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In this paper, a novel Combinatorial Discrete and Continuous Action Reinforcement Learning Automata
(CDCARLA) based approach for optimal design of multimachine power system stabilizers (PSSs) is pre-
sented. The proposed CDCARLA based design approach is a combined procedure of two optimization
stages in discrete and continuous spaces for fast convergence and high optimization efficiency. The
potential of the proposed approach in seeking the optimal settings of the widely used conventional
lead-lag PSSs’ parameters is investigated and assessed in multimachine power systems. The performance
and robustness of the proposed CDCARLA based PSS is evaluated under different power system distur-
bances. The performance of the proposed stabilizer is also compared with other stabilizers reported in
the literature including the multi-band PSSs for a two-area four-machine power system. Simulation
results show the effectiveness and robustness of the proposed CDCARLA PSS in damping local and inter
area oscillation modes under various disturbances, and confirm its superiority in comparison with other
types of PSSs.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the increasing complexity of power systems the need for
enhancing the stability margin has also increased. Generally,
power systems experience a variety of disturbances that can result
in low-frequency electromechanical oscillations, which take place
among rotors of synchronous generators connected to the power
system [1–3]. In a multimachine power system characterized by
a weak structure, e.g. a weak connection between two or more
coherent power generation area, these oscillations may sustain
and grow leading to loss of synchronism and system separation if
no adequate damping is available [4].

Dynamic instability in the form of low frequency oscillations
was first observed in 1977 in Hong Kong power system [5]. This
problem was resolved by desensitizing the excitation responses
on the main generation units. In 1984, by connecting this system
to South China power system, severe oscillations in tie line have
been recorded. One of the worst oscillations had a 90 MW ampli-
tude, and a duration of 50 s while nominal transmission power of
tie line was 120 MW.

Such dynamic instabilities impose unnecessary limitations on
power systems operation. However, the stability margin of the
ll rights reserved.
power systems can be greatly enhanced by increasing the system
damping characteristics at the low frequency oscillations. There-
fore, the maximum capacity of transmission lines and energy cor-
ridors can be reached [6]. In the last decades, several methods for
power system stabilization have been proposed. One of the cost-
effective and efficient methods is using power system stabilizers,
(PSS) which introduce a supplementary signal in the generator
excitation system in-phase with the rotor speed deviations.

In recent years, several approaches based on modern control the-
ory have been applied to the PSS design problem, such as optimal
control, adaptive control, variable structure control, and intelligent
control [7–11]. Despite of the merits of such techniques, power sys-
tem utilities still prefer the conventional lag-lead PSS (CPSS) struc-
ture [12,13] because of its fixed structure, ease of online tuning,
and the lack of assurance of stability related issues of some of the
optimal, adaptive, or variable structure techniques [14].

It is generally agreed that the PSS significantly improve the sta-
bility of power system, however the optimum tuning of its param-
eters is still a serious problem; because the inadequate setting of
PSS parameters may not only fail to stabilize an unstable power
system, but may also reinforce the instability.

In this paper, a novel numerical optimization method based on
Reinforcement Learning Automata is proposed and utilized for the
optimum tuning of PSSs parameters in a multimachine multi-area
power system. The preliminary form of the proposed optimization
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method was first introduced by Howell et al. [15], which was called
Continuous Action Reinforcement Learning Automata (CARLA) and has
been successfully applied to numerous applications [16–18]. The
universalized form of CARLA which is proposed in this paper is Com-
binatorial Discrete and Continuous Action Reinforcement Learning
Automata (CDCARLA) which is composed of two successive learning
algorithms. In the first algorithm, the total variation limit of each
decision variable is divided into large enough number of sub-limits
and then, the optimum sub-limit for each variable will be deter-
mined based on a pre-specified cost function. In the second algo-
rithm, the decision variables optimum value will be obtained using
a cost function that is often selected the same as the previous algo-
rithm. In fact, both algorithms operate through interaction with a
random or unknown environment by selecting actions, i.e. discrete
or continuous, in a stochastic trial and error process.

In this paper, an application of the CDCARLA technique is ap-
plied to the PSS optimal parameters tuning for a two-area four-ma-
chine power system. The performance and effectiveness of the
proposed stabilizer are compared to the conventional power sys-
tem stabilizer (CPSS) as well as the multi-band PSSs.

The structure of the paper is as follows: In Section 2, the control
structure of synchronous generator and model of the CPSS are pre-
sented. In Section 3, the multimachine power system considered
for performance evaluation, is illustrated. Details of the CDCRLA
design method is described in Section 4, and application of this
method for the PSS optimal tuning is explained in Section 5. Sim-
ulation results to evaluate the proposed method are given in Sec-
tion 6. Section 7 includes the conclusion.

2. Power system stabilizers

Increasing the rotor damping of a synchronous generator is the
main objective of the power system stabilizer. This objective is
realized by introducing appropriate supplementary control signals
to the generator excitation system. Fig. 1 shows a schematic of a
synchronous generator control components.

In this paper, the change in the rotor speed is considered as an
input to the PSS. Fig. 2 shows the structure of the conventional PSS.

The above structure is composed of three main blocks: phase
compensator, washout filter, and gain block:

� The phase compensator block provides the necessary phase lead
characteristics for lag compensation between excitation input
and electrical torque (air gap torque).

� The washout filter acts as a high pass filter with time constant
Tw, consequently, PSS only responds to rotor speed deviation,
while steady-state operation does not affect the generator ter-
minal voltage. The value of the time constant Tw must be
selected large enough to pass required PSS signals intact.
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Fig. 1. Control diagram of s
� The gain unit indirectly determines the damping ratio of the
PSS; however its value is restricted by practical considerations.

In addition to the above block, there is a limiting block at the out-
put of the PSS to prevent over excitation. The nominal bounds of
the limiting block are usually selected from ±0.12 to ±0.15 pu.The
transfer function of the conventional PSS is given by

GPSSðsÞ ¼ Ks
Twsð1þ sT1Þð1þ sT3Þ

ð1þ TwsÞð1þ sT2Þð1þ sT4Þ
ð1Þ

The PSS parameters that can be optimized are Ks, T1, T2, T3, and
T4 which are referred to as decision variables in the optimization
problem. Analytically a linearized incremental model of the power
system around an equilibrium point is derived and these parame-
ters are set so that power system and the PSS have acceptable per-
formance in the frequency domain.
3. Multi machine power system model

In this paper, the two-area four-machine test power system
model [6] shown in Fig. 3 is selected for evaluating the perfor-
mance of the designed PSSs using the proposed approach. This
model consists of two similar power generation areas that are con-
nected by a 220 km two-circuit tie line. Beside of its simplicity this
model mimics various behaviors of real power systems.

Each area contains two identical 20 kV, 900MVA synchronous
generator. All generator s’ electrical and mechanical parameters,
except inertia constants, are the same. Moreover, for Area 1 gener-
ators, H = 1 s., and for Area 2 generators, H = 6.175 s.

Load flow calculation shows that Area 1 transfers 413 MW of
power to Area 2. Because of the fact that the surge impedance load-
ing (SIL) of transmission lines approximately reach 140 MW, there-
fore the system is normally under stressful conditions.

In this work, it is assumed that each generator in the power sys-
tem is equipped with a PSS. Since each PSS has five parameters to
be tuned; hence there are 20 parameters or decision variables to be
optimized using the proposed method.
4. Design methodology

Generally, when dealing with a large number of decision vari-
ables in complex computational optimization methods, the num-
ber of iterations for obtaining optimum solution may increase
significantly. In the proposed method, this concept is taking into
account, thus, design procedure is divided into two successive
steps to speed up the optimization procedure. In the first step,
the total variation limit of each decision variable is divided into
sub-limits of usually equal length, and then the Discrete Action
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Reinforcement Learning Automata (DARLA) algorithm determines
the optimum sub-limit of each decision variable. In the second
step, the Continuous Action Reinforcement Learning Automata (CAR-
LA) algorithm searches for the optimum value of each decision var-
iable in the predetermined optimal sub-limit. Both algorithms find
the optimum values of decision variable using a predefined cost
function. Details of the above algorithms are as follows.
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Fig. 4. DARLA flow diagram.
4.1. DARLA optimization algorithm

In DARLA optimization algorithm the total variation limit of
each decision variable divided into numbers of usually equal
length sub-limits. Following this step, the DARLA algorithm can
be applied as shown in Fig. 4.

For each decision variable, an individual DARLA is considered
which runs in a parallel implementation with other DARLAs. The
only interconnection between DARLAs is through the environment
and via a shared cost function. The computational flow of DARLA
can be described as follows.

Discrete Probability Distribution Function: DARLA considers a dis-
crete probability distribution function (DPDF) for each decision
variable which is initially uniform and can be defined as:

f ð0Þi ðdiÞ ¼
1
Ni

di ¼ 1;2; :::;Ni

0 other

(

i ¼ 1;2; . . . ;n

ð2Þ

where, Ni is the number of sub-limits of ith decision variable and n
is the number of decision variables.

Stochastic Selection: In each iteration of DARLA, a cumulative
probability distribution function is computed for each decision
variable. Then, a discrete action based on this function is stochas-
tically expressed as:



Fig. 6. Trend of DPDF variation.
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Xdi

1

f ðkÞi ðdiÞ ¼ zðkÞi ð3Þ

where z is a random number varies uniformly in the range [0,1].
Cost Function: The objective of DARLA algorithm is to find the

optimum sub-limit for each decision variable that minimizes a pre-
defined cost function. Often, the cost function is constructed from
the weighted combination of the performance criteria as:

JðkÞ ¼ G1P1ðYÞ þ G2P2ðYÞ þ � � � þ GmPmðYÞ ð4Þ

where, J(k) is the cost function of the kth DARLA iteration, G1, G2, . . . ,
Gm are the weighting coefficients, P1(.), P2(.), . . . , Pm(.) are the per-
formance criteria, and Y = [y1, y2, . . .]T is the model output vector.
In iterations, the center of selected sub-limits is used for calculating
of cost function value.

Reinforcement Signal: The reinforcement signal is the perfor-
mance index of selected sub-limits in each iteration and it indi-
cates the relative suitability of selected action. In other words,
the lower value of reinforcement signal implies that the selection
of sub-limit was poor while a higher value indicates a good selec-
tion. One of the common mappings between the cost function and
the reinforcement signal can be expressed as:

bðkÞðJÞ ¼ minf1;maxf0;
Javg � J

Javg � Jmin
gg ð5Þ

where Javg and Jmin are the average and minimum of previous cost
values, respectively.

This definition of reinforcement signal performs a reward/inac-
tion rule in DPDFs modification. In other words, if the current se-
lected action is less than the mean value of the previous cost, i.e.
b = 0, then no modification of CPDFs will be performed (inaction)
and, if the selected action leads to a cost value less than the mini-
mum of the previous cost, i.e. b = 1, then maximum reinforcement
will be done (reward). The important property of the mapping de-
fined in (5) is that the average value of the cost has descending
behavior, which guarantees obtaining optimal results for large en-
ough number of iterations.

Updating Discrete Probability Functions: At the end of each itera-
tion, the DARLA algorithm learns about selection actions of that
iteration. The learning logic is that: if selecting of a sub-limit leads
to good performance, likelihood neighbor sub-limits have relative
good performance. The updating rule of DPDFs can be described as:
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f ðkþ1Þ
i ðdiÞ ¼ aðkÞi ½f

ðkÞ
i ðdiÞ þ bðkÞQðdi;

~diÞ�
d ¼ 1;2; . . . ;Ni; i ¼ 1;2; . . . ;n

ð6Þ

where, ~di is selected sub-limit of ith decision variable and, Q is a
Gaussian function centralized in ~di which is defined as (7).

Qðd; ~diÞ ¼ q2�ðd�
~diÞ2 ð7Þ

where, q is a positive constant and is considered as a learning factor.
a in (6) is a normalization factor and is defined as (8).

aðkÞi ¼
1PNi

d¼1f ðkÞi þ bðkÞQðdi;
~diÞ

ð8Þ

Now, the DARLA algorithm steps will continue with the new
DPDFs.
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Cost Variation

due to iterations for DARLA.



Table 1
Optimum sub-limits of decision variables.

Parameter Opt. Sub-limit Parameter Opt. Sub-limit

Generator 1 KPSS [14, 16] Generator 2 KPSS [12, 14]
T1 [18, 20] T1 [8, 10]
T2 [2, 4] T2 [16, 18]
T3 [10, 12] T3 [10, 12]
T4 [18, 20] T4 [0, 2]

Generator 3 KPSS [14, 16] Generator 4 KPSS [18, 20]
T1 [4, 6] T1 [8, 10]
T2 [4, 6] T2 [18, 20]
T3 [18, 20] T3 [14, 16]
T4 [22, 24] T4 [16,18]
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Fig. 7. Minimum of costs variation due to iterations for CARLA.
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Convergence Criterion: The convergence criterion of the algo-
rithm can be a specified number of iterations or the standstillness
of selected actions, etc. After the algorithm is finished, it is ex-
pected that the DPDFs are maximized at corresponding decision
variable optimal sub-limit.

4.2. CARLA optimization algorithm

After obtaining the optimum sub-limits by the DARLA algo-
rithm, the CARLA searches for optimal values of decision variables
in corresponding optimal sub-limits. The CARLA algorithm is sim-
ilar to DARLA except that the DPDFs will change to Continuous
Probability Distribution Function (CPDF). In fact, the only difference
between CARLA and DARLA is that CARLA takes the actions in con-
tinuous space instead of discrete space.

In this algorithm, the probability distribution functions are ini-
tially defined uniformly in continuous space over the optimum
sub-limit as:

f ð0Þi ðxiÞ ¼
1

xi;max�xi;min
; xi 2 ½xi;min; xi;max�

0 ; other

(

i ¼ 1;2; . . . ;n

ð9Þ

where, xi,min and xi,max are the lower and upper bounds of the ith
optimal sub-limit, respectively.

The stochastic action selection, cost function and reinforcement
signal calculation are similar to DARLA. CPDF updating in CARLA
has the same philosophy, but differs slightly as:

f ðkþ1Þ
i ðxiÞ ¼ aðkÞi ðf

ðkÞ
i þ bðkÞHiðxi; ~xiÞÞ

i ¼ 1;2; . . . ;n
ð10Þ
where, H is Gaussian function centralized in ~xi as defined in (11).

Hiðxi; ~xiÞ ¼ gh
xi;max�xi;min

expð� ðxi�~xiÞ2

2ðgwðxi;max�xi;minÞÞ2
Þ ð11Þ

where, gh and gw are the height and width of H function and deter-
mine the speed and resolution of the learning algorithm. The nor-
malization factor can be defined as:

aðkÞi ¼
1R xi;max

xi;min
f ðkÞi ðxÞ þ bðkÞHðxi; ~xiÞdx

ð12Þ

Similar to DARLA, by while satisfying the algorithm conver-
gence criterion the optimum values of decision variables can be
determined.

It is noticed that, the DARLA and CARLA algorithms do not re-
quire the knowledge of the system dynamics, but the designer
should be aware of the system behavior in order to define an
appropriate cost function.

In our implementation, the values of gh and gw are set as 1.0 and
0.003, respectively. The length of each sub-limit is equal to 2, and
this interval has been divided to 2000 points in CARLA resulting in
accuracy of 3 digits after zero.

5. PSS design using CDCARLA

The described CDCARLA optimization procedure has been
implemented and applied to select the optimal settings of PSSs
parameters for the multimachine power system considered. The
total variation limits of all 20 decision variables are selected be-
tween 0 and 50. Moreover, these variation limits are divided into
25 sub-limits. The training system in DARLA and CARLA algorithms
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is considered with a three-phase fault disturbance. The fault oc-
curred at t = 1.0 s. in the middle of Tie-Line2 for 8 cycles. The fault
is cleared by tripping Tie-Line 2.

A cost function that minimizes the overshoots and settling time
of the system response is employed in this study. It can be defined
as:

J ¼ G1

X4

j¼2

Z T

t¼0
tjDxj�1jdt þ G2

X4

j¼2

sup jDxj�1j þ G3

X4

j¼2

EDxj�1
ð13Þ

where, Dxj�1 is the relative rotor speed of the jth generator relative
to the first generator, i.e. Dxj�1 = Dxj � Dx1, sup(.) is the supreme
operator, and EDxj�1 is the steady state value of the relative rotor
speed. T in (13) is the simulation time and should be large enough,
e.g. T = 7 s.

Fig. 5 shows the variation of minimum of costs due to iterations
for DARLA algorithm for 100 numbers of iterations, G1 = 1, G2 = 5,
G3 = 20 and q = 0.5.

Moreover, the trend of the DPDF for the PSS parameters typi-
cally is shown in Fig. 6.

Table 1 summarizes the optimum sub-limits of decision
variables.

After obtaining the optimal sub-limits, the CARLA algorithm is
applied. The cost function and its weighting coefficients are se-
Table 2
Optimum values of decision variables.

Parameter Opt.
Value

Parameter Opt.
Value

Generator 1 KPSS 14.79 Generator 2 KPSS 13.98
T1 18.98 T1 9.70
T2 3.17 T2 17.80
T3 10.71 T3 11.46
T4 18.07 T4 1.45

Generator 3 KPSS 14.28 Generator 4 KPSS 18.91
T1 4.57 T1 8.66
T2 5.09 T2 19.22
T3 19.36 T3 15.59
T4 22.72 T4 16.23
lected the same as the DARLA algorithm. Figs. 7 and 8 show the
trend of the minimum cost function, and the trend of the CPDF var-
iation for the decision variables, respectively. Table 2 shows the
optimal settings of decision variables after 200 iterations. It is
worth mentioning that the observed time per iteration of the de-
sign process is 41.2 s on 1.8 GHz PC.
6. Results and discussions

For performance evaluation of the proposed design method,
nonlinear time domain simulations of the considered power sys-
tem [19–21] were performed using Matlab� and Simulink� soft-
wares. Moreover, the designed PSSs are compared with the IEEE
Multi-band PSS [22] and conventional PSS [1,6] under different
kind of disturbance conditions.
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Area 2 busbar disturbance.
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6.1. Small signal disturbance

The stability of the power system considered without PSSs is
examined by applying a three-phase fault on the middle of Tie-Line
2 at t = 1 s. Fig. 9 shows the variation of the active power from Area
1 to Area 2 due to this disturbance.

It can be seen that the open-loop power system response is
unstable and the need for PSSs is quite obvious.

6.2. Optimal PSS performance evaluation and comparison

For performance comparison of the optimal designed CDCARLA
based PSSs with the other PSS types, the response of the system
with a three-phase fault in the middle of Tie-Line 2, is evaluated.
Fig. 10 shows the system response with different PSSs. It is clear
that the proposed CDCARLA PSSs have better performance in terms
of overshoots and settling time compared to multi-band PSS and
conventional PSS.

6.3. Robustness investigation

To assess the robustness of the proposed CDCARLA PSSs, differ-
ent disturbances have been applied and the system performance
has been examined.

A 20% pulse disturbance in the reference voltage of Generator 1
for 200 ms has been applied. Fig. 11 shows the system response
with different PSSs. As a large signal disturbance, a single phase
earth fault on Area 2 busbar has been applied for 6 cycles. The sys-
tem response under this fault is shown in Fig. 12. Form Figs. 11 and
12, the superiority of the proposed CDCARLA PSSs is clear. It can be
also concluded that the proposed PSSs are robust and have satisfac-
tory response with small as well as large signal disturbances.

In addition, the system performance with CDCARLA based PSSs
is compared to that with CARLA based PSSs under 6-cycle three
phase to ground fault disturbance. The simulation results are
shown in Fig. 13. It can be seen that CDCARLA based PSSs enhances
greatly the first swing stability. This confirms the superiority of
CDCARLA design approach over CARLA design approach.

7. Conclusion

In this paper a novel computational optimization method based
on reinforcement learning automata have been proposed for opti-
mum tuning of conventional power system stabilizer parameters.
The proposed design approach has been implemented on a multi-
machine power system with local and interarea modes of oscilla-
tions. The performance and efficiency of designed PSSs with
proposed optimization method have been investigated and com-
pared with analytically designed PSSs and Multi-band PSSs
through computer simulations of a nonlinear model. The results
show that the system response with the designed PSSs is superior
in terms of overshoots and settling time. The results also demon-
strate the robustness of the proposed PSSs and their effectiveness
under different system disturbances. However, implementation
of the proposed approach on a real-life system with a wide range
of the operating conditions is worth to be examined.
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