CE�+ is the generalized inverse of CE and in order to
reserve the detectability of the pair �PA ,C�, which is equivalent
o Assumption �b�, an arbitrary matrix Ya of appropriate dimen-
ion is chosen by the designer such that the matrix P is of maxi-
al rank.
From Eqs. �11� and �13�, the matrix N can be written as

N = PA − KC �19�

where K = L + NH �20�

Using Eqs. �13�–�20� and assuming ẇ=v, the error dynamics
12� is rewritten as

ė = �PA − KC�e + �PG − KD�w + HDv + P�f�x� − f�x̂��

+ P�Ax + P�Bu �21�

The H�-observer problem for a performance level � ��R+� is
o find the gain of the observer K that stabilizes asymptotically the
tate estimation error and ensures the following performance in-
ex:

J =	
0

�

�eTe − �2wd
Twd�dt � 0, ∀ 0 � �wd�t�� �22�

here wd= �uT wT vT dT�T. As the state variable x�t� �which de-
ends on unknown inputs� appears in error dynamics, the un-
nown input term d�t� is included in wd�t�. To find out the gain
atrix K, the following theorem is proposed.
THEOREM 1. If P1 and P2 are symmetric, positive definite ma-

rices, Y is a matrix, the constants 	1
0, 	2
0, and 	3
0 exist
nd the LMI �sij�11�11�0 holds, then robust UIOs �8� and �9� for
ystems �1� and �2� are solvable and the observer gain matrix
ecomes K=P2

−1y where s11=P1A+ATP1+2	2N2
TN2+	1STS, s13

P1B, s14=P1G, s16=P1E, s19=P1, s1,10=P1M, s1,11=P1M, s22
�P2�PA�−YC�+ ��PA�TP2−CTYT�, s24=P2�PG�−YD, s25

P2�HD�, s27=
2I, s28=��P2, s2,10=P2�PM�, s2,11=P2�PM�,
33=−�2I+2	3N2

TN2, s44=−�2I, s55=−�2I, s66=−�2I, s77=−I,
88=−I, s99=−	1I, s10,10=−	2I, s11,11=−	3I, and sij =0 otherwise,
ith � a positive number, � Lipschitz constant, and �-largest

ingular value of P.
To prove the theorem, the following lemmas are presented first.
LEMMA 1. If there exists a scalar 	
0 and a symmetric positive

efinite matrix P, then ��X�TP+P��X�
	−1PMMTP+	NTN
here �X=M��t�N with �T�t���t�
I.
Proof. This lemma can be proved using simple mathematical

elations, here omitted.
LEMMA 2. If the nonlinear function f�x� satisfies Eq. �6�, then

or a symmetric, positive definite matrix Ps, the following inequal-
ty holds:

2eTPsP�f�x� − f�x̂�� � �2�2eTPsPse + eTe

Proof. See Ref. �8�.
LEMMA 3. Consider a linear uncertain system

ẋ�t� = �A + �A�x�t� + �B + �B�u�t�

y�t� = Cx�t� + Du�t�

ith �A=M��t�N1,�B=M��t�N2, and �T�t���t�
I for a given

0, if there exist positive numbers 	1
0 and 	2
0 and a sym-

etric positive definite matrix P such that the LMI
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�
� PB CT PM PM

BTP − �2I + 	2N2
TN2 DT 0 0

C D − I 0 0

MTP 0 0 − 	1I 0

MTP 0 0 0 − 	2I
� � 0

with �=PA+AtP+	1N1
TN1 holds, then the system is robust stable

and H�-norm of the transfer function Gyu satisfies �Gyu����,
∀�A��1, and ∀�B��2.

Proof. This lemma can be proved using the bounded real lemma
�14�, here omitted. Based on the above lemmas, the proof of
Theorem 1 can be carried out �see Appendix�.

Once observer gain K is found out using Theorem 1, the matrix
L is obtained as

L = K�Ip + CH� − PAH �23�
As all coefficient matrices of the observers �8� and �9� are known,
the UIO design is completed.

3 Fault Detection and Isolation Algorithm
In this section, a CFDI algorithm is presented. The FDI tech-

nique is devised with the assumptions that sensors and actuators
are fault free.

Consider a time invariant nonlinear system

ẋ�t� = �A + �A�x�t� + �B + �B�u�t� + f�x�t�� + Gw�t� �24�

y�t� = Cx�t� + Dw�t� �25�
The significance of the vectors and matrices are the same as de-
scribed earlier.

Suppose a fault occurs in a single parameter of the system. The
faulty system can be represented as

ẋ�t� = �A + �A + �A f�x�t� + �B + �B + �B f�u�t�

+ f�x�t�� + �f f�x�t�� + Gw�t� �26�

where �A f,�B f, and �f f are the faulty parts of system matrix,
input matrix, and nonlinear function, respectively.

Equation �26� can be rearranged as

ẋ�t� = �A + �A�x�t� + �B + �B�u�t� + Ed�t� + f�x�t�� + Gw�t�
�27�

where d�t� is unknown signal and E is a known matrix, which
satisfies the relation

Ed�t� = �A fx�t� + �B fu�t� + �f f�x�t�� �28�

Now, the system is divided into N numbers of subsystems each
characterized by few numbers of parameters. The FDI process is
carried out in two steps as follows.

Step 1: Detection and partial isolation of fault. Assume that the
ith subsystem is faulty. After considering all possible changes in
the parameters of the ith subsystem, the system equations are
written as

ẋ�i��t�=�A + �A�x�i��t� + �B + �B�u�t� + E�i�d�i��t�

+ f�xi�t�� + Gw�t� �29�

y�i��t� = C�i�x�i��t� + D�i�w�t� �30�

where subscript �i� indicates that the fault occurs in the ith sub-
system only. The matrix E�i� is known and d�i��t� is unknown
signal containing the changes of the system parameters.

As Eqs. �29� and �30� are in the form required to design a
robust UIO, an observer is designed to estimate the states x̂�i��t�.
The residuals are calculated as

r �t� = y �t� − ŷ �t� = y �t� − C x̂ �t� �31�
�i� �i� �i� �i� �i� �i�
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Since an UIO, if properly designed, can estimate the states ir-
espective of the unknown inputs, it is obvious that the residual
�i��t� remains within a small bound, known as threshold value
12�, if the fault occurs in the ith subsystem or if there is no fault.
therwise, the residual crosses the threshold value. The magni-

ude of threshold values depends on noise, uncertainties, and in-
uts. Thus N number of robust UIOs can isolate the faulty sub-
ystem. However, �N−1� numbers of such observers are sufficient
o isolate a faulty subsystem when N
2; as once �N−1� sub-
ystems are found fault free, the remaining subsystem is automati-
ally identified as the faulty one. A decision table can be used to
solate the faulty subsystem.

Once the fault is detected and the faulty subsystem is isolated,
he next step is carried out to isolate faulty parameter.

Step 2: Total isolation of fault. In this step, the effects of all the
arameters of the faulty subsystem are replaced with an unknown
nput signal, say, Fu�t�, as

Fu�t� = fu�su,x�t�� �32�

here su are the parameters of the faulty subsystem.
The state space model is then found out with d�t�=Fu�t�. Now,

hoosing a suitable C, a robust UIO is designed to estimate the
tates x̂. Knowing the states, Fu�t� is estimated from a relation

xtracted from state equations. Then, F̂u�t� is used to estimate su
rom Eq. �32�.

Let the kth parameter suk be the faulty one and suk is estimated
sing the nominal values of the other parameters as

ŝuk�t� = g�su1,su2, . . . ,suk−1,suk+1, . . . ,sul, x̂�t�,F̂u�t�� �33�
Now, if the assumption is correct, then in steady state the esti-
ated values remain within a bound. Otherwise, the estimated

arameter differs widely with time. The moving average tech-
ique can be used to reduce the effect of noise and uncertainties in
he estimated values. In this way, all the parameters of the faulty
ubsystem are estimated. Now, as the single fault case is consid-
red, there will be only one case where estimated values remain
ithin a small bound. The particular parameter for which this
henomenon appears is the faulty one. In this way, any parametric
ault in any subsystem can be isolated.

Numerical Example
In this section, the proposed FDI technique is applied to detect

nd isolate the fault of an electrohydraulic actuator �15�. The sys-
em equation for the actuator can be written in state space form as

ẋ = �A + �A�x + �B + �B�u + f�x� + Gw �34�

with A = �
0 1 0 0

−
K1

M1
−

C1

M1

Ar

M1
0

0 − � − � 0

0 0 0 −
1

�

�
�35�

B = �
0

0

0

Kv

�
�, and f�x� = �

0

0

��
Ps − sgn�x4�x3�x4

0
�

here x1 is the actuator piston position, x2 is the actuator piston
elocity, x3 is the load pressure, x4 is the valve position, and u is
he input current to servo valve. The numerical values of the dif-

erent parameters �15� are listed in Table 1.
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Now, a fault is introduced in K1. It is assumed that the magni-
tude of K1 changes from 16,010 N /m to 8810 N /m at t=30 s.
The FDI technique is now carried out.

The system is divided into three subsystems as SS1: K1 and C1;
SS2: �, �, Ps, and �; and SS3: Kv and �.

It may be noted that some parameters �e.g., mass, actuator ram
area, etc.� are less prone to faults than the others. These are con-
sidered as constant parameters. As there are three subsystems, so
two observers are sufficient for Step 1.

Step 1. The observers are designed for SS1 and SS2 with the
following unknown input matrices and signals E�1�= �0 1 0 0�T,
E�2�= �0 0 1 0�T, d�1�=−���K1� f /M1�x1�1�− ���C1� f /M1�x2�1�, and

d�2�=−���� fx2�2�− ���� fx3�2�+ ����� f
��Ps� f −sgn�x4�2��x3�2��
��x4�2��. The term ��¯ � f is the faulty part of the parameter. The
system and input matrices are the same as represented in Eq. �35�.
The uncertainty matrices and signals are M=� 0

�3�1

�1�3

I3�3
�, N1

=0.05Ã, N2=0.05B, and ��t�=�0 sin�wt� with �0=I and w

=1 rad /s, where Ã=A�a12=0�. The input signal is chosen as u�t�
=u0 sin�w1t� with u0=20 A and w1=1 rad /s.

The other matrices are taken as follows: G�1�=G�2�

= �0.3 0.45 5 0.6�T, D�1�=D�2�= �3 0.4�T, C�1�=� 1
0

1
0

0
0

0
1
�, and

C�2�=� 1
0

1
0

0
1

0
0
�.

Two observers are designed to estimate the states x̂�1� and x̂�2�.
The residuals are plotted in Figs. 1 and 2. To find out the occur-
rence of a fault, suitable threshold values should be chosen. There
are different ways of choosing threshold values. Here, the fixed
threshold values 	�1�= �0.011 0.014�T units and 	�2�
= �0.09 0.010�T units are chosen.

As r�1� stays within 	�1� while r�2� crosses 	�2�, so the occurrence
of fault is confirmed. To isolate the faulty subsystem, a decision
table is drawn, as shown in Table 2.

It is seen from the decision table that fault is in SS1. The next
step is now carried out to isolate the faulty parameter.

Step 2. The effect of all parameters of the faulty subsystem is
replaced with an unknown force Fu�t� as

Fu�t� = K1x1�t� + C1x2�t� �36�
The system matrix, unknown input matrix, and signal become

A = �
0 1 0 0

0 0
Ar

M1
0

0 − � − � 0

0 0 0 −
1

�

�, E = �
0

−
1

M1

0

0
�, and d = Fu

�37�
The other matrices and signals are same as in the previous step.

� 1 1 0 0 �

Table 1 Numerical values of the system parameters

Parameters Numerical values

Mass, M1 24 kg
Stiffness, K1 16,010 N /m
Damping coefficient, C1 310 N s /m
Constant, � 1.513�1010 N /m3

Constant, � 1.0 l /s
Constant, � 8.0�108

Actuator ram area, Ar 3.2673�10−4 m2

Supply pressure, Ps 1.0344�107 N /m2

Valve time constant, � 0.0017 s
Valve gain, Kv 0.0017
The output matrix is taken as C= 0 0 1 0 . An observer is de-
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igned to estimate x̂�t�. Then, Fu�t� is estimated as

F̂u�t� = M1ẋ̂2 − Arx̂3 �38�

here ẋ̂2 is calculated by differentiating x̂2 with respect to time.

Now, F̂u�t� is used to estimate the suspected parameters. The
stimated moving averaged values of K1 and C1 are plotted in

igs. 3 and 4. It can be seen that K̂1 varies within a small range

Fig. 1 Components of the residual r
„1…„t…

Fig. 2 Components of the residual r „t…

„2…

44503-4 / Vol. 130, JULY 2008
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�maximum variation of 17% from its mean value� while Ĉ1 varies
widely �as large as 310% from its mean value�. So the stiffness
element is the faulty one. With this, the isolation process is com-
pleted.

5 Conclusions
A robust UIO for nonlinear systems is presented. The observer

is designed based on the LMI approach considering both noise
and uncertainties of a nonlinear system whose nonlinear function
satisfies Lipschitz condition. These observers may be useful in the
field of robust control and fault diagnosis. Based on these observ-
ers, a component FDI algorithm is developed. The effectiveness of
the observer as well as the FDI algorithm is shown with a numeri-
cal example.

Table 2 Decision table

Residuals Is r�i�
	�i�? Decisions Remarks

r�1� No Fault may be in SS1 Check r�2�
r�2� Yes Fault is in SS1 Go for Step 2

Fig. 3 Estimated stiffness „K̂1…

ˆ
Fig. 4 Estimated damping coefficient „C1…
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ppendix: Proof of Theorem 1
Consider the following Lyapunov candidate function:

V�t� = xT�t�P1x�t� + eT�t�P2e�t� where P1 
 0 and P2 
 0

In order to establish the sufficient conditions of the existence of

bservers �8� and �9�, the Lyapunov method is applied. It requires

78�15�, pp. 1155–1165.
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that V̇ is strictly negative to guarantee the asymptotic stability of
system �21� and that implies

V̇ + eTe − �2�uT wT vT dT��u w v d�T � 0

Now, using relations �1� and �21� along with Lemmas 1 and 2, we

get
V̇ + eTe − �2�uT wT vT dT��u w v d�T

�

x

e

u

w

v
d

�
T

�
�1 + �1 0 P1B P1G 0 P1E

0 �2 + �2 0 P2�PG − KD� P2�HD� 0

BTP1 0 − �2I + 2	2N2
TN2 0 0 0

GTP1 �PG − KD�TP2 0 − �2I 0 0

0 �HD�TP2 0 0 − �2I 0

ETP1 0 0 0 0 − �2I

�

x

e

u

w

v
d

�
here �1=P1A+ATP1+	1STS+2	2N1

TN1, �1=	1
−1P1P1+	2

−1P1MTMP1+	3
−1P1MTMP1, �2=P2�PA−KC�+ �PA−KC�TP2, and �2

�2�2P2P2+	2
−1P2�PM�T��PM�P2�+	3

−1P2�PM�T�PM�P2+2I.
In order to satisfy Lyapunov stability criteria, the following condition should hold:

�
�1 + �1 0 P1B P1G 0 P1E

0 �2 + �2 0 P2�PG − KD� P2�HD� 0

BTP1 0 − �2I + 2	2N2
TN2 0 0 0

GTP1 �PG − KD�TP2 0 − �2I 0 0

0 �HD�TP2 0 0 − �2I 0

ETP1 0 0 0 0 − �2I

� � 0
Now, using Schur complement �14�, the above nonlinear matrix
nequality can be written into a linear matrix inequality form
hich follows the form stated in theorem. Lemma 3 ensures the

obust stability and guarantees that the H�-norm of the transfer
unction �Geu Gew Gev Ged����. This completes the proof of the
heorem.
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