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Recently, cogeneration units have played an increasingly important role in the utility industry. Therefore
the optimal utilization of multiple combined heat and power (CHP) systems is an important optimization
task in power system operation. Unlike power economic dispatch, which has a single equality constraint,
two equality constraints must be met in combined heat and power economic dispatch (CHPED) problem.
Moreover, in the cogeneration units, the power capacity limits are functions of the unit heat productions
and the heat capacity limits are functions of the unit power generations. Thus, CHPED is a complicated
optimization problem. In this paper, an algorithm based on Benders decomposition (BD) is proposed to
solve the economic dispatch (ED) problem for cogeneration systems. In the proposed method, combined
heat and power economic dispatch problem is decomposed into a master problem and subproblem. The
subproblem generates the Benders cuts and master problem uses them as a new inequality constraint
which is added to the previous constraints. The iterative process will continue until upper and lower
bounds of the objective function optimal values are close enough and a converged optimal solution is
found. Benders decomposition based approach is able to provide a good framework to consider the
non-convex feasible operation regions of cogeneration units efficiently. In this paper, a four-unit system
with two cogeneration units and a five-unit system with three cogeneration units are analyzed to exhibit
the effectiveness of the proposed approach. In all cases, the solutions obtained using proposed algorithm
based on Benders decomposition are better than those obtained by other methods.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

This paper presents an application of Benders decomposition
(BD) [1,2] for a combined heat and power economic dispatch. Eco-
nomic dispatch is used to determine the optimal schedule of on-
line generating outputs so as to meet the load demand at the min-
imum operating cost. The conventional condensing plant delivers
power at an efficiency of 35–55%. The waste heat can be captured
and used to provide heating. Combined heat and power (CHP), also
known as Cogeneration, is the simultaneous generation of usable
heat, either for industrial use or space heating, and power, usually
electricity, in a single process. Using efficient flue gas condensa-
tion, the total efficiency of CHP unit is found to be in the range
of 80–111% (lower heating value base) [3–5].

As gas turbine development gathered pace in the 1970s, one re-
sponse to the 1973 oil crisis was a growing chorus of opinion ask-
ing for the wider application of combined heat and power schemes.
Combined heat and power will be an important contributor to en-
ergy efficiency and the reduction in energy costs for industry. Pres-
ent-day worries about climate change suggest that high efficiency
is required of all new thermal power plants. Combined heat and
power is one solution [6]. Recently, cogeneration units have played
an increasingly important role in the utility industry. Cogeneration
units can provide not only electrical power but also heat to the cus-
tomers. For most cogeneration units, the heat production capaci-
ties depend on the power generation and vice versa. Some
complications arise in combined heat and power (CHP) systems
because the dispatch has to find the set points of power and heat
production with the minimum fuel cost in such a way that both de-
mands were matched. Indeed, the CHP units should operate in a
bounded power vs. heat plane [7–10].

Basically, the dispatch problem can be formulated as an optimi-
zation problem with a quadratic objective function and linear con-
straints. Such problems can be solved with a general-purpose
package that is designed to solve quadratic programming prob-
lems, but the computational effort increases at least quadratically
with the increasing number of units. The literature reports basi-
cally the traditional method to solve the ED problem adapted for
CHP plants based on Lagrangian relaxation (LR) [7,8]. However,
each author added some new feature to arrive to the optimal solu-
tion. For example [7] solves the combined heat and power eco-
nomic dispatch (CHPED) problem based on the separability of the
objective function of the problem. The separability, defined by
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Fig. 1. Feasible operation region for a cogeneration unit.
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the authors, is the fact that the objective function is the sum of the
cost functions of separate units and most of the constraints are
linked to one specific unit. In this method, a two-level strategy
was adopted. The lower level solves the economic dispatch prob-
lems of the individual units for given power and heat lambdas
and the upper level updates the lambda’s by sensitivity
coefficients. The procedure is repeated until the heat and power
demands are met.

A new algorithm for CHPED problem was proposed in [8]. In this
algorithm the problem was decomposed into heat and power dis-
patch subproblems. The two subproblems were connected by the
heat-power feasible operation region constraints of cogeneration
units. The analysis and interpretation of the connection have led
to the development of the two-layer algorithm in which the outer
layer used the LR technique to solve the power dispatch, and the
inner layer used the gradient searching method to solve the heat
dispatch with the unit heat capacities passed by the outer layer.

A genetic algorithm (GA) was successfully applied to solve the
CHPED problem with an improved penalty function formulation
[9]. A multi-objective method using a fuzzy decision index and a
genetic algorithm was presented in [10]. This algorithm has been
successfully applied to a sample seven-generator system. An im-
proved genetic algorithm with multiplier updating (IGA_MU) for
solving the CHPED problem was presented in [11]. This method
has the merits of automatically adjusting the randomly given pen-
alty to a proper value and requiring only a small-size population. In
[12] the problem has been solved using Integrated Genetic–Tabu
search algorithm. An improved algorithm based on sequential qua-
dratic programming (SQP) method [13] to solve nonlinear con-
strained optimization problems, besides the logic of LR technique
was proposed.

A harmony search (HS) algorithm has been applied to solve the
CHPED problem. This algorithm is a new technique in the field of
optimization, which does not require the strict continuity of classi-
cal search techniques. A new test system is proposed by the
authors [14].

Bee colony optimization algorithm – a swarm-based algorithm
– has been applied to solve the CHPED problem in [15]. This algo-
rithm was illustrated on a test system consisting of four conven-
tional power-only units, two cogeneration units and a heat-only
unit, and the transmission loss and valve point effect have been
considered.

Subbaraj et al. [16], Sadat Hosseini et al. [17] and Khorram and
Jaberipour [18] applied a self-adaptive real-coded genetic algo-
rithm (SARGA), a mesh adaptive direct search (MADS), and a har-
mony search algorithm to solve the CHPED problem, respectively.
Also, evolutionary programming (EP) [19], multi-objective particle
swarm optimization (MPSO) [20], improved ant colony search
algorithm (ACSA) [21] and a customized branch-and-bound algo-
rithm [22,23] were applied to solve this problem. In [24], a stochas-
tic method, based on particle swarm optimization, for economic
dispatch in a system that includes cogeneration units, is extended
to a multi-objective formulation to include wind power and pollu-
tant emissions constraints.

In this study, an algorithm based on Benders decomposition
(BD) for solving the CHPED problem considering the cogeneration
units with non-convex feasible operation region is proposed. Bend-
ers decomposition is a popular technique in the field of optimiza-
tion. The BD algorithm has been successfully applied to a number
of optimization problems in power systems operation and plan-
ning [25–31]. The structure of CHPED problems presents a natural
decomposition scheme for the Benders approach: the variables
representing the heat production are solved in the master problem
while the ones representing the power production are kept in the
subproblem. Therefore, at each iteration the master solution gives
a heat production for which the subproblem finds the optimal
power production. The Benders decomposition algorithm is an iter-
ative algorithm. Due to the need to solve the master problem and
the subproblems several times, the decomposition approach is
only reasonable if these problems can be solved efficiently. This
is the case for CHPED problems, where most of the times, it is much
easier to solve the decomposed problems than the original one.

The four-unit system proposed in [8] which is a standard test
case in this field has been used as a first case study and a new test
system designed and proposed in [14] has been used as a second
case study. The paper is organized as follows: The second section
briefly describes the CHPED problem. The structure of the Benders
decomposition algorithm and its application to the CHPED problem
are explained in the third section. Section 4 presents and discusses
a system consisting of a four-unit system with two cogeneration
units and a five-unit system with three cogeneration units in de-
tail. Finally, conclusions are provided in Section 5.

2. The CHP economic dispatch problem

The system under consideration has power-only units, com-
bined heat and power units, and heat-only units. Fig. 1 shows
the heat-power feasible operation region of a combined cycle
cogeneration unit.

The feasible operation region is enclosed by the boundary curve
ABCDEF. Along the boundary curve BC the heat capacity increases
as the power generation decreases while the heat capacity de-
creases along the curve CD. The power output of the power units
and the heat output of heat units are restricted by their own upper
and lower limits.

Usually the power capacity limits of cogeneration units are
functions of the unit heat productions and the heat capacity limits
are functions of the unit power generations [8].

The combined heat and power economic dispatch (CHPED)
problem is to determine the unit power and heat production so
that the system production cost is minimized while the power
and heat demands and other constraints are met [21]. The problem
is formulated as:

Min
Xnp

i¼1

costiðpiÞ þ
Xnpþnc

j¼npþ1

costjðhj;pjÞ þ
Xnpþncþnh

k¼npþncþ1

costkðhkÞ ð1Þ
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Fig. 2. The flow chart of the Benders decomposition algorithm.
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subject to a heat and power balance constraints

Xnp

i¼1

pi þ
Xnpþnc

j¼npþ1

pj ¼ pd

Xnpþnc

j¼npþ1

hj þ
Xnpþncþnh

k¼npþncþ1

hk ¼ hd

ð2Þ

and the capacity limits constraints

pmin
i 6 pi 6 pmax

i ; i ¼ 1; . . . ;np

pmin
j ðhjÞ 6 pj 6 pmax

j ðhjÞ; j ¼ np þ 1; . . . ;np þ nc

hmin
j ðpjÞ 6 hj 6 hmax

j ðpjÞ; j ¼ np þ 1; . . . ; np þ nc

hmin
k 6 hk 6 hmax

k ; k ¼ np þ nc þ 1; . . . ;np þ nc þ nh

ð3Þ

in which cost is the unit production cost; p is the unit power gen-
eration; h is the unit heat production; hd and pd are the system
heat and power demands; i, j and k are the indices of conventional
power units, cogeneration units and heat-only units, respectively;
np, nc and nh are the numbers of the kinds of units mentioned
above; pmin and pmax are the unit power capacity limits and hmin

and hmax are the unit heat capacity limits. It is obvious that the
complication arising in CHP economic dispatch is the mutual
dependencies of extra constraints in contrast to the pure economic
dispatch.

3. Benders decomposition algorithm

Benders decomposition [1] is one of the commonly used decom-
position techniques for combinatorial optimization problems.
Benders decomposition decomposes the original problem into a
master problem and several subproblems. The lower bound solu-
tion of the master problem may involve fewer constraints. The sub-
problems will examine the solution of the master problem to see if
the solution satisfies the remaining constraints. If the subproblems
are feasible, the upper bound solution of the original problem will
be calculated while forming a new objective function for the fur-
ther optimization of the master problem solution. If any of the sub-
problems is infeasible, an infeasibility cut representing the least
satisfied constraint will be introduced to the master problem.
Then, a new lower bound solution of the original problem will be
obtained by re-calculating the master problem with more con-
straints. The final solution based on the Benders decomposition
algorithm may require iterations between the master problem
and subproblems. When the upper bound and the lower bound
are sufficiently close, the optimal solution of the original problem
will be achieved.

To advantageously apply the Benders decomposition, the prob-
lem under consideration should have the appropriate structure.
There are two such structures. The first is characterized by compli-
cating constraints, and the second by complicating variables. The
complicating constraints and variables are those that complicate
the solution of the problem, or prevent a straightforward solution
of the problem or a solution by blocks, i.e., they make the problem
more difficult to solve [32].

In this section we describe the application of Benders decompo-
sition to CHPED problem.

3.1. Complicating variables

The Benders decomposition is analyzed below to address
CHPED problem as a nonlinear problem with decomposable struc-
ture and complicating variables.

The problem structure required to apply advantageously the
Benders decomposition is:
minimize Costðh;pÞ
subject to

bðpÞ 6 0
cðhÞ 6 0
dðh;pÞ 6 0

ð4Þ

where h ¼ ½hnpþ1; . . . ;hnpþnc ; . . . ;hnpþncþnh
� is the heat production vec-

tor and p ¼ ½p1; . . . ;pnp
; . . . ;pnpþnc

� is the unit power generation vec-
tor. bðpÞ 6 0; cðhÞ 6 0 and dðh;pÞ 6 0 are equality and inequality
constraints of power only unit, heat only unit and cogeneration unit
respectively. The problem includes both equality and inequality
constraints. Variables h are considered simply as complicating vari-
ables, i.e., variables that if fixed to given values render a simple or
decomposable problem. It should be noted that in the case of
CHPED problem, we also can consider the variables p as complicat-
ing variables. The steps of the Benders decomposition approach are
depicted in Fig. 2 and are described as follows:

Step 0: Initialization. Find feasible values for the heat production
(complicating variables) h0, so that cðh0Þ 6 0

Set m = 1, h(m) = h0 and CðmÞdown ¼ �1.
The problem includes both equality and inequality constraints.

h0 is an initial values of heat production vector, m is a number of
iteration and CðmÞdown is lower bound of the objective function at
mth iteration.

Step 1: Subproblem solution. Solve subproblem

minimize Costðh;pÞ
subject to

bðpÞ 6 0
dðh;pÞ 6 0

h ¼ hðmÞ : kðmÞ

ð5Þ

where h(m) and p(m) show the values of heat production and power
production vector at mth iteration. The solution of the problem
above provides values for the p(m) and the dual variable vector asso-
ciated with those constraints that fix the complicating variables, h,
to given values. The values of the dual variables, also called shadow
prices, give the sensitivity of the objective function optimal value to
changes in the constraints. This sensitivity vector is denoted by kðmÞ

(kr ¼ �ð@Costðh;pÞ=@hrÞjðhðmÞ ;pðmÞÞr ¼ np þ 1; . . . ;np þ nc þ nh).
The upper bound of the objective function at mth iteration is

CðmÞup ¼ CostðhðmÞ;pðmÞÞ. The information obtained solving the sub-
problem allows reproducing more and more accurately the original
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problem. The solution of this subproblem provides p(m), Cost(h(m), -
p(m)) and kðmÞ .

Update the objective function upper bound,
CðmÞup ¼ CostðhðmÞ;pðmÞÞ.

Step 2: Convergence check. If the duality gap is smaller than the
tolerance eðjCðmÞup � CðmÞdownj 6 eÞ, the solution with a level of accuracy
(small tolerance value to control convergence) of the objective
function is:

h� ¼ hðmÞ

p� ¼ pðmÞ
ð6Þ

Otherwise, the algorithm continues with the next step.
Step 3: Master problem solution. Update the iteration counter:

m m + 1. Solve the master problem:

minimize a
subject to

a P CostðhðiÞ;pðiÞÞ þ
Xnpþncþnh

r¼npþ1

kðiÞr ðhr � hðiÞr Þ;8i ¼ 1; . . . ; m� 1

cðhÞ 6 0

ð7Þ

The auxiliary function a(h) expresses the objective function of
the original CHPED problem (total costs) as a function solely of
the complicating variables (h). Note that at every iteration a new
constraint is added. The solution of the master problem provides
h(m) and a(m).

Update objective function lower bound, CðmÞdown ¼ aðmÞ.
The algorithm continues in Step 1.

3.2. Non-convex feasible operation region

The CHPED problem has equality and inequality constraints.
Equality constraints arise from heat and power balance constraints
and inequality constraints arise from feasible operation region of
cogeneration units and limitations on power and heat generation
of power-only units and heat-only units, respectively. The CHPED
problem is convex, if the feasible operation region of each cogene-
ration unit is a convex polygon in terms of heat and power gener-
ation, and the production cost is a convex function of the generated
heat and power. The feasible operation region of the cogeneration
unit is convex, if any point on the line segment connecting the two
feasible points is feasible. In case the operating cost at any point on
the line segment is not higher than the corresponding linear com-
bination of the operating costs at the end points, the production
cost function is convex. Although in most cases the production cost
is a convex function, the feasible operation region of advanced
cogeneration units is non-convex. Traditional back-pressure CHP
unit can be modeled as a convex unit. But the backpressure cogen-
eration unit with condensing and auxiliary cooling options, gas tur-
bines, and combined gas and steam cycles can result in non-convex
feasible operation regions. Therefore, CHPED problem is non-con-
vex. One way to tide over this difficulty is to decompose the
non-convex feasible operation region into a number of convex
sub-regions and then used the conventional optimization ap-
proaches such as Lagrangian multiplier, nonlinear programming,
quadratic programming, mixed interior programming, and interior
point programming to solve the problem. In this way, the CHPED
problem must be solved for all possible combination of convex
sub-regions. However, this may require a large computational bur-
den to obtain an optimal solution when a system has several
cogeneration units with non-convex feasible operation regions.

Su and Chiang [11] and Subbaraj et al. [16] expressed the feasi-
ble operation region of cogeneration units by means of inequality
constraints, whereas the feasible operation region of unit 3 in
Example 1 (second cogeneration unit) is a non-convex polygon
and cannot be expressed in the form gi(x) 6 0. This means that
the inequality constraints for the feasible operation region are
not exactly correct. In other words, by considering a set of inequal-
ity constraints as a feasible operation region, some of the con-
straints eliminate parts of actual feasible operation region which
may include a global operating point [33].

Benders decomposition algorithm, not only makes the CHPED
problem easier to solve, but also enables us to consider the non-
convex feasible operation region more accurately and more effi-
ciently. As mentioned above, although the feasible operation re-
gions of cogeneration units cannot be expressed as a set of
inequality constraints, by choosing a feasible value for heat pro-
duction in the master problem (hmaster), there will be only bounds
on the power generation. As a result, in the subproblem, inequality
constraints for cogeneration units can be expressed in the form
pmin 6 p 6 pmax, as shown in Fig. 3.
4. Simulation result

In this section, two examples which are taken from the previous
literature are used to show the validity and effectiveness of the
proposed algorithm. The first example has been previously solved
using a variety of other techniques (both evolutionary and tradi-
tional mathematical programming methods), and the second
example has been proposed in [14].
4.1. Example 1

A system which consists of a conventional power-only unit, two
cogeneration units and a heat-only unit is considered. The dia-
grams of feasible operation regions of units 2 and 3 are illustrated
in Fig. 4. This case was discussed in [8,9,11–14,16,17,19–21]. The
cost functions and capacity limits of the aforementioned units
are shown in Eq. (8). The evolution of the proposed method and
the obtained result for this example are given in Appendix A, and
to show how the proposed algorithm works, two iterations of BD
on Example 1 are presented in detail in Appendix B. The results ob-
tained for this example using BD algorithm are given in Table 1,
and the results are compared with those of LR, GA, IGA_MU, GT,
SQP, HS, SARGA, MADS, EP, MPSO and ACSA.
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Fig. 4. Feasible operation region for (a) the second unit of Example 1, (b) the third unit of Example 1 and second unit of Example 2, (c) the third unit of Example 2, (d) the
fourth unit of Example 2.

Table 1
Comparison of various methods for Example 1.

Methods Pd = 200 hd = 115 Cost ($)

p1 p2 p3 h2 h3 h4

LR [8] 0.0 160 40 40 75 0.0 9257.1
GA1 [9] 0.0 159.23 40.77 39.94 75.06 0.0 9267.2
GA2 [9] 0.08 150.93 49.00 48.84 65.79 0.37 9452.2
IGA_MU [11] 0.00 160.00 40.00 39.99 75.00 0.00 9257.07
GT [12] 0.00 157.92 42.08a 26.00 89.00a 0.00 9207.64
SQP [13] 0 160 40 40 75 0 9257.1
HS [14] 0.00 160.00 40.00 40.00 75.00 0.00 9257.07
SARGA [16] 0.00 159.99 40.01 39.99 75.00 0.00 9257.07
MADS [17] 0.00 160.00 40.00 40.00 75.00 0.00 9257.07
EP [19] 0.00 160.00 40.00 40.00 75.00 0.00 9257.10
MPSO [20] 0.05 159.43 40.57 39.97 75.03 0.00 9265.10
ACSA [21] 0.08 150.93 49.00 48.84 65.79 0.37 9452.2
BD (present study) 0.00 160.00 40.00 40.00 75.00 0.00 9257.07

a Outside the feasible operation region of cogeneration unit 3.
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min Cost ¼
X4

i¼1

costi

cost1 ¼ 50p1

cost2 ¼ 2650þ 14:5p2 þ 0:0345p2
2 þ 4:2h2 þ 0:03h2

2 þ 0:031p2h2

cost3 ¼ 1250þ 36p3 þ 0:0435p2
3 þ 0:6h3 þ 0:027h2

3 þ 0:011p3h3

cost4 ¼ 23:4h4

0 6 p1 6 150 MW
0 6 h4 6 2695:2 MWth
p1 þ p2 þ p3 ¼ pd

h2 þ h3 þ h4 ¼ hd

ð8Þ
The system power and heat demands are 200 (MW) and 115
(MWth), respectively.

It can be observed from Table 1 that the result obtained using
the proposed algorithm is the same as the best known solution re-
ported previously in the literature. Although a better solution is re-
ported in [12], this solution is not feasible due to violation of the
constraints. It seems that this case is not a strong test to validate
the presented algorithm for CHPED problem. The reason is that,
in this case, the linear cost functions have been used for power
and heat characteristics of the power-only unit (unit 1) and the
heat-only unit (unit 4), respectively. In view of this fact, the pro-
ductions of these units do not appear in the first equation of Kar-
ush–Kuhn–Tucker first-order conditions. Moreover, the linear
coefficients in the cost function of the power-only unit and the
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heat-only unit have been selected to be larger than power and heat
partial derivatives attributed to the cost functions of cogeneration
units. Therefore, the power-only unit and the heat-only unit have
been set at the minimum. It can be inferred from Table A.2 that
the reason behind the easy solution of Example 1 is that the power
generation of unit 1 and the heat generation of unit 4 are passive to
the solution process (due to being at minimum output), and effec-
tively reduce the number of variables to solve. Fig. 5 provides the
convergence nature of the presented method for Example 1.

4.2. Example 2

This case study was originally proposed in [14]. This problem
consists of a conventional power unit, three cogeneration units
and a heat-only unit. The cogeneration unit 2 was taken from the
previous case study and the diagrams of feasible operation regions
of units 3 and 4 are illustrated in Fig. 4. The cost functions and
capacity limits of the aforementioned units are shown in Eqs.
(9)–(11). The test system is considered for three power and heat
demands. The power and heat demands in cases I, II and III are
300 (MW) and 150 (MWth), 250 (MW) and 175 (MWth), and 160
(MW) and 220 (MWth), respectively.The objective function of the
CHPED problem is:

Min Cost ¼
X5

i¼1

costi ð9Þ

where

cost1 ¼ 254:8863þ 7:6997p1 þ 0:00172p2
1 þ 0:000115p3

1

cost2 ¼ 1250þ 36p2 þ 0:0435p2
2 þ 0:6h2 þ 0:027h2

2 þ 0:011p2h2

cost3 ¼ 2650þ 34:5p3 þ 0:1035p2
3 þ 2:203h3 þ 0:025h2

3 þ 0:051p3h

cost4 ¼ 1565þ 20p4 þ 0:072p2
4 þ 2:3h4 þ 0:02h2

4 þ 0:04p4h4

cost5 ¼ 950þ 2:0109h5 þ 0:038h2
5

ð10Þ

Subject to:

35 6 p1 6 135 MW
0 6 h5 6 60 MWth
p1 þ p2 þ p3 þ p4 ¼ pd

h2 þ h3 þ h4 þ h5 ¼ hd

ð11Þ

The convergence behavior of proposed method for cases I, II and
III of Example 2 are illustrated in Fig. 6. The evolution of the
proposed method and obtained result for cases I, II and III of Exam-
ple 2 are given in Appendix A. Optimal results obtained by pro-
posed algorithm, GA and HS Algorithm [14] are shown in Table 2.
It can be observed in this table that the best performance is ob-
tained by the proposed algorithm for cases I, II and III of Example
2. In these cases, Benders decomposition algorithm provides
superior performance compared to the available methods in the
literature.
5. Conclusion

In this paper, the problem of combined heat and power eco-
nomic dispatch (CHPED) is approached. The difficulty of solving this
highly complex and intricate problem can be overcome using Bend-
ers decomposition technique, which allows its analysis in a com-
plete and practical way. Real-world problems by employing our
method are solved. Simulation results confirm the validity of the
intuition supporting the algorithm. The tests on the Example 2



Table 2
Compared results of the previous methods and the BD (present study) for Example 2.

Case Method pd hd p1 p2 p3 p4 h2 h3 h4 h5 Cost ($)

I GA [14] 300 150 135.00 70.81 10.84 83.28 80.54 39.81 0.00 29.64 13779.50
HS [14] 134.74 48.20 16.23 100.85 81.09 23.92 6.29 38.70 13723.20
BD (present study) 135.0000 40.7687 19.2313 105.0000 73.5957 36.7759 0.0000 39.6284 13672.83

II GA [14] 250 175 119.22 45.12 15.82 69.89 78.94 22.63 18.40 54.99 12327.37
HS [14] 134.67 52.99 10.11 52.23 85.69 39.73 4.18 45.40 12284.45
BD (present study) 135.0000 40.0000 10.0000 65.0000 75.0000 40.0000 14.4029 45.5971 12116.60

III GA [14] 160 220 37.98 76.39 10.41 35.03 106.0 38.37 15.84 59.97 11837.40
HS [14] 41.41 66.61 10.59 41.39 97.73 40.23 22.83 59.21 11810.88
BD (present study) 42.1454 64.6296 10.0000 43.2250 96.2614 40.0000 23.7386 60.0000 11758.06

Table A.1
Evolution of the BD algorithm for the Example 1.

Iteration (m) k2 k3 k4 Cdown Cup Error

1 11.1446 1.8845 23.4000 �1 10194.569380 1
2 7.7236 33.7470 23.3999 8836.519384 9961.496037 1124.976653
3 10.7816 23.3932 23.4000 9131.768281 9345.577724 213.809443
4 11.6561 4.0898 23.4000 9222.291672 9269.481304 47.189632
5 11.4949 20.9781 23.3999 9251.786100 9263.418662 11.632562
6 11.5602 4.1744 23.4000 9256.948437 9257.098005 0.149568
7 11.5594 20.7594 23.3999 9257.032526 9257.127896 0.095370
8 11.5600 20.7576 23.4000 9257.074996 9257.075003 0.000007

Table A.2
Power and heat economic dispatch for Example 1.

Iteration (m) p1 p2 p3 h2 h3 h4 Cost ($)

1 0.0000 157.1023 42.8977 34.5737 32.1871 48.2392 10194.5694
2 0.0000 113.6634 86.3366 0.000 115.0000 0.0000 9961.4960
3 0.0000 150.5982 49.4018 31.8839 83.1161 0.0000 9345.5777
4 0.0000 159.8877 40.1123 41.6595 73.3405 0.0000 9269.4813
5 0.0000 159.2132 40.7868 39.3208 75.6792 0.0000 9263.4187
6 0.0000 159.9998 40.0002 40.0031 74.9969 0.0000 9257.0980
7 0.0000 159.9933 40.0067 39.9942 75.0058 0.0000 9257.1279
8 0.0000 160.0000 40.0000 40.0000 75.0000 0.0000 9257.0750

Table A.3
Evolution of the BD algorithm for the Case 1 of Example 2.

Iteration (m) k2 k3 k4 k5 Cdown Cup Error

1 5.0791 5.2791 10.6844 3.6607 �1 13764.854714 1
2 38.2460 -2.8809 5.9000 6.5709 13615.970456 13899.872528 283.902072
3 13.9764 2.3229 6.1920 6.5709 13617.343984 13763.716798 146.372814
4 4.8165 4.1694 9.1646 6.5709 13619.812959 13696.142708 76.329749
5 1.9178 84.8393 5.9001 5.4685 13647.540472 14195.527965 547.987493
6 3.7204 28.5360 6.0618 5.3363 13648.705775 13767.437645 118.731870
7 4.4910 6.2149 9.5942 5.2415 13649.540390 13676.897760 27.357370
8 7.6463 4.4581 8.8117 4.9776 13651.865407 13680.862637 28.997230
9 4.9652 4.8666 9.6032 5.3783 13659.671801 13673.984938 14.313137

10 5.1843 5.3373 9.7136 4.2985 13667.081775 13677.463278 10.381503
11 4.8451 5.2346 9.6738 4.8849 13670.410146 13673.832827 3.422681
12 6.0449 4.8362 9.3510 4.8763 13671.063332 13674.210062 3.146730
13 5.0975 4.9926 9.6413 4.9747 13671.500484 13672.914622 1.414138
14 4.8540 5.0661 9.6380 5.1734 13672.383525 13673.278707 0.895182
15 4.9510 5.1054 9.6540 4.9721 13672.617466 13672.987345 0.369879
16 4.9824 5.0091 9.6358 5.1012 13672.657458 13672.891603 0.234145
17 5.0170 5.0421 9.6456 4.9956 13672.747190 13672.843931 0.096741
18 5.0461 4.9899 9.6366 5.0493 13672.796413 13672.857676 0.061263
19 5.0079 5.0192 9.6398 5.0486 13672.815490 13672.840684 0.025194
20 5.0506 5.0113 9.6419 5.0492 13672.821410 13672.838706 0.017296
21 5.0379 5.0151 9.6416 5.0153 13672.824962 13672.837473 0.012511
22 5.0168 5.0280 9.6426 5.0209 13672.828209 13672.834848 0.006639
23 5.0245 5.0143 9.6402 5.0348 13672.831810 13672.835991 0.004181
24 5.0266 5.0204 9.6417 5.0212 13672.832710 13672.834359 0.001649
25 5.0187 5.0215 9.6413 5.0300 13672.833840 13672.834648 0.000808
26 5.0212 5.0237 9.6420 5.0226 13672.834037 13672.834135 0.000098
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revealed the superiority of the presented method with respect to
other reported methods. The application of Benders decomposition
divides the original CHPED optimization into a master problem and
subproblems. The subproblem generates Benders cuts correspond-
ing to heat limit violations at provided power added to the master
problem for re-calculating the heat generation. The key feature of
the proposed approach is that it solves CHPED problem with non-
convex constraints on cogeneration feasible operation region. In
addition, the solution obtained from Benders decomposition algo-
rithm is feasible at each iteration. It means that the algorithm pro-
vides usable solution, even if it is terminated after a finite number
of iterations and before it has converged to the global solution. As a
result, the approach based on Benders decomposition is an efficient
and practical algorithm to solve the non-convex CHPED problem.
Table A.4
Power and heat economic dispatch for the case 1 of Example 2.

Iteration (m) p1 p2 p3 p4

1 135.0000 47.8078 21.4672 95.7250
2 132.6237 57.3763 20.0000 90.0000
3 135.0000 49.4183 18.2826 97.2991
4 135.0000 40.2855 19.7145 105.0000
5 123.2744 41.7256 45.0000 90.0000
6 135.0000 41.1665 29.7869 94.0466
7 135.0000 41.1092 18.8908 105.0000
8 135.0000 45.9810 14.0190 105.0000
9 135.0000 40.1586 19.8414 105.0000

10 135.0000 41.7906 18.2094 105.0000
11 135.0000 41.8216 18.1784 105.0000
12 135.0000 42.6721 17.3279 105.0000
13 135.0000 40.5775 19.4225 105.0000
14 135.0000 41.0972 18.9028 105.0000
15 135.0000 41.1818 18.8182 105.0000
16 135.0000 40.7457 19.2543 105.0000
17 135.0000 40.8564 19.1436 105.0000
18 135.0000 40.6096 19.3904 105.0000
19 135.0000 40.7670 19.2330 105.0000
20 135.0000 40.8153 19.1847 105.0000
21 135.0000 40.7238 19.2762 105.0000
22 135.0000 40.7967 19.2033 105.0000
23 135.0000 40.7321 19.2679 105.0000
24 135.0000 40.7563 19.2437 105.0000
25 135.0000 40.7672 19.2328 105.0000
26 135.0000 40.7687 19.2313 105.0000

Table A.5
Evolution of the BD algorithm for the Case 2 of Example 2.

Iteration (m) k2 k3 k4 k5

1 3.5925 2.4882 6.0850 5.6
2 48.9572 92.5555 3.7000 2.0
3 51.1720 �2.9915 3.7001 3.4
4 25.9542 37.0504 3.8593 4.9
5 3.8826 39.8832 4.3127 6.5
6 18.9475 28.1994 4.7410 6.3
7 25.5543 1.0604 3.9130 6.0
8 18.7389 2.1961 4.7781 6.5
9 4.2591 26.2943 4.9581 6.5

10 17.1853 2.5299 5.4466 5.5
11 4.3019 2.4209 5.1276 6.2
12 4.3525 25.2909 5.5949 5.2
13 4.3604 2.5633 5.6319 5.2
14 4.3708 25.2582 5.3475 5.7
15 4.3708 2.5079 5.3500 5.7
16 4.3858 24.9494 5.4776 5.4
17 4.3857 2.5437 5.4781 5.4
18 17.0267 2.5611 5.5438 5.3
19 17.0778 2.5498 5.4979 5.4
20 17.1042 2.5440 5.4743 5.4
21 4.3872 2.5407 5.4608 5.5
22 4.3877 2.5427 5.4687 5.4
23 4.3880 2.5437 5.4729 5.4
Appendix A.

A.1. Example 1

The evolution of the proposed method and the obtained result
for Example 1 are tabulated in Tables A.1 and A.2 respectively. In
Table A.1, k2, k3 and k4 represent the dual variable associated with
three equality constraints (hi ¼ hmaster

i for i ¼ 2;3;4).
A.2. Example 2

The evolution of the proposed method and the obtained result
for Example 2 are tabulated in Tables A.3–A.8 respectively. In this
h2 h3 h4 h5 Cost ($)

73.2083 39.6251 15.4583 21.7083 13764.854714
90.0000 0.0000 0.0000 60.0000 13899.872528
83.1303 6.8697 0.0000 60.0000 13763.716798
70.7818 19.2182 0.0000 60.0000 13696.142708
49.5046 55.0000 0.0000 45.4954 14195.527965
57.7652 48.4801 0.0000 43.7547 13767.437645
63.6816 43.8103 0.0000 42.5081 13676.897760
80.1630 30.8018 0.0000 39.0352 13680.862637
72.6574 33.0345 0.0000 44.3081 13673.984938
76.3819 43.5183 0.0000 30.0998 13677.463278
70.0946 42.0901 0.0000 37.8153 13673.832827
77.3066 34.9904 0.0000 37.7030 13674.210062
75.0219 35.9808 0.0000 38.9973 13672.914622
70.4067 37.9815 0.0000 41.6118 13673.278707
72.1846 38.8524 0.0000 38.9630 13672.987345
72.8553 36.4832 0.0000 40.6615 13672.891603
73.4734 37.2545 0.0000 39.2721 13672.843931
74.0625 35.9590 0.0000 39.9785 13672.857676
73.3237 36.7069 0.0000 39.9694 13672.840684
73.3759 36.7219 0.0000 39.9022 13672.838706
73.8885 36.5796 0.0000 39.5319 13672.837473
73.4821 36.9124 0.0000 39.6055 13672.834848
73.6381 36.5737 0.0000 39.7882 13672.835991
73.6711 36.7201 0.0000 39.6088 13672.834359
73.5235 36.7516 0.0000 39.7249 13672.834648
73.5957 36.7759 0.0000 39.6284 13672.834135

Cdown Cup Error

557 �1 12157.382752 1
109 11958.276650 14475.766130 2517.489480
870 12037.026005 14147.931311 2110.905306
736 12053.702446 12480.744834 427.042388
708 12091.882393 12305.820687 213.938294
409 12091.950448 12168.220139 76.269691
670 12098.285262 12470.879294 372.594032
709 12101.709266 12164.974279 63.265013
709 12102.798552 12130.855162 28.056610
130 12104.504607 12118.472704 13.968097
647 12106.057762 12125.814946 19.757184
248 12106.952563 12124.029700 17.077137
548 12109.374438 12119.272270 9.897832
316 12114.891332 12117.448439 2.557107
336 12115.224917 12117.736904 2.511987
769 12116.015119 12116.653479 0.638360
775 12116.099258 12116.736957 0.637699
460 12116.590036 12116.894988 0.304952
341 12116.595907 12116.673631 0.077724
795 12116.598936 12116.620047 0.021111
054 12116.600648 12116.609507 0.008859
904 12116.600687 12116.602904 0.002217
824 12116.600685 12116.601231 0.000546



Table A.6
Power and heat economic dispatch for case 2 of Example 2.

Iteration (m) p1 p2 p3 p4 h2 h3 h4 h5 Cost ($)

1 135.0000 41.0519 11.0313 62.9168 59.4583 35.8750 31.7083 47.9584 12157.382752
2 77.8713 92.1287 45.0000 35.0000 120.0000 55.0000 0.0000 0.0000 14475.766130
3 89.7944 110.2000 15.0056 35.0000 135.6000 19.9775 0.0000 19.4225 14147.931311
4 135.0000 62.6997 13.3181 38.9822 94.5954 41.4220 0.0000 38.9826 12480.744834
5 135.0000 40.4138 24.2694 50.3168 68.8855 46.1154 0.0000 59.9991 12305.820687
6 135.0000 43.0419 10.9349 61.0232 77.6260 40.4006 0.0000 56.9734 12168.220139
7 135.0000 61.6596 13.0170 40.3234 93.6976 27.9321 0.0000 53.3703 12470.879294
8 135.0000 42.6083 10.6036 61.7881 77.2516 37.5857 0.1627 60.0000 12164.974279
9 135.0000 40.1181 10.1234 64.7585 73.2543 40.0529 1.6928 60.0000 12130.855162

10 135.0000 40.1643 10.0170 64.8187 75.1418 39.9319 13.8466 46.0797 12118.472704
11 135.0000 40.0778 10.1964 64.7258 73.8501 39.2147 5.9636 55.9716 12125.814946
12 135.0000 40.0491 10.7114 64.2395 74.2745 40.3049 18.1327 42.2879 12124.029700
13 135.0000 40.0477 10.1076 64.8447 74.2959 39.5696 18.4515 42.6830 12119.272270
14 135.0000 40.0110 10.0041 64.9849 74.8378 40.0018 11.2039 48.9565 12117.448439
15 135.0000 40.0109 10.0277 64.9614 74.8382 39.8896 11.2889 48.9833 12117.736904
16 135.0000 40.0032 10.0001 64.9967 74.9521 40.0000 14.4432 45.6047 12116.653479
17 135.0000 40.0033 10.0071 64.9896 74.9521 39.9716 14.4632 45.6131 12116.736957
18 135.0000 40.0125 10.0000 64.9875 75.0108 40.0000 16.1069 43.8823 12116.894988
19 135.0000 40.0055 10.0000 64.9945 75.0047 40.0000 14.9535 45.0418 12116.673631
20 135.0000 40.0019 10.0000 64.9981 75.0016 40.0000 14.3585 45.6399 12116.620047
21 135.0000 40.0000 10.0000 65.0000 74.9998 40.0000 14.0197 45.9805 12116.609507
22 135.0000 40.0000 10.0000 65.0000 74.9999 40.0000 14.2177 45.7824 12116.602904
23 135.0000 40.0000 10.0000 65.0000 75.0000 40.0000 14.3226 45.6774 12116.601231

Table A.7
Evolution of the BD algorithm for the Case 3 of Example 2.

Iteration (m) k2 k3 k4 k5 Cdown Cup Error

1 45.1656 79.0897 50.0429 6.5709 �1 11845.820273 1
2 46.4403 �2.8110 44.3912 6.5709 11733.058486 11761.161986 28.103500
3 46.4664 75.4195 43.8690 6.5709 11743.377418 11771.470912 28.093494
4 45.9524 75.2038 47.4010 6.5709 11752.441354 11759.687826 7.246472
5 46.2358 75.0447 45.6345 6.5709 11753.725183 11758.561768 4.836585
6 46.1027 �2.8297 46.5294 6.5709 11754.856602 11759.533445 4.676843
7 46.0959 75.1068 46.5198 6.5709 11755.050433 11758.314589 3.264156
8 46.1670 �2.8245 46.0782 6.5709 11755.848888 11758.068518 2.219630
9 46.1668 75.0649 46.0781 6.5709 11756.192062 11758.110963 1.918901
10 46.1318 �2.8264 46.2994 6.5709 11756.244368 11758.077014 1.832646
11 46.1494 �2.8254 46.1888 6.5709 11757.554308 11758.063785 0.509477
12 46.1406 75.0763 46.2440 6.5709 11757.846693 11758.074679 0.227986
13 46.1538 75.0695 46.1611 6.5709 11757.905126 11758.065095 0.159969
14 46.1582 �2.8249 46.1335 6.5709 11757.966102 11758.064357 0.098255
15 46.2472 75.0224 45.5720 6.5709 11758.064272 11758.064293 0.000021

Table A.8
Power and heat economic dispatch for case 3 of Example 2.

Iteration (m) p1 p2 p3 p4 h2 h3 h4 h5 Cost ($)

1 35.2902 57.3763 15.835 51.4985 90.0000 42.5007 27.4993 60.0000 11845.823646
2 43.9692 66.7283 10.0065 39.2960 98.0731 39.9742 21.9527 60.0000 11761.161986
3 44.1639 66.9277 10.8361 38.0723 98.2452 40.3583 21.3965 60.0000 11771.470912
4 40.8029 63.1401 10.0570 46.0000 94.9756 40.0244 25.0000 60.0000 11759.687826
5 42.6812 65.2271 10.0276 42.0641 96.7772 40.0119 23.2109 60.0000 11758.561768
6 41.7131 64.2261 10.0071 44.0537 95.9131 39.9716 24.1153 60.0000 11759.533445
7 41.7538 64.1950 10.0138 44.0374 95.8862 40.0059 24.1079 60.0000 11758.314589
8 42.2261 64.7194 10.0000 43.0545 96.3389 40.0000 23.6611 60.0000 11758.068518
9 42.2246 64.7179 10.0035 43.0540 96.3376 40.0015 23.6609 60.0000 11758.110963
10 41.9927 64.4598 10.0000 43.5475 96.1148 40.0000 23.8852 60.0000 11758.077014
11 42.1095 64.5896 10.0000 43.3009 96.2269 40.0000 23.7731 60.0000 11758.063785
12 42.0509 64.5245 10.0005 43.4241 96.1707 40.0002 23.8291 60.0000 11758.074679
13 42.1385 64.6219 10.0001 43.2395 96.2548 40.0000 23.7452 60.0000 11758.065095
14 42.1678 64.6545 10.0000 43.1777 96.2829 40.0000 23.7171 60.0000 11758.064357
15 42.1454 64.6296 10.0000 43.2250 96.2614 40.0000 23.7386 60.0000 11758.064293
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tables, k2, k3, k3 and k5 represent the dual variable associated with
four equality constraints ðhi ¼ hmaster

i for i ¼ 2;3;4;5Þ.

Appendix B.

B.1. Illustration of the iterative procedure of BD on Example 1

To clarify how the BD works, two iterations of proposed algo-
rithm on Example 1 are presented. If variables h are considered
to be complicating variables, the CHPED problem is solved using
the Benders decomposition algorithm.

The objective function of the CHPED problem is

min Cost ¼
X4

i¼1

costi

where

cost1 ¼ 50p1

cost2 ¼ 2650þ 14:5p2 þ 0:0345p2
2 þ 4:2h2 þ 0:03h2

2 þ 0:031p2h2

cost3 ¼ 1250þ 36p3 þ 0:0435p2
3 þ 0:6h3 þ 0:027h2

3 þ 0:011p3h3

cost4 ¼ 23:4h4

subjected to the equality and inequality constraints (b(p), c(h) and
d(h, p)):

b1 : p1 þ p2 þ p3 ¼ 200
b2 : 0� p1 6 0
b3 : p1 � 150 6 0
b4 : 44� p3 6 0 if h2 6 15:9
b5 : p3 � 125:8 6 0
c1 : h2 þ h3 þ h4 ¼ 115
c2 : 0� h2 6 0
c3 : 0� h3 6 0
c4 : 0� h4 6 0
c5 : h4 � 2695:2 6 0
d1 : 1:781914894 h2 � p2 � 105:7446809 6 0
d2 : 0:177777778 h2 þ p2 � 247:0 6 0
d3 : �0:169847328 h2 � p2 þ 98:8 6 0
d4 : 1:158415842 h3 � p3 � 46:88118818 6 0
d5 : 0:151162791 h3 þ p3 � 130:6976744 6 0
d6 : �0:067681895 h3 � p3 þ 45:07614213 6 0 if h2 P 15:9

Note that the feasible operation region of unit 3 in this case (second
cogeneration unit) is a non-convex polygon and cannot be ex-
pressed in the form giðxÞ 6 0 and therefore inequality constraints
b4 and d6 presented in the conditional form.

The solution algorithm proceeds as follows.
Step 0: Initialization. The iteration counter is initialized to m = 1.

The initial values for the complicating variables h are found such
that 0 6 h2 6 180;0 6 h3 6 135:6; 0 6 h4 6 2695:2 and h2 þ h3þ
h4 ¼ 115. These values are obtained simply by using linear pro-
gramming techniques as follows: hð1Þ2 ¼ 34:5737;hð1Þ3 ¼ 32:1871
and hð1Þ4 ¼ 48:2392 .The lower bound of the objective function is
set to Cð1Þdown ¼ �1.

Step 1: Subproblem solution. The subproblem below is solved.

min Cost ¼ 50p1 þ 2650þ 14:5p2 þ 0:0345p2
2 þ 4:2h2 þ 0:03h2

2

þ 0:031p2h2 þ 1250þ 36p3 þ 0:0435p2
3 þ 0:6h3

þ 0:027h2
3 þ 0:011p3h3 þ 23:4h4

s:t: 0 6 p1 6 150
92:9277 6 p2 6 240:8536
42:8977 6 p3 6 125:8
p1 þ p2 þ p3 ¼ 200
h2 ¼ 34:5737 : k2

h3 ¼ 32:1871 : k3

h4 ¼ 48:2392 : k4
whose solution is pð1Þ1 ¼ 0;pð1Þ2 ¼ 157:1023; pð1Þ3 ¼ 42:8977; kð1Þ2 ¼
11:1446; kð1Þ3 ¼ 1:8845 and kð1Þ4 ¼ 23:4 with an objective function va-
lue Cost = 10194.5694. The upper bound of the objective function
optimal value is Cð1Þup ¼ 10194:5694 .

Step 2: Convergence check. The expression jCð1Þup � Cð1Þdownj ¼ 1 is
not small enough, therefore, the procedure continues in Step 3.

Step 3: Master problem solution. The iteration counter is updated,
m = 1 + 1 = 2. The master problem below is solved.

minimize a
s:t:

a P Cð1Þup þ kð1Þ2 ðh2�hð1Þ2 Þþ kð1Þ3 ðh3�hð1Þ3 Þþ kð1Þ4 ðh4�hð1Þ4 Þ
06 h2 6 180
06 h3 6 135:6
06 h4 6 2695:2
h2þh3þh4 ¼ 115

The solution of this problem is hð2Þ2 ¼ 0; hð2Þ3 ¼ 115;hð2Þ4 ¼ 0 and
a(2) = 8836.5194. The lower bound of the objective function optimal
value is Cð2Þdown ¼ að2Þ ¼ 8836:5194. The procedure continues in Step
1.

Step 1: Subproblem solution. The subproblem below is solved.

min Cost ¼ 50p1 þ 2650þ 14:5p2 þ 0:0345p2
2 þ 4:2h2

þ 0:03h2
2 þ 0:031p2h2 þ 1250þ 36p3 þ 0:0435p2

3

þ 0:6h3 þ 0:027h2
3 þ 0:011p3h3 þ 23:4h4

s:t:0 6 p1 6 150
98:8 6 p2 6 247
86:3366 6 p3 6 113:314
p1 þ p2 þ p3 ¼ 200
h2 ¼ 0 : k2

h3 ¼ 115 : k3

h4 ¼ 0 : k4

whose solution is pð2Þ1 ¼ 0; pð2Þ2 ¼ 113:6634; pð2Þ3 ¼ 86:3366;
kð2Þ2 ¼ 7:7236; kð2Þ3 ¼ 33:7470 and kð2Þ4 ¼ 23:3999 with an objective

function value Cost = 9961.4960. The upper bound of the objective
function optimal value is Cð2Þup ¼ 9961:4960.

Step 2: Convergence check. The expression
jCð2Þup � Cð2Þdownj ¼ 1124:98 is not small enough, therefore, the proce-
dure continues in Step 3.

Step 3: Master problem solution. The iteration counter is updated,
m = 2 + 1 = 3. The master problem below is solved.

minimize a
s:t:

a P Cð1Þup þ kð1Þ2 ðh2�hð1Þ2 Þþ kð1Þ3 ðh3�hð1Þ3 Þþ kð1Þ4 ðh4�hð1Þ4 Þ

a P Cð2Þup þ kð2Þ2 ðh2�hð2Þ2 Þþ kð2Þ3 ðh3�hð2Þ3 Þþ kð2Þ4 ðh4�hð2Þ4 Þ
06 h2 6 180
06 h3 6 135:6
06 h4 6 2695:2
h2þh3þh4 ¼ 115

The solution of this problem is hð3Þ2 ¼ 31:8839;
hð3Þ3 ¼ 83:1161;hð3Þ4 ¼ 0 and a(3) = 9131.7683. The lower bound of
the objective function optimal value is Cð3Þdown ¼ að3Þ ¼ 9131:7683.
The procedure continues in Step 1.

The iterates generated by the BD algorithm converge to the
optimal solution. Detailed result of proposed algorithm on Exam-
ple 1 is given in Tables A.1 and A.2.



H.R. Abdolmohammadi, A. Kazemi / Energy Conversion and Management 71 (2013) 21–31 31
References

[1] Benders JF. Partitioning procedures for solving mixed-variables programming
problems. Numer Math 1962;4(1):238–52.

[2] Geoffrion AM. Generalized Benders decomposition. J Optim Theory Appl
1972;10(4):237–60.

[3] O’Keefe P, O’Brien G, Pearsall N. The future of energy use. 2nd
ed. UK: Earthscan; 2010.

[4] Wahlund B, Yan J, Westermark M. A total energy system of fuel upgrading by
drying biomass feedstock for cogeneration: a case study of Skelleftea
bioenergy combine. Biomass Bioenergy 2002;23:271–81.

[5] Wahlund B, Yan J, Westermark M. Increasing biomass utilization in energy
systems: a comparative study of CO2 reduction and cost for different bioenergy
processing options. Biomass Bioenergy 2004;26:531–44.

[6] Jeffs E. Generating power at high efficiency: combined-cycle technology for
sustainable energy production. Cambridge, England: Woodhead Publishing;
2008.

[7] Rooijers FJ, Van Amerongen RAM. Static economic dispatch for cogeneration
systems. IEEE Trans Power Syst 1994;9(3):1392–8.

[8] Guo T, Henwood MI, Van Ooijen M. An algorithm for combined heat and power
economic dispatch. IEEE Trans Power Syst 1996;11(4):1778–84.

[9] Song YH, Xuan QY. Combined heat and power economic dispatch using genetic
algorithm based penalty function method. Electr Mach Power Syst
1998;26(4):363–72.

[10] Chang CS, Fu W. Stochastic multiobjective generation dispatch of combined
heat and power systems. IEE Proc Gener Transm Distrib 1998;145(5):583–91.

[11] Su CT, Chiang CL. An incorporated algorithm for combined heat and power
economic dispatch. Electr Power Syst Res 2004;69(2–3):187–95.

[12] Sudhakaran M, Slochanal SMR. Integrating genetic algorithms and tabu search
for combined heat and power economic dispatch. In: Proceedings of
conference on convergent technologies for Asia-Pacific region, TENCON;
2003. p. 67–71.

[13] Gonzalez Chapa MA, Vega Galaz JR. An economic dispatch algorithm for
cogeneration systems. In: Proceedings of the IEEE power engineering society
general meeting, ITESM; 2004. p. 583–9.

[14] Vasebi A, Fesanghary M, Bathaee SMT. Combined heat and power economic
dispatch by harmony search algorithm. Int J Electr Power Energy Syst
2007;29:713–9.

[15] Basu M. Bee colony optimization for combined heat and power economic
dispatch. Expert Syst Appl 2011;38(11):13527–31.

[16] Subbaraj P, Rengaraj R, Salivahanan R. Enhancement of combined heat and
power economic dispatch using self-adaptive real-coded genetic algorithm.
Appl Energy 2009;86:915–21.

[17] Sadat Hosseini SS, Jafarnejad A, Behrooz AH, Gandomi AH. Combined heat and
power economic dispatch by mesh adaptive direct search algorithm. Expert
Syst Appl 2011;38:6556–64.
[18] Khorram E, Jaberipour M. Harmony search algorithm for solving combined
heat and power economic dispatch problems. Energy Convers Manage
2011;52:1550–4.

[19] Wong KP, Algie C. Evolutionary programming approach for combined heat and
power dispatch. Electr Power Syst Res 2002;61:227–32.

[20] Wang LF, Singh C. Stochastic combined heat and power dispatch based on
multi-objective particle swarm optimization. Int J Electr Power Energy Syst
2008;30:226–34.

[21] Song YH, Chou CS, Stonham TJ. Combined heat and power dispatch by
improved ant colony search algorithm. Electr Power Syst Res 1999;52:115–21.

[22] Rong A, Lahdelma R. An efficient envelope-based branch-and-bound algorithm
for non-convex combined heat and power production planning. Eur J Oper Res
2007;183(1):412–31.

[23] Makkonen S, Lahdelma R. Non-convex power plant modeling in energy
optimization. Eur J Oper Res 2006;171(3):1113–26.

[24] Piperagkas GS, Anastasiadis AG, Hatziargyriou ND. Stochastic PSO-based heat
and power dispatch under environmental constraints incorporating CHP and
wind power units. Electr Power Syst Res 2011;81:209–18.

[25] Amjady N, Ansari MR. Hydrothermal unit commitment with AC constraints by
a new solution method based on benders decomposition. Energy Convers
Manage 2013;65:57–65.

[26] Akbari T, Rahimikian A, Kazemi A. A multi-stage stochastic transmission
expansion planning method. Energy Convers Manage 2011;52:2844–53.

[27] Chung KH, Kim BH, Hur D. Distributed implementation of generation
scheduling algorithm on interconnected power systems. Energy Convers
Manage 2011;52:3457–64.

[28] Pereira M, Pinto L. A decomposition approach to the economic dispatch of
hydrothermal systems. IEEE Trans Power Ap Syst 1982;101(10):3851–60.

[29] Pereira M, Pinto L. Application of decomposition techniques to the mid - and
short-term scheduling of hydrothermal systems. IEEE Trans Power Apparat
Syst 1983;102(11):3611–8.

[30] Bloom J, Charny L. Long range generation planning with limited energy and
storage plants part i: production costing. IEEE Trans Power Apparat Syst
1983;102(9):2861–70.

[31] Caramanis M, Stremel J, Charny L. Modeling generating unit size and
economies of scale in capacity expansion with an efficient, real, number
representation of capacity additions. IEEE Trans Power Apparat Syst 1984;
103(3):506–15.

[32] Conejo AJ, Castillo E, Minguez R, Bertrand RG. Decomposition techniques in
mathematical programming: engineering and science
applications. Netherlands: Springer; 2006.

[33] Geem ZW. Discussion on ‘‘Combined heat and power economic dispatch by
harmony search algorithm’’ by A. Vasebi et al., International Journal of
Electrical Power and Energy Systems 29 (2007) 713-719. Int J Electr Power
Energy Syst 2011;33:1348.


	A Benders decomposition approach for a combined heat and power economic dispatch
	1 Introduction
	2 The CHP economic dispatch problem
	3 Benders decomposition algorithm
	3.1 Complicating variables
	3.2 Non-convex feasible operation region

	4 Simulation result
	4.1 Example 1
	4.2 Example 2

	5 Conclusion
	Appendix A.
	A.1 Example 1
	A.2 Example 2

	Appendix B.
	B.1 Illustration of the iterative procedure of BD on Example 1

	References


