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Abstract This paper investigates the problem of out-
put feedback formation tracking control for second-
order multi-agent systems under an undirected con-
nected graph and in the presence of dynamic un-
certainties and bounded external disturbances. Two
state tracking error measures (i.e., absolute and rela-
tive state tracking errors) are considered for each in-
dividual agent in the formation, and linear reduced-
order observers are constructed based on the lumped
state tracking errors which include absolute and rela-
tive state tracking errors. Chebyshev neural networks
are used to approximate unknown nonlinear func-
tion in the agent dynamics on-line, and the imple-
mentation of the basis functions of Chebyshev neu-
ral networks depends only on the desired signals.
The smooth projection algorithm is applied to guar-
antee that the estimated parameters remain in some
known bounded sets. Numerical simulations are pre-
sented to illustrate the performance of the proposed
controller.
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1 Introduction

Cooperative control for multi-agent systems has re-
ceived great research interest in the past few years,
and it has been applied in several diverse areas,
such as multiple robots [1–4], unmanned air vehi-
cles [5], autonomous underwater vehicles [6], and
spacecraft [7–15]. Various strategies and approaches,
which can be categorized according to their control
architectures as leader–follower, virtual structure, and
behavioral [16], have been proposed for the forma-
tion control. Most of the existing approaches on for-
mation control of multi-agent systems require the as-
sumption that all states of the agents are available for
feedback and exchange among neighboring agents. In
[9], a passivity-based formation control law, which is
model-independent and requires a bidirectional ring
topology, has been presented for maintaining attitude
alignment among a group of spacecraft without ve-
locity measurements. Ren [12] extended the work
of Lawton and Beard [9] to the case of a general
undirected connected communication topology, where
modified Rodrigues parameters were used for the at-
titude representation. However, external disturbances
were not taken into consideration in [9] and [12]. Ab-
dessameud and Tayebi [15] proposed two velocity-free
attitude coordination control schemes for a group of
spacecraft, where exact knowledge of the spacecraft
attitude dynamics was assumed to be known and ex-
ternal disturbances were not considered.
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In practical applications, various uncertainties are
acting on the agents due to imprecise measurements
and external disturbances. In the current literature,
most of the existing work on formation control for
multi-agent systems has not taken these uncertainties
into consideration. The presence of uncertainties in
the multi-agent system makes the problem of output
feedback formation control of a group of agents more
challenging; therefore, it is highly desirable to develop
a decentralized output feedback formation control ap-
proach for multi-agent systems in the presence of un-
certain system dynamics and bounded external dis-
turbances. Neural networks (NN) and/or fuzzy logic
systems (FLS) have the capability to approximate any
smooth functions over a compact set to arbitrary ac-
curacy [17–21]. NN and FLS are very powerful tech-
niques for control of systems when there are large un-
certainties and strong nonlinearities. Hou et al. pro-
posed a neural-network-based decentralized control
algorithm for leaderless consensus control of multi-
agent systems [22]. Cheng et al. presented a neural-
network-based adaptive controller for leader–follower
control of second-order multi-agent systems with un-
certain dynamics and external disturbances [23]. An
adaptive neural controller was proposed for consensus
tracking control of second-order multi-agent systems
in the presence of unknown nonlinearities and distur-
bances [24], and a neural-network-based distributed
tracking control scheme was developed for unknown
networked Lagrangian systems [25]. Dierks and Ja-
gannathan studied the leader–follower formation con-
trol of mobile robots using neural networks [26]. In
these works, full state measurements were assumed to
be available to feedback and exchange among neigh-
boring agents.

Chebyshev neural network (CNN) is a functional
link network (FLN) whose input is generated by using
a subset of Chebyshev polynomials, and it has been
shown that CNN has powerful representation capabili-
ties [21]. CNN has been applied for attitude control of
a single spacecraft in the presence of both structured
and unstructured uncertainties [27, 28].

This paper investigates the problem of output feed-
back formation tracking control for a class of second-
order multi-agent systems in the presence of dynamic
uncertainties and bounded external disturbances. Here
the term formation tracking means that a group of
agents tracks a time-varying reference trajectory while
maintaining a certain desired geometric formation si-
multaneously. It is to be noted that the most notable

gap of the existing approaches is the lack of a decen-
tralized controller that could provide output feedback
formation control for a group of agents in the presence
of uncertain dynamics and bounded external distur-
bances; therefore, the research presented here focuses
on the development of a decentralized output feedback
controller for a group of agents to achieve the high-
precision formation tracking performance, even in the
presence of uncertain dynamics and bounded exter-
nal disturbances. In contrast to the existing NN-based
methods [22–25], the proposed approach does not re-
quire full state measurements; hence, the proposed
method can reduce both the cost related to the on-
board sensors and the communication requirements
among neighboring agents.

This paper is organized as follows. Multi-agent sys-
tems, graph theory and Chebyshev neural network are
briefly described in Sect. 2. Section 3 proposes a de-
centralized adaptive output feedback control algorithm
for formation tracking control of second-order multi-
agent systems using CNNs. Simulation results are pre-
sented in Sect. 4, and conclusions are drawn in Sect. 5.

2 Preliminaries

2.1 Multi-agent systems

Consider a class of multi-agent systems in which the
ith (i = 1,2, . . . , n) agent is described by the follow-
ing second-order differential equation:

ẋi = vi (1)

v̇i = fi(xi, vi) + ui + ϑi (2)

yi = xi (3)

where n denotes the total number of the agents, xi ∈
Rm and vi ∈ Rm are state vectors of the ith agent,
fi(xi, vi) ∈ Rm represents the uncertain dynamics of
the ith agent, which is assumed to be a smooth nonlin-
ear function, ui ∈ Rm denotes the control input vector
of the ith agent, ϑi ∈ Rm the bounded external dis-
turbance, and yi ∈ Rm is the output vector of the ith
agent. In this paper, it is considered that only the out-
put signals yi can be available for feedback and ex-
change among neighboring agents.

Let xd ∈ Rm be the desired trajectory for the
formation of the multi-agent system and hi ∈ Rm
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(i = 1,2, . . . , n) be some constant. The control objec-
tive is to design an output feedback control law for ui

such that the tracking error xi − (hi + xd) is as small
as possible, even in the presence of dynamic uncer-
tainties and external disturbances. Note that the vector
h = (hT

1 , hT
2 , . . . , hT

n )T ∈ Rnm defines the basic frame
of the expected formation. If h1 = h2 = · · · = hn = 0,
then the problem becomes a consensus tracking prob-
lem, i.e., a group of agents reaches an agreement on
a time-varying reference trajectory. To facilitate the
controller design, the assumptions with respect to the
desired trajectory xd and external disturbances ϑi are
stated as follows:

Assumption 1 The reference trajectory xd , its first
and second derivatives are considered to be in a com-
pact set Ωd ∈ R3m defined by

Ωd ≡ {
(xd, ẋd , ẍd) | ‖xd‖2 + ‖ẋd‖2 + ‖ẍd‖2 ≤ cd

}

(4)

where cd is a positive constant.

Assumption 2 The disturbance ϑi (i = 1,2, . . . , n) is
bounded such that ‖ϑi‖ ≤ ϑMi , where ϑMi is a posi-
tive constant.

2.2 Graph theory

In this paper, the topology of the information flow be-
tween individual agents is described by an undirected
connected graph. Let G = (Υ,E,A) be a weighted
graph, where Υ = {υ1, υ2, . . . , υn} denotes the set of
nodes, E ⊆ Υ × Υ the set of edges, and A = (aij ) ∈
Rn×n the weighted adjacency matrix of the graph G

with nonnegative elements. Node υi represents the
ith agent, and an edge in G is denoted by an un-
ordered pair (i, j). The pair (i, j) ∈ E if and only
if there is an information exchange between the ith
agent and the j th agent, i.e., (i, j) ∈ E ⇔ (j, i) ∈ E.
The adjacency element aij denotes the communication
quality between the ith agent and the j th agent, i.e.,
(i, j) ∈ E ⇔ aij > 0. It is assumed that aij = aji in
this paper; that is, the weighted adjacency matrix A is
a symmetric matrix.

Let D = diag(d1, d2, . . . , dn) be the degree matrix
of G, where di = ∑n

j=1 aij , i = 1,2, . . . , n. Then the
Laplacian matrix L of the weighted graph G is defined
by

L = D − A (5)

For any two nodes i and j , if there exists a path be-
tween them, then G is called a connected graph. The
lemma related to the Laplacian matrix and the graph
theory is stated as follows:

Lemma 1 ([29]) If G = (Υ,E,A) is an undirected
connected graph, then the graph Laplacian matrix L

is a symmetric matrix with n real eigenvalues in an
ascending order:

0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn ≤ 2dM (6)

where dM = max1≤i≤n{di} is the maximum degree of
a graph, and λ2 is called the algebraic connectiv-
ity of a graph. Furthermore, L1n = 0n, where 1n =
(1, . . . ,1)T ∈ Rn and 0n = (0, . . . ,0)T ∈ Rn.

2.3 Chebyshev neural network

The single-layer CNN, which is an FLN based on
Chebyshev polynomials, is considered as the function
approximator in this paper. Chebyshev polynomials
are a set of orthogonal polynomials derived from the
solution of the Chebyshev differential equation, and
Chebyshev polynomials can be obtained by using the
so-called two-term recursive formula as follows:

Ti+1(x) = 2xTi(x) − Ti−1(x), T0(x) = 1 (7)

where x ∈ R, and T1(x) ∈ R has several defini-
tions, such as x, 2x, 2x − 1 and 2x + 1. Here,
T1(x) is considered to be x. For a given vector X =
(x1, x2, . . . , xm)T ∈ Rm, an enhanced pattern using
Chebyshev polynomials is given by

ξ(X) = (
1, T1(x1), . . . , TN(x1), . . . , T1(xm), . . . ,

TN(xm)
)T ∈ RmN+1 (8)

where Ti(xj ) (i = 1, . . . ,N; j = 1, . . . ,m) represents
a Chebyshev polynomial, N denotes the order of the
Chebyshev polynomials, and ξ(X) is called Cheby-
shev polynomial basis function.

The CNN has been shown to be capable of ap-
proximating any smooth functions over a compact set
to arbitrary accuracy. A general nonlinear function
F(x) ∈ Rm with x ∈ Rm can be approximated by the
CNN as

F(x) = W ∗ξ(x) + ε (9)

where ε is the bounded CNN approximation error, and
W ∗ is the optimal weight matrix of the CNN.
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3 Decentralized adaptive output feedback
formation controller design using CNNs

This section proposes a decentralized adaptive output
feedback formation controller using CNNs for multi-
agent systems in the presence of unknown system dy-
namics and bounded external disturbances. The pro-
posed control law can drive a group of agents to a
time-varying reference trajectory while maintaining a
certain desired geometric formation simultaneously.

3.1 State error

Here, two state tracking error measures, i.e., the abso-
lute and relative state tracking errors, are considered
for each individual agent in the formation. The abso-
lute state tracking errors of the ith (i = 1,2, . . . , n)
agent are defined as:

exi = xi − xd − hi (10)

evi = vi − ẋd (11)

Using (1) and (2), the dynamic equations for the abso-
lute state tracking errors of the ith agent are obtained:

ėxi = evi (12)

ėvi = −ẍd + fi(xi, vi) + ui + ϑi (13)

Defining

ex = (
eT
x1, e

T
x2, . . . , e

T
xn

)T

ev = (
eT
v1, e

T
v2, . . . , e

T
vn

)T

F = (
f T

1 , f T
2 , . . . , f T

n

)T

Xd = (
ẍT
d , ẍT

d , . . . , ẍT
d

)T

u = (
uT

1 , uT
2 , . . . , uT

n

)T

ϑ = (
ϑT

1 , ϑT
2 , . . . , ϑT

n

)T

(14)

where Xd ∈ Rmn, then the dynamic equations (12) and
(13) can be re-expressed in terms of the aforemen-
tioned quantities as follows:

ėx = ev (15)

ėv = −Xd + F + u + ϑ (16)

The relative state tracking error is the difference
of absolute state tracking errors between neighboring

agents. The relative state tracking error between the
ith and j th agents is defined by

rxij = exi − exj , i 	= j ; i, j = 1,2, . . . , n (17)

rvij = evi − evj (18)

Let σ1i ∈ Rm and σ2i ∈ Rm (i = 1,2, . . . , n) be
the lumped state tracking errors including the absolute
and relative state tracking errors for the ith agent. The
lumped state tracking errors are given by

σ1i = kp

n∑

j=1

aij rxij + kiexi (19)

σ2i = kp

n∑

j=1

aij rvij + kievi (20)

where aij is the element of the weighted adjacency
matrix A, and kp and ki are positive constants. Note
that

n∑

j=1

aij rxij =
n∑

j=1

aij (exi − exj ) =
n∑

j=1

lij exj (21)

n∑

j=1

aij rvij =
n∑

j=1

aij (evi − evj ) =
n∑

j=1

lij evj (22)

where lij is the element of the graph Laplacian ma-
trix L. Applying (21) and (22) respectively to (19)
and (20), the lumped tracking state errors σ1i and σ2i

(i = 1,2, . . . , n) can be rewritten as

σ1i = kp

n∑

j=1

lij exj + kiexi (23)

σ2i = kp

n∑

j=1

lij evj + kievi (24)

Defining

Σ1 = (
σT

11, . . . , σ
T
1n

)T
, Σ2 = (

σT
21, . . . , σ

T
2n

)T

K = diag(k1, k2, . . . , kn) (25)

then (23) and (24) can be written in terms of the afore-
mentioned quantities as follows:

Σ1 = M1ex (26)

Σ2 = M1ev (27)
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where M1 = (kpL + K) ⊗ Im ∈ Rmn×mn, and ⊗ de-
notes the Kronecker product. Using (15) and (16), the
dynamic equations for Σ1 and Σ2 are given by

Σ̇1 = Σ2 (28)

M2Σ̇2 = −Xd + F + u + ϑ (29)

where M2 = M−1
1 .

The following lemma is used for the subsequent
controller design.

Lemma 2 The matrix M1 = (kpL + K) ⊗ Im is sym-
metric and positive definite, and it satisfies the follow-
ing bounded condition:

m1‖x‖2 ≤ xT M1x ≤ m2‖x‖2, ∀x ∈ Rmn (30)

where m1 and m2 are positive constants defined by

m1 = min
1≤i≤n

{ki} (31)

m2 = kpλn + max
1≤i≤n

{ki} (32)

Proof It is obvious that there exists a set of orthogonal
bases of Rmn, p1,p2, . . . , pmn, such that

kpL ⊗ Im = kpP T ΛP (33)

where P = (p1,p2, . . . , pmn) ∈ Rmn×mn, and Λ =
diag(0Im,λ2Im, . . . , λnIm) ∈ Rmn×mn. In addition, it
follows that P T P = Imn and P T = P −1.

Then, it is easy to obtain that

xT M1x = xT P T (kP Λ)Px + xT Kmx (34)

where Km = diag(k1Im, k2Im, . . . , knIm) ∈ Rmn×mn.
Note that

0 ≤ xT P T (kP Λ)Px ≤ kpλn‖x‖2 (35)

min
1≤i≤n

{ki}‖x‖2 ≤ xT Kmx ≤ max
1≤i≤n

{ki}‖x‖2 (36)

Therefore, the matrix M1 = (kpL + K) ⊗ Im is
symmetric and positive definite, and it satisfies the
bounded condition given by (30). �

3.2 Linear reduced-order observer

To facilitate the output feedback controller design, we
define si = σ2i +σ1i (i = 1,2, . . . , n) and construct the

following linear reduced-order observer for each indi-
vidual agent in the formation:

ŝi = ηi + koσ1i (37)

η̇i = −k2
oσ1i − (ko + 1)ηi − σ1i (38)

where ŝi ∈ Rm and ηi ∈ Rm denote the output and state
vectors of the observer, respectively, and ko > 3 is a
positive constant. The variable ηi used in (37) and (38)
is employed to make the observer implementable us-
ing output signals of agents only. Let s̄i = si − ŝi be
the observation error; then the dynamic equations for
ŝi and s̄i are respectively obtained as

˙̂si = −ŝi + kos̄i − σ1i (39)

˙̄si = σ̇2i + 2ŝi − (ko − 1)s̄i (40)

Define

η = (
ηT

1 , . . . , ηT
n

)T
, s = (

sT
1 , . . . , sT

n

)T

ŝ = (
ŝT

1 , . . . , ŝT
n

)T
, s̄ = (

s̄T
1 , . . . , s̄T

n

)T (41)

and it follows that

ŝ = η + koΣ1 (42)

η̇ = −k2
oΣ1 − (ko + 1)η − Σ1 (43)

˙̂s = −ŝ + kos̄ − Σ1 (44)

˙̄s = Σ̇2 + 2ŝ − (ko − 1)s̄ (45)

Note that the lumped state tracking error Σ2 can be
expressed as

Σ2 = s̄ + ŝ − Σ1 (46)

By premultiplying both sides of (45) by M2 and
then substituting (29) into the resulting expression, we
have the following error dynamic equation:

M2 ˙̄s = M2Σ̇2 + 2M2ŝ − (ko − 1)M2s̄

= −Xd + F + u + ϑ + 2M2ŝ − (ko − 1)M2s̄

(47)

Remark 1 Note that si (i = 1,2, . . . , n) can be treated
as a sliding mode surface. If si = 0 is achieved, ac-
cording to the theory of sliding mode, the lumped state
tracking error σ1i is governed by

σ̇1i = −σ1i (48)
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which in turn implies that the lumped state tracking
error σ1i converges to zero asymptotically.

3.3 Controller design

It is to be noted that if all agents’ states xi and vi (i =
1,2, . . . , n) approach the desired trajectory, then the
uncertain nonlinear function fi(xi, vi)(i = 1, . . . , n)

converges to the desired nonlinear function fdi de-
fined by

fdi = fi(xd + hi, ẋd) (49)

Using the approximation property of the CNN, the un-
known function fi(xd + hi, ẋd) + ϑi (i = 1,2, . . . , n)

can be approximated over the compact set Ωd by

fi(xd + hi, ẋd) + ϑi = W ∗
i ξi(xd, ẋd ) + εi (50)

where W ∗
i ∈ Rm×N1 , with N1 = mN2 + 1 and N2

being the order of the Chebyshev polynomial, is the
optimal weight matrix, and εi ∈ Rm is the CNN ap-
proximation error. Now, the following assumptions are
stated for the stability analysis of the overall closed-
loop system.

Assumption 3 The optimal weight matrix W ∗
i (i =

1,2, . . . , n) belongs to a known bounded set ΩWi de-
fined by

W ∗
i ∈ ΩWi = {

W ∗
i : Wi min ≤ W ∗

i,jk ≤ Wi max
}

(51)

where j = 1,2, . . . ,m, k = 1,2, . . . ,N1, and Wi min

and Wi max are known constants.

Assumption 4 The CNN approximation error εi is
bounded such that ‖εi‖ ≤ εMi (i = 1,2, . . . , n), where
εMi is a positive constant.

To guarantee that the estimated CNN parameters
remain within known bounded sets, the smooth pro-
jection [30, 31] is considered. Let Wi (i = 1,2, . . . , n)

be the estimation of the optimal weight matrix W ∗
i ,

and define a smooth projection of Wi as

πi(Wi) = Wiπ = (
πi,jk(Wi,jk)

)
(52)

where j = 1,2, . . . ,m and k = 1,2, . . . ,N1. Each pro-
jection operator πi,jk : R → R is a real-valued smooth
nondecreasing function defined by

πi,jk(Wi,jk) = Wi,jk,∀Wi,jk ∈ [Wi min,Wi max]

πi,jk(Wi,jk) ∈ [Wi min − εWi,Wi max + εWi],
∀Wi,jk ∈ R (53)

where εWi > 0 is a small constant.
Now, the control law for the ith agent in the forma-

tion is defined as

ui = ẍd − Wiπξi − κiσ1i − koκi ŝi , i = 1,2, . . . , n

(54)

where κi is a positive constant. The adaptive law for
Wi is given by

Wi = W0i + Φi (55)

Ẇ0i = δi

(
σ1iξ

T
i − ŝi ξ

T
i − σ1i ξ̇

T
i

)
, i = 1,2, . . . , n

where Φi = δiσ1iξ
T
i , and δi is a positive constant. The

adaptive law defined by (55) can be differentiated with
respect to time as follows:

Ẇi = δi s̄iξ
T
i , i = 1, . . . , n (56)

Define W̃i = W ∗
i − Wi (i = 1,2, . . . , n), W̃iπ =

W ∗
i − Wiπ , and

VWi = 1

δi

m∑

j=1

N1∑

k=1

∫ W̃i,jk

0

(
W ∗

i,jk −πi,jk

(
W ∗

i,jk −ωi,jk

))

× dωi,jk (57)

Then, VWi is positive definite with respect to W̃i,jk for
W ∗

i,jk ∈ [Wi min,Wi max]. Furthermore,

V̇Wi = − 1

δi

m∑

j=1

N1∑

k=1

W̃iπ,jkẆi,jk, i = 1,2, . . . , n

(58)

Substituting the control law (54) into the error dy-
namics (47) yields the following dynamic equation
for s̄:

M2 ˙̄s = F + ϑ − Wπξ − K̄σ1 − koKŝ + 2M2ŝ

− (ko − 1)M2s̄

= χ + W̃πξ − Kσ1 − koK̄ŝ − (ko − 1)M2s̄ + ε

(59)

where χ = F − Fd + 2M2ŝ ∈ Rmn, and

K̄ = diag{κ1Im, κ2Im, . . . , κnIm},
ε = (

εT
1 , εT

2 , . . . , εT
n

)T
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W ∗ = diag
{
W ∗

1 ,W ∗
2 , . . . ,W ∗

n

}

Wπ = diag{W1π ,W2π , . . . ,Wnπ }
W̃π = W ∗ − Wπ, ξ = (

ξT
1 , ξT

2 , . . . , ξT
n

)T

Fd = (
f T

d1, f
T
d2, . . . , f

T
dn

)T

For a sufficiently large positive constant Vmax, we con-
struct the following compact set:

ΩV =
{
(Σ1, ŝ, s̄) | ΣT

1 Σ1 + ŝT ŝ + s̄T s̄ ≤ 2Vmax

λM

}

(60)

where λM = max(λmax(K̄), λmax(M2)) with λmax(·)
denoting the maximum eigenvalue of a matrix. Since
the sets Ωd and ΩV are compact in R3m and R3mn,
respectively, the variable χ has a maximum χM on the
compact set Ωd × ΩV . The stability analysis of the
overall closed-loop system is stated in Sect. 3.4.

3.4 Stability analysis

Theorem 1 Consider that a class of second-order
multi-agent systems is described by (1) and (2), and
Assumptions 1–4 are satisfied. The control laws are
provided by (54), where the projection algorithm is de-
fined by (52) and (53), and the adaptive laws are given
by (55). For a sufficiently large positive constant Vmax,
if the initial conditions satisfy

ΣT
1 (0)Σ1(0) + ŝT (0)ŝ(0) + s̄T (0)s̄(0) ≤ 2Vmax

λM

(61)

then Σ1, ŝ and s̄ are uniformly ultimately bounded.

Proof Consider the following Lyapunov function can-
didate:

V = 1

2
ΣT

1 K̄Σ1 + 1

2
ŝT K̄ŝ + 1

2
s̄T M2s̄ +

n∑

i=1

VWi

(62)

The time derivative of the Lyapunov function (62)
is given by

V̇ = s̄T W̃π ξ − s̄T K̄Σ1 − kos̄
T K̄ŝ − (ko − 1)s̄T M2s̄

+ s̄T χ + s̄T ε −
n∑

i=1

(
1

δi

m∑

j=1

N1∑

k=1

W̃iπ,jkẆi,jk

)

+ ΣT
1 K̄Σ2 + ŝT K(−ŝ + kos̄ − Σ1)

= −ΣT
1 K̄Σ1 − ŝT Kŝ − (ko − 1)s̄T M2s̄ (63)

+ s̄T χ + s̄T ε

≤ −λmin(K̄)ΣT
1 Σ1 − λmin(K̄)ŝT ŝ

− λmin(M2)(ko − 1)s̄T s̄ + s̄T χ + s̄T ε (64)

where λmin(·) represents the minimum eigenvalue of a
matrix, and the relation

s̄T W̃π ξ −
n∑

i=1

(
1

δi

m∑

j=1

N1∑

k=1

W̃iπ,jkẆi,jk

)

= 0 (65)

is applied.
Applying the following inequalities,

s̄T χ ≤ λmin(M2)s̄
T s̄ + χ2

M

4λmin(M2)

s̄T ε ≤ λmin(M2)s̄
T s̄ + ε2

M

4λmin(M2)

into (64), we have

V̇ ≤ −λmin(K̄)ΣT
1 Σ1 − λmin(K̄)ŝT ŝ

− (ko − 3)λmin(M2)s̄
T s̄ + c2

≤ −c1e
T e + c2 (66)

where c1 = min(λmin(K̄), (ko −3)λmin(M2)) and c2 =
(χ2

M + ε2
M)/(4λmin(M2)) are positive constants, and

e = (ΣT
1 , ŝT , s̄T )T . Thus, V̇ is strictly negative out-

side the following compact set Ωe:

Ωe =
{
e(t)

∣∣
∣∣ ‖e(t)‖ ≤

√
c2

c1

}
(67)

which implies that ‖e‖ decreases whenever e is out-
side the compact set Ωe; hence, e is uniformly ulti-
mately bounded. Using (46), it is concluded that Σ2 is
bounded. Since Wiπ and ξi are bounded, we conclude
that the control input (54) is also bounded. �

Remark 2 In this paper, the Chebyshev polynomial is
used for the basis function ξi (i = 1,2, . . . , n). Sev-
eral other basis functions can be used for ξi , for exam-
ple, radial basis function (RBF) [18], sigmoid func-
tion [17], and fuzzy basis function (FBF) [19]. As
compared with sigmoid function, RBF and FBF, the
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key advantage of Chebyshev polynomial basis func-
tion lies in the fact that only one parameter (i.e., the
order of the Chebyshev polynomial basis) is required
to determine the Chebyshev polynomial basis. Con-
sidering this as well as other related issues, the CNN
is considered in this paper.

Remark 3 It is to be noted that the time derivative
of the Chebyshev polynomial basis function, ξ̇i (i =
1,2, . . . , n), is required in the adaptive law (55). If
the Chebyshev polynomial basis function ξi is deter-
mined, then it is easy to obtain ξ̇i in an analytical man-
ner. For example, let us consider x = (x1, x2)

T , and
assume that the order of the Chebyshev polynomial is
3. Then the Chebyshev polynomial basis function ξi

(i = 1,2, . . . , n) is computed as

ξi = (
1, x1,2x2

1 − 1,4x3
1 − 3x1, x2,2x2

2 − 1,

4x3
2 − 3x2

)T (68)

Next, ξ̇i (i = 1,2, . . . , n) can be easily derived from
the preceding equation as follows:

ξ̇i = (
0, ẋ1,4x1ẋ1,12x2

1 ẋ1 − 3ẋ1, ẋ2,4x2ẋ2,

12x2
2 ẋ2 − 3ẋ2

)T (69)

Note that the implementation of the Chebyshev poly-
nomial basis functions depends only on the desired
signals; therefore, the agent’s actual state signals
are not necessary for the computation of ξ̇i (i =
1,2, . . . , n).

Remark 4 To prevent the parameter drift of the adap-
tive parameter W0i , the σ -modification algorithms
[32] are employed, i.e., the adaptive laws for W0i

(i = 1,2, . . . , n) are given as

Ẇ0i = δ1i

(
σ1iξ

T
i − ŝi ξ

T
i − σ1i ξ̇

T
i

) − δ1iδ2iW0i (70)

where δ1i and δ2i are positive constants.

4 Simulation results

To verify the effectiveness of the proposed controller,
numerical simulations are carried out using the multi-
agent system described by (1) and (2) in conjunction
with the control law (54), the projection algorithm (52)

Table 1 The parameters gi1 and gi2

i 1 2 3 4 5 6

gi1 0.6 −0.2 0.4 −0.3 0.5 0.5

gi2 0.3 0.4 −0.4 −0.7 −0.2 −0.5

Fig. 1 Communication graph for the multi-agent system (A.i
(i = 1,2, . . . ,6) represents the ith agent)

and (53), and the adaptive law (55). In the simula-
tion, the multi-agent system consists of six agents, and
the uncertain nonlinear function fi(xi, vi) and exter-
nal disturbances ϑi in the agent’s dynamics are given
as

fi(xi, vi) =
(

4xi2 sin(π
4 + gi1vi1

2 )

4xi1 cos( gi2vi2
2 )

)

ϑi =
(

0.1 sin( it
2 )

0.1 cos( it
2 )

)

, i = 1,2, . . . ,6 (71)

where xi = (xi1, xi2)
T and vi = (vi1, vi2)

T . The pa-
rameters gi1 and gi2 are given in Table 1. Note
that the uncertain nonlinear function fi(xi, vi) (i =
1,2, . . . ,6) is a smooth function, and contains the non-
linear terms (i.e., cos(·), sin(·)) and unknown param-
eters (i.e., gi1 and gi2). Furthermore, the uncertain
nonlinear function fi(xi, vi) (i = 1,2, . . . ,6) does
not satisfy the assumption of “linearity in the param-
eters”; thus, the traditional adaptive control scheme
cannot be applied to solve this problem. The commu-
nication graph for the multi-agent system is shown
in Fig. 1. The information exchange among agents is
represented by a graph with the weighted adjacency
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matrix A defined by

A =

⎛

⎜⎜⎜⎜⎜⎜
⎝

0.0 0.5 0.0 0.0 0.0 0.8
0.5 0.0 0.6 0.0 0.0 0.0
0.0 0.6 0.0 0.7 0.0 0.0
0.0 0.0 0.7 0.0 0.8 0.0
0.0 0.0 0.0 0.8 0.0 0.9
0.8 0.0 0.0 0.0 0.9 0.0

⎞

⎟⎟⎟⎟⎟⎟
⎠

(72)

The initial states of the individual agents are consid-
ered to be: x1(0) = (3,0.5)T , x2(0) = (1.8,−0.2)T ,
x3(0) = (0.2,−1.2)T , x4(0) = (−0.1,1.2)T , x5(0) =
(−0.6,1.8)T , x6(0) = (1,−1.7)T , and vi(0) = (0,0)T

(i = 1,2, . . . ,6). Furthermore, the projection operator
πi,jk is given by [31]:

πi,jk(Wi,jk)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Wi max + εWi(1 − exp(
−(Wi,jk−Wi max)

εWi
))

if Wi,jk > Wi max

Wi,jk if Wi,jk ∈ [Wi min,Wi max]
Wi min − εWi(1 − exp(

Wi,jk−Wi min
εWi

))

if Wi,jk < Wi min

(73)

where i = 1,2, . . . ,6, j = 1,2, and k = 1,2, . . . ,13.
The controller parameters are taken as kp = 4, ko =
8, ki = 1, κi = 1, Wi max = 1.5, Wi min = −1.5, δ1i =
100, δ2i = 0.1, where i = 1,2, . . . ,6, and the order of
the Chebyshev polynomials is chosen as N2 = 3. The
initial weight matrix of the CNN is considered to be
W0i (0) = 02×13, i = 1,2, . . . ,6.

To investigate the performance of the proposed
controller, an absolute state error metric, a relative
state difference metric and a relative velocity differ-
ence metric are considered. The absolute state error
metric (ASEM) is defined as

ASEM =
√√√√

n∑

i=1

‖exi‖2 (74)

The relative state difference metric (RSDM) is defined
as

RSDM =

√√√√√
n−1∑

i=1

n∑

j=i+1

‖xi − xj‖2 (75)

Fig. 2 Desired formation

and the relative velocity difference metric (RVDM) is
defined as

RVDM =

√√√√√
n−1∑

i=1

n∑

j=i+1

‖vi − vj‖2 (76)

The desired geometric formation is shown in Fig. 2,
and hi (i = 1,2, . . . ,6) is considered as

h1 =
(

1

2
,0

)T

, h2 =
(

1

4
,

√
3

4

)T

h3 =
(

−1

4
,

√
3

4

)T

, h4 =
(

−1

2
,0

)T

h5 =
(

−1

4
,−

√
3

4

)T

, h6 =
(

1

4
,−

√
3

4

)T

The desired trajectory is defined as xd = 2(cos(t),
sin(t))T . The centroid of six agents is given as

xc =
∑6

i=1 xi

6
(77)

and the desired centroid of six agents is defined as

xcd =
∑6

i=1(hi + xd)

6
(78)

Furthermore, the desired relative state difference met-
ric is given as
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Fig. 3 Geometric formation of six agents at time t = 0 s

Fig. 4 Positions of six agents varying with time t : trajectory of
xc (dotted line) and trajectory of xcd (solid line)

RSDMd =

√√√√
√

n−1∑

i=1

n∑

j=i+1

∥∥(hi + xd) − (hj + xd)
∥∥2

= 3 (79)

and the desired relative velocity difference metric is
defined as

Fig. 5 The agent tracking error exi = (exi1, exi2)
T

(i = 1,2, . . . ,6)

RVDMd =

√√√√√
n−1∑

i=1

n∑

j=i+1

∥∥(ḣi + ẋd ) − (ḣj + ẋd )
∥∥2

= 0 (80)
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Fig. 6 Capture of the unknown function Fi = fi(xd + hi, ẋd ) + ϑi (i = 1,2, . . . ,6) by the CNN approximation: Fi1 (black solid line)
and its estimation (black dotted line), Fi2 (red solid line) and its estimation (red dotted line)

Furthermore, the input vector of the CNN is (xT
d ,

ẋT
d )T , and it is normalized as (xT

d , ẋT
d )T /norm to ob-

tain a good control performance, where norm is a pos-
itive constant which is considered to be 4 in this paper.

Figure 3 shows the initial geometric formation of
six agents. Using the proposed control law, Fig. 4
shows the positions of six agents at several times,
and Fig. 5 illustrates the agent tracking error exi (i =
1,2, . . . ,6). It is found that the six agents converge to
the desired geometric formation and the centroid of
the six agents converges to the desired trajectory si-
multaneously even in the presence of unknown agent
dynamics and bounded external disturbances. Figure 6
shows that the CNNs used in the controller have the
capability to simultaneously capture the unknown de-
sired nonlinear functions fi(xd + hi, ẋd) and exter-
nal disturbances ϑi (i = 1,2, . . . ,6) after the learning
phase.

Next, the performance comparison between the
proposed controller and several other controllers is
studied. The controllers used in the performance com-
parison are considered to be the controller without for-
mation feedback (i.e., the weighted adjacency matrix
A = 0n), and the linear feedback controller defined
by

ui = ẍd − κiσ1i − koκi ŝi , i = 1,2, . . . , n (81)

The ASEM, RSDM and RVDM for the proposed
controller, the controller without formation feed-
back, and the linear feedback controller are shown
in Fig. 7. It is observed that the proposed con-
troller can provide higher formation tracking perfor-
mance for a group of agents than the controller with-
out formation feedback and the linear feedback con-
troller.
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Fig. 7 ASEM, RSDM and RVDM for the proposed controller, the controller without formation feedback and the linear controller

Finally, the performance of the proposed controller
is examined under a time-varying topology. For this
example, the weighted adjacency matrix A is taken
as A = (aij /(1 + ‖xi − xj‖)), where the element aij

(i = 1,2, . . . , n; j = 1,2, . . . , n) is considered to be

the same as that in (72). Using the proposed con-
trol law, the ASEM, RSDM and RVDM are shown in
Fig. 8. It is observed that the proposed controller can
provide a good formation tracking performance even
under a time-varying topology.
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Fig. 8 ASEM, RSDM and RVDM for the proposed controller under a time-varying topology

5 Conclusions

The primary contribution of this paper is the develop-
ment of a neural-network-based decentralized adap-
tive output feedback formation controller for a class
of uncertain multi-agent systems. The proposed con-

troller can force a group of agents to track a desired
time-varying trajectory while maintaining a certain de-
sired geometric formation simultaneously, even in the
presence of unknown agent’s dynamics and external
disturbances as demonstrated in the simulations; there-
fore, the proposed controller is robust against not only
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structured uncertainties but also unstructured uncer-
tainties. Comparative studies between the proposed
controller and several other controllers (i.e., the con-
troller without formation feedback and the linear feed-
back controller) show that the performance of the pro-
posed controller is superior to that of the other con-
trollers.

In this paper, the desired trajectory is assumed to be
available to all agents in the formation. The problem of
output feedback consensus tracking and/or formation
tracking control for second-order multi-agent systems
with uncertainties is more challenging if only a subset
of group agents has access to the common reference
trajectory (or the leader), which needs further investi-
gation.
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