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One of the disadvantages of traditional genetic algorithms is premature convergence because the selec-
tion operator depends on the quality of the individual, with the result that the genetic information of the
best individuals tends to dominate the characteristics of the population. Furthermore, when the repre-
sentation of the chromosome is linear, the crossover is sensitive to the encoding or depends on the gene
position. The ends of this type of chromosome have only a very low probability of changing by mutation.
In this work a genetic algorithm is applied to the unit commitment problem using a deterministic selec-
tion operator, where all the individuals of the population are selected as parents according to an estab-
lished strategy, and an annular crossover operator where the chromosome is in the shape of a ring. The
results obtained show that, with the application of the proposed operators to the unit commitment prob-
lem, better convergences and solutions are obtained than with the application of traditional genetic
operators.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

In the commercial operation of an electricity market, the correct
planning of generator units is of fundamental importance. The eco-
nomic savings, together with efficiency in the use of energy re-
sources, mean that new proposals to solve the unit commitment
problem (UCP) continue to be sought (Padhy, 2004; Yamin, 2004).

The UCP has been solved using deterministic methods, such as
Priority List (PL) (Senjyu, Miyagi, Saber, Urasaki, & Funabashi,
2006; Senjyu, Shimabukuro, Uezato, & Funabashi, 2003), Dynamic
Programming (DP) (Ouyang & Shahidehpour, 1991; Rong, Hako-
nen, & Lahdelma, 2009), Lagrangean Relaxation (LR) (Ongsakul &
Pertchakaras, 2004; Zhai, Guan, & Cui, 2002) and Mixed Integer
Linear Programming (MILP) (Carrión & Arroyo, 2006; Frangioni,
Gentile, & Lacalandra, 2009; Zhai, Guan, & Yang, 2009). These
methods are characterised principally by their speed and their
capacity to handle large scale problems when the objective func-
tion is linear and when some constraints are not considered. Other-
wise, with PL the quality of the final solution is not guaranteed; DP
suffers the problem of dimensionality; with LR a feasible solution
is not guaranteed; and with MILP it is difficult achieve a balance
between the efficiency and the accuracy of the model.

In the face of these disadvantages the search for new methods
has focused on metaheuristic methods such as genetic algorithms
ll rights reserved.
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(GA) (Arroyo & Conejo, 2002; Damousis, Bakirtzis, & Dokopolous,
2004; Dang & Li, 2007; Dudek, 2004; Sun, Zhang, & Jiang, 2006;
Swarup & Yamashiro, 2002), Simulated Annealing (SA) (Mantawy,
Abdel-Magid, & Selim, 1998; Purushothama & Jenkins, 2003; Saber,
Senjyu, Miyagi, Urasaki, & Funabashi, 2007; Simopolous, Kavatza, &
Vournas, 2006; Zhuang & Galiana, 1990) and Particle Swarm Opti-
misation (PSO) (Lee & Chen, 2007; Yuan, Nie, Su, Wang, & Yuan,
2009). Using these metaheuristic methods it is possible to find
an optimal solution to complex problems which is their main
advantage over deterministic methods. Due to their iterative nat-
ure however, metaheuristic methods require a large amount of
computer time to find a solution near to the global optimum, espe-
cially in large-scale problems. Today many proposals are based on
hybrid techniques (Aruldoss & Ebenezer, 2006; Padhy, 2001; Patra,
Goswami, & Goswami, 2009; Yin-Wa, 2001) which exploit the
advantages of both deterministic and metaheuristic techniques,
making them attractive alternatives for solving the UCP.

GA is a global optimisation method which works well and effi-
ciently on objective functions which are complex in terms of the
nonlinearities and constraints imposed. One of the disadvantages
of GA is premature convergence, because when the selection is
based on the quality of the individual, the genetic information of
the best individuals tends to dominate the genetic characteristics
of the population. Another disadvantage results from the represen-
tation of chromosomes in string form, with the result that the
genetic information at the ends of the chromosome tend to remain
unaltered during crossover. In this chromosome, modification of
the ends can only be achieved by the mutation operator.
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To avoid disadvantages of this type in UCP the use of a GA is
proposed, which is based on a deterministic selection process
and an annular crossover operator (Kuri, 1998). Thus a determinis-
tic annular crossover genetic algorithm (DACGA) is proposed for
the UCP. The chromosome of an individual is represented as a bin-
ary matrix of the operational states which the generator units may
assume during the planning period. To carry out the deterministic
selection process, the total cost of the programming period is used
as the fitness of each individual. Then, the exchange of genetic
information between two individuals with the annular crossover
operator, a ring representation of the scheduling period of a gener-
ator unit from each individual is used. Finally, the proposed DACGA
is applied to the UCP using test systems of 10, 38 and 45 generating
units. The scheduling time horizon is chosen as one day with 24
intervals of one hour each.

2. Unit commitment formulation

The objective function and constraints associated with the unit
commitment problem are the following.

2.1. Objective function

The mathematical model used as the objective function to ob-
tain the unit commitment of thermal units is:

OF ¼
XH

h¼1

XN

n¼1

ðFCh
n þ SUh

n þ SDnÞ: ð1Þ

Where OF represents the total production cost for horizon plan-
ning, H is the total number of hours and N is the total number of
units.

This objective function includes the fuel costs of unit n in hour h
as a function of the power generated, normally represented by a
quadratic equation as:

FCh
nðP

h
nÞ ¼ an þ bnPh

n þ cnðPh
nÞ

2
: ð2Þ

The start-up cost is dependent on the number of hours during
which the unit has been off (TOffn). Using the two-step function,
the start-up cost function is given by:

SUh
n ¼

HSn; if TOffn � TCold;n;

CSn; other wise:

�
ð3Þ

Where HSn is the hot start cost, CSn is the cold start cost

TCold;n ¼ Tdnn þ CSHn: ð4Þ

Where TCold,n is the number of hours that it takes for the boiler of
unit n to cool down, Tdnn is minimum downtime of unit n and CSHn

is the cold start hours
The shut-down cost values SDn are generally considered to be

constant.

2.2. Constraints

The optimisation of the objective function is subject to a num-
ber of system and unit constraints as follows.

� System power balance.

The total power generated by all On units must supply the load
demand in the hour h.

XN

n¼1

Pn ¼ Dh: ð5Þ
� Demand and spinning reserve.
The maximum power generated by all On units must at least meet
the demand plus the spinning reserve in hour h.

XN

n¼1

PMaxn � Dh þ Rh: ð6Þ

� Minimum load conditions.
The minimum power generated by all On units must be less

than or equal to the demand in hour h.

XN

n¼1

PMinn � Dh: ð7Þ

� Minimum up and down times.
The total number of hours for which unit n has been running

(TOnn) must be greater than or equal to the minimum unit uptime
(Tupn).

TOnn � Tupn; n 2 N: ð8Þ

Similarly, the total number of hours for which unit n has been
down (TOffn) must be greater than or equal to the minimum unit
downtime (Tdnn).

TOffn � Tdnn; n 2 N ð9Þ

� Generator technical limits
Each unit has a generation range which is represented as:

PMinn � Pn � PMaxn; n 2 N: ð10Þ

� Unit initial status.
The initial status at the start of the scheduling period must be

taken into account.
3. The proposed method

3.1. Overview of genetic algorithms

Genetic algorithms are robust search techniques inspired in
genetics and in the processes of natural selection of individuals
competing in the same environment. Those individuals best
adapted to the environment tend to transmit their genetic infor-
mation to future generations.

One of the advantages of genetic algorithms in optimisation
problems is that they do not require any more information than
that provided by the objective function of the problem. With this
technique the process of searching for solutions is isolated from
the characteristics of the objective function and the constraints
associated with it.

The algorithm starts with the creation of a combination of
coded structures called Chromosomes (solutions) which make up
the initial population. The criterion which evaluates the quality
of each Chromosome, is given by the Fitness corresponding to the
evaluation of each individual for the objective function. Once the
fitness of each of the individuals in the population is known, it is
subjected to a Selection process in which the best evaluated indi-
viduals have a greater probability of being chosen as Parents for
the exchange of genetic information called Crossover. Then a per-
centage of the Offsprings (individuals generated in the crossover)
are subjected to the Mutation process in which a random change
is generated in the chromosome. This mutation process provides
greater diversity between the individuals in the population.

When the crossover and mutation processes are complete a
new population is generated which replaces the original popula-
tion. This must be repeated until one of the convergence criteria
defined for the problem is met. Each of these cycles is known as
a Generation.
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3.2. Deterministic selection

Traditionally, selection is based on fitness of the individuals,
and in this way the individuals with greater fitness have a higher
probability of being chosen for the crossover. In deterministic
selection, also known as Vasconcelos (Kuri, 2004), a strategy is im-
posed in which individuals with better fitness are crossed with
those of worse fitness.

For a population of K individuals ordered in descending order of
fitness, the deterministic selection operator is shown in Fig. 1, in
which the pairs of parents which are subjected to the crossover
operator will be (1, K), (2, K � 1), down to the last pair formed by
(K/2, K/2 + 1).
3.3. Annular crossover

Once two individuals have been selected, they are subjected to
the crossover process in which genetic information is exchanged.
Best

.
.

.

1

Worst

2
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K

Fig. 1. Deterministic selection.

A

B

C

DE

F

G

H

A B C D E F G H

(a) String (b) Ring

Fig. 2. Chromosome representation.

  Crossover

Parents

Offspring

lC
sC

Fig. 3. Annular crossover.
Traditionally, in GA a linear crossover is performed on the chromo-
some represented as a string, as shown in Fig. 2a. However in an
annular crossover the chromosome is represented as a ring, as
shown in Fig. 2b.

The annular crossover is carried out by defining a number Cl

which indicates the crossover locus. This number is in the range
[1, L � 1], where L is the length of the chromosome. Furthermore
a number must be defined to establish the length of the semi-ring
Cs which is exchanged during the crossover. The term semi-ring re-
fers to a sector of the ring with a length in the range [1, L/2]. For the
exchange of genetic information to be feasible, the length of the
semi-ring must be the same in both chromosomes. The annular
crossover operator described is shown in Fig. 3.

4. Deterministic annular crossover genetic algorithm
optimisation (DACGA) for UCP

To resolve the UCP using the DACGA method proposed, the
solution may be represented, as shown in Fig. 4, as a matrix of
states of order NxH where N is the total number of generating units
and H is the total number of hours in the study period. A binary
code is used in which 1 represents state of the unit as On and 0 rep-
resents the state of the unit as Off.

4.1. Deterministic selection for UCP

For UCP, the fitness of each individual corresponds to the total
cost during the whole scheduling period, including the total fuel
cost and the total start-up cost of the units. The total fuel cost is
obtained with the lambda iteration method as an Economic Load
Dispatch (ELD) sub-problem. The deterministic selection process
can be represented as shown in Fig. 5.

4.2. Annular crossover for UCP

The crossover allows part of the genetic information to be
exchanged between two possible solutions to the UCP. For the
annular crossover operator to be applied, the programming period
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Fig. 4. Solution representation.
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Fig. 5. Deterministic selection for UCP.
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Fig. 6. Units for the crossover operator.
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of a randomly chosen generator unit is represented as the ring
chromosome. The annular crossover for the UCP is performed by
the following steps.

Step 1. From each parent selected, a unit n and a unit m are cho-
sen at random, uniformly distributed over [1, N]. Fig. 6 shows an
example of the choice of units n and m from the parents
involved in the crossover.
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Step 2. Define the scheduling of the chosen units by a ring rep-
resentation as shown in Fig. 7.
Step 3. Generate the crossover point Cl and the length of the
semi-ring Cs at random. In this case the length of the chromo-
somes is equivalent to the 24 h planning period. Fig. 8 shows
an example of the resulting semi-rings, where Cl is 22 for unit
n and 18 for unit m. Cs corresponds to a total of 9 h of planning
to be exchanged.
Step 4. Exchange the genetic information in the semi-rings.
Continuing with the example, Fig. 9 shows the new genetic
information for units n and m.
Step 5. Return to the linear representation of the new schedul-
ing of units n and m to incorporate this new genetic information
into the chromosomes and generate the new offsprings.
Step 6. End of crossover. Once the number of individuals in the
population is complete, the annular crossover operator
terminates.

4.3. Mutation

A mutation probability Pm is defined to modify the genetic
information in the chromosome. This modification of the genetic
information changes just one randomly selected bit of the matrix
chromosome from 1 to 0, or vice versa.

4.4. Elitism

The object of maintaining a number of the best individuals in
the next generation is so as not to lose the genetic information of
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Fig. 9. New scheduling for units n and m.
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the individuals with the best fitness, and thus increase the speed of
convergence. In this way the proposed DACGA includes a certain
degree of elitism, by which the best individuals of the population
are kept to form part of the next generation.
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4.5. Repair mechanism

All the individuals of the new population are subjected to a
mechanism intended to repair violations of the constraints of min-
imum start-up and shut-down times. This process is only carried
out in one randomly selected generating unit.
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Fig. 10. Sensitivity respect to mutation.
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Fig. 11. Sensitivity respect to elitism.
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Fig. 12. Sensitivity respect to population size.
5. Numerical examples

Test systems of 10, 38 and 45 generating units are used. Just as
in the proposals in which these are used, a spinning reserve of 10%
of demand is assumed in the systems of 10 and 45 units, while for
the system with 38 units the spinning reserve assumed is 11% of
demand.

When working with GA, the most common parameters, such as
probability of mutation, probability of crossover, and population
size, are established by sensitivity analysis. For the proposed DAC-
GA the 10-unit system is used for sensitivity tests for the parame-
ters of probability of mutation, elitism and population size.
Moreover, this analysis is intended to find the parameters which
will produce the best results in terms of convergence on the best
solution. Figs. 10–12 show the results of 20 trials done for each
value of the parameters under study.

Fig. 10 shows the sensitivity in the total cost with respect to the
probability of mutation when the population size is 50 individuals,
and full elitism is used.

The sensitivity in the total cost with respect to elitism is shown
in Fig. 11. In this case, the population size is 50 individuals and the
probability of mutation is 0.01.

Finally, Fig. 12 shows the sensitivity in the total cost with re-
spect to the population size when the probability of mutation is
0.01, and full elitism is used.

From the sensitivity analysis no clear dependence is observed in
the results obtained with respect to the probability of mutation.
For elitism it is observed that the results improve when the num-
ber of the best individuals maintained in the next generation is in-
creased. If a strategy of full elitism is adopted, it does not give rise
to the problem of the best individuals tending to dominate the
genetic characteristics of the population due to the use of deter-
ministic selection. Finally, with respect to population size, it is ob-
served that with less than 50 individuals the best results are not
obtained. The parameters finally used in the DACGA are:
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� Probability of mutation: 0.01.
� Full elitism.
� Population size: 50.

The results obtained with DACGA for the different systems, and
compared with the results obtained by other authors; show that it
was possible to find better solutions (Table 1).
Table 1
Comparison with other results.

Total cost ($) Convergence (generations)

10-Unit system
ICGA (Damousis et al., 2004) 566,404 300
MRCGA (Sun et al., 2006) 564,244 500
FPGA (Dang & Li, 2007) 564,094 >3000
DACGA 563,987 <300

38-Unit system
MRCGA (Sun et al., 2006) 206,000 1900
DACGA 195,042 <1500

45-Unit system
PRGA (Arroyo & Conejo, 2002) 1,029,557 200
DACGA 1,029,100 <2000

Fig. 13. Convergence for the 10-unit system.

Fig. 14. Convergence for the 38-unit system.

Fig. 15. Convergence for the 45-unit system.
Convergence on the best solution is obtained in a smaller num-
ber of generations as compared to MRCGA (Sun et al., 2006) and
FPGA (Dang & Li, 2007). Fig. 13 shows the convergence for the
10-unit system. When compared with ICGA (Damousis et al.,
2004) a similar convergence is observed, but it must be considered
that ICGA proposes a chromosome representation with real coding
which reduces the size of the chromosome.

Fig. 14 shows the convergence for the 38-unit system, for which
it is observed that below 1500 generations a lower cost can be ob-
tained as compared to that obtained by MRCGA (Sun et al., 2006).

Finally, the convergence in the 45-unit system is shown in
Fig. 15. In the case of PRGA (Arroyo & Conejo, 2002) the conver-
gence cannot be compared directly, since a parallel optimisation
technique is proposed which works with up to 32 processors.

6. Conclusions

The results found, when compared with those obtained by other
GA, validate the application of DACGA to the unit commitment
problem. An improvement is observed in the convergence and in
the quality of the best solution found.

Thanks to the deterministic selection operator, a greater diver-
sity between the individuals of the population can be obtained
with this proposal because it uses the genetic information of the
worst individuals with the same probability, thus complementing
the characteristics of the best individuals of the population.

With ring representation, the start time is contiguous with the
finish time of the planning period. Thus the proposed annular
crossover operator allows a greater probability of exchange of ge-
netic information between the start and finish periods of the 24 h
planning.
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