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This article presents automatic generation control (AGC) of an interconnected multi area thermal system.
The control areas are provided with single reheat turbine and generation rate constraints of 3%/min. A
maiden attempt has been made to apply a Proportional derivative–Proportional integral derivative
(PD–PID) cascade controller in AGC. Controller gains are optimized simultaneously using more recent
and powerful evolutionary computational technique Bat algorithm (BA). Performance of classical control-
lers such as Proportional Integral (PI) and Proportional Integral Derivative (PID) controller are investi-
gated and compared with PD–PID cascade controller. Investigations reveal that PI, and PID provide
more or less same response where as PD–PID cascade controller provides much better response than
the later. Dynamic analysis has also been carried out for the controllers in presence of random load pat-
tern, which reveals the superior performance of the PD–PID cascade controller. Sensitivity analysis
reveals that the BA optimized PD–PID Cascade controller parameters obtained at nominal condition of
loading, size and position of disturbance and system parameter (Inertia constant, H) are robust and need
not be reset with wide changes in system loading, size, position of disturbance and system parameters.
The system dynamic performances are studied with 1% step load perturbation in Area1.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

In automatic generation control (AGC) of interconnected power
system puts the limelight towards the maintenance of system fre-
quency within specified limits around the nominal value, to uphold
the scheduled exchange of power between the interconnected
areas and to keep each unit’s generation at the most economic
level. This requires the balance between the net generation and
corresponding loads with losses. Many investigative research
works exist in the past literature on AGC of isolated and intercon-
nected systems. The idea of modeling multi-area interconnected
power system has been presented by Elgerd and Fosha [1]. A per-
formance comparison of several classical controllers, such as Inte-
gral (I), Proportional-Integral (PI), Integral-Derivative (ID),
Proportional-Integral-Derivative (PID) and Integral-Double Deriva-
tive (IDD) have been carried out by Saikia et al. [2]. Their investiga-
tions reveal the superior performance of IDD controller in two,
three and five area thermal systems. However, their studies are
limited to single controllers where there is less number of tuning
knob. If tuning knobs are more in a controller, there may be possi-
bility of better result from that controller. A two degree of freedom
(2DOF) controller named as 2DOF-PID has been introduced by Sahu
et al. [3] in AGC. Later on, the performance of a new 2DOF control-
ler named as 2DOF- Integral double derivative (2DOF-IDD) has
been evaluated by Puja Dash et al. [4]. However, all the above con-
trollers are non cascaded single controllers. In process control,
many controllers and control strategies are available. These are
suitable for controlling large-scale networked systems. In the con-
trolling process, the controllers are either optimized by optimiza-
tion techniques or self tuned with the help of different control
strategies such as model predictive control (MPC), Smith predictor,
etc. Yongho Lee et al. [5] proposed a method for PID controller tun-
ing based on process models for cascaded control systems. Cheng
et al. [6] have made application of two PID controllers in a cascade
control system directly based on the process data collected from a
one-shot plant and found it to be the best. Rather than cascade
control, many other control approaches generally model based
controls are commonly used in process control such as Neural net-
work control [7], fuzzy based control [8], MPC [9,10], Smith predic-
tor [13], etc. Saikia [7] has applied the multi layer perception
neural network (MLPNN) controller using reinforcement learning
in AGC of a three area thermal system. Chown and Hartman [8]
has implemented the fuzzy controller in the control ACE (area con-
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Nomenclature

n population size
N number of generations
a loudness
r pulse rate
f nominal system frequency (Hz)
i subscript referred to area i (1, 2, 3)
⁄ superscript denotes optimum value
Pri rated power of area i (MW)
Hi inertia constant of area i (s)
DPDi incremental load change in area i (p.u)
DPgi Incremental generation change in area i (p.u)
Di DPDi/Dfi(pu/Hz)
T12, T23, T13 synchronizing coefficients
Ri governor speed regulation parameter of area i (Hz/pu

MW)
Tgi steam governor time constant of area i (s)
Kri steam turbine reheat coefficient of area i
Tri steam turbine reheat time constant of area i (s)
Tti steam turbine time constant of area i (s)
Bi frequency bias constant of area i

Tpi 2Hi/f⁄ Di

Kpi 1/Di. (Hz/pu)
KIi integral gain of PI, PID controller in area i
KDi derivative gain of PI, PID controller in area i
KPi proportional gain of PI, PID controller in area i
KIij integral gain of PID controller in area i, for i = 1, j = 2 (for

i – j), 3)
KPij integral gain of PID controller in area i, for i = 1, j = 2 (for

i – j), 3)
KDij integral gain of PID controller in area i, for i = 1, j = 2 (for

i – j), 3)
bi (=Di + 1/Ri), Area frequency response characteristics of

area (AFRC) i
J cost index (J ¼

R T
0 fðDf iÞ

2 þ ðDPtie j�kÞ2gdt), j = 1, 2, k = 2
(for k – j), 3)

T simulation time (s)
Dfi incremental change in frequency of area i (Hz)
DPgi Incremental generation of area i (p.u);
DPtie i-j incremental change in tie line power connecting be-

tween area i and area j (p.u)
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trol error) calculation in AGC, which determines the shortfall or
surplus generation that has to be corrected. MPC is a family of con-
trollers in which there is a direct uses of an explicit certain model.
It is also described as a class of computer control schemes that uti-
lizes a process model [9,10]. In AGC, the MPC control technique has
been applied successfully [11,12] to accomplish the desired control
of frequency automatically. Venkat et al. [11] have designed a dis-
tributed model predictive control (MPC) framework for controlling
of large-scale networked systems such as AGC of power systems.
Liu et al. [12] has employed MPC to control load frequency of a
non-reheat type two area thermal systems. The Smith predictor,
another popular control in process industry is available in litera-
ture [13]. Smith predictor with cascade controller has been used
in controlling the temperature of a gas furnace. As these model
based controls have many advantages, also having some limita-
tions such as (a) Modeling of error can essentially influence the
performance of the controller, during the tuning of the controller
the robustness properties of the resulted control loop must be con-
sidered, (b) Its derivation is more complex than the traditional PID
controller. [9]. However, the advantages of these model based con-
trol processes dominate the limitations. Many research works are
present in process control industry, where the performance of cas-
cade controller is improved by incorporating with model predictive
control [12], Smith predictor control techniques [13]. This review
of literatures gives the limelight towards the heuristically opti-
mized cascade controller which is simple to apply and is not yet
investigated in AGC. Hence, this necessitates further investigation.

Many control and optimization, such as classical, optimal, fuzzy
logic (FL), artificial neural networks (ANN), genetic algorithm, bac-
terial forging, particle swarm, DE, firefly algorithms (FA) are avail-
able and most of them are used in AGC. Classical technique is a trial
and error method and in some cases yields suboptimal results and
time consuming [14]. Some literatures exist about the application
of supervised artificial neural networks [7,15] and some authors
have used fuzzy logic (FL) controller [8,16] for achieving better per-
formance in AGC. In case of FL controller, more computational time
is required for rule base to be formed. In case of neural network,
time required for training is more. Modern metaheuristic algo-
rithms have been developed with an aim to carry out inclusive
search, which cannot be solved by classical techniques. The effi-
ciency of metaheuristic algorithms can be ascribed to the fact that
they imitate the best features in nature, especially the selection of
the fittest in biological systems, which have evolved by natural
selection over millions of years. As given the features or nature
of a particular problem, one type of search algorithm may prove
to be more efficient than others in solving that particular problem,
while the same algorithm may perform poorly in other problems.
GA has been applied for optimization of controller gains [16] and
recent research identified some of the deficiencies. To overcome
the difficulties of local optimum methods, BF [17] technique is
used by the researcher for optimization. In [17] the foraging behav-
ior of bacteria is formulated as an optimization technique. Another
metaheuristic algorithm, fire fly algorithm (FA) is developed by
[18] and successfully applied in AGC of an isolated CCGT plant
[19]. A more recent meta-heuristic search algorithm, Cuckoo
search (CS) has been developed by Yang and Deb [20]. Cuckoo is
a fascinating bird, for its beautiful sounds they can make and for
their aggressive reproduction strategy. Ani and Guira, species of
cuckoos lay their eggs in communal nests, though they may
remove others’ eggs to increase the hatching probability of their
own eggs [21]. Quite a number of species engage the obligate
brood parasitism by laying their eggs in the nests of other host
birds (often other species). CS algorithm is based on the obligate
brood parasitic behavior of some cuckoo species in combination
with the Lévy flight behavior. The cuckoo’s follow three basic types
of brood parasitism such as Intraspecific brood parasitism, Cooper-
ative breeding, and Nest takeover. CS algorithm follows three ide-
alized rules. They are (a) Each cuckoo lays one egg at a time, and
dumps it in a randomly chosen nest, (b) The best nests with high
quality of eggs (solutions) will carry over to the next generations,
(c) The number of available host nests is fixed, and a host can dis-
cover an alien egg with a probability pa 2 [0,1]. This powerful algo-
rithm has been proved its fast and accurate optimization
proficiency in various relevance grounds [21]. Tan et al. [22] used
the CS algorithm for allocation and sizing of DG. Yildiz [23] has
tested this CS algorithm for the selection of optimal machining
parameters in milling operations, and has got a superior conclu-
sion, where Bhandari et al. has applied the CS algorithm for satel-
lite image contrast and brightness enhancement using [24]. Dash
et al. [4,25] used CS for optimization of 2DOF-IDD controller gains
in multi area thermal systems. Nguyen et al. [26] used the CS algo-
rithm for solving short-term hydrothermal scheduling problem. A
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new simple and powerful metaheuristic population based algo-
rithm, named as Bat Algorithm (BA) is also found in the literature
[27]. BA is based on the echolocation behavior of Bats, which com-
bines local search through random walks and global exploration. A
poor balance between exploration and exploitation may result in a
weak optimization method, which may suffer from premature con-
vergence, trapping in a local optima and stagnation. BA is reported
to be so efficient and successful among the population based algo-
rithms due to some of the features, such as frequency tuning, auto-
matic zooming, and parameter control [27–32]. Sensitivity analysis
has been carried out to see the robustness of the optimum param-
eters for the best controllers [4,17]. The authors have carried out
sensitivity analysis for the best classical controller parameters on
the basis of dynamic study. However, the same is not done on
the basis of dynamic analysis of the system based on the controller
gains. This requires further studies. In view of above brief literature
study, following are the main objectives of the present work.

(a) Optimization of controller gains of several controllers such
as PD–PID Cascade, PI and PID controller, when these con-
trollers are considered separately in a three area thermal
system using BA.

(b) Comparison of dynamic responses for evaluation of dynamic
performances for PD–PID Cascade controller, PI and PID con-
trollers to find the best.

(c) Comparison of dynamic responses for evaluation of dynamic
performances for PD–PID Cascade controller and PID con-
trollers with random load pattern to check the robustness
of the proposed controller.

(d) Sensitivity analysis of the optimum parameters of the best
controller obtained from (a) at nominal conditions.

System investigated

The system considered is a three unequal area thermal system
of capacities Area1: 2000 MW, Area2: 6000 MW, and Area3:
12,000 MW. The areas are equipped with single reheat turbine
Fig. 1. Transfer function model of the
and generation rate constraints (GRC) of 3%/min. The nominal sys-
tem parameters are taken from [2] and are shown in Appendix A.
Per unit values of various parameters of the unequal areas are con-
sidered to be the same on their respective bases. Hence, in the
modeling the interconnected three area system the quantities
a12 = �Pr1/Pr2, a23 = �Pr2/Pr3, a13 = �Pr1/Pr3 are taken. Controllers
such as PI, PID and PD–PID cascade controllers are considered as
separately in this system. The system dynamic performance has
been evaluated considering 1% step load perturbation (SLP) in
area1. The transfer model of the system is shown in Fig. 1. Matlab
software has been used for simulink model and coding. The vari-
ables such as controller gains etc are optimized using Bat algorithm
(BA). The optimization is done using minimization of the cost func-
tion given by Integral squared error (ISE) as given by Eq. (1)

J ¼
Z T

0
fðDf iÞ

2 þ ðDPtie j�kÞ2gdt ð1Þ

where j = area number (1, 2), k = 2 (for j – k), 3.
PD–PID Cascade controller

Cascade control concept comes up from the control of two
sequential processes, where the inner process or output of the first
supplies the second or outer process in sequence. There is the mea-
surement is available for both the output of the inner process and
outer process variable. The main objectives of cascade control [33]:

(a) The inner measure to attenuate the effect of supply distur-
bance or any internal process disturbance on the outer pro-
cess in the sequence.

(b) The outer process measurement to control the process final
output quality.

The Cascade control is mainly used to achieve fast rejection of
disturbance before it propagates to the other parts of the plant
system with cascade controllers.



Fig. 2. PD–PID Cascade Controller model.
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[5,6,33,34]. The simplest cascade control system involves two con-
trol loops (inner and outer) as shown in Fig. 2.

Outer loop

The outer loop is generally referred as the master or primary
loop. It contains the process output Y(s), which is under primary
control. The outer process is termed as G1(s) and the whole process
is subjected to load disturbance d1 (s) [33]. The outer loop equation
[5] is given as

YðsÞ ¼ G1ðsÞU1ðsÞ þ d1ðsÞ ð2Þ

where the outer process input is U1(s) = y2(s), so that the output
from the inner process y2(s) becomes the input U1(s) to the outer
process. The outer process output is to be controlled to attain a
given reference signal R(s) [5,33].

Inner loop

The inner loop is referred as the secondary or slave loop. The
loop contains the inner or supply process G2(s) [33]. The inner loop
equation is given as

y2ðsÞ ¼ G2ðsÞU2ðsÞ ð3Þ

where U2(s) = the inner process input. The output from the inner
process becomes the input to the outer process U1(s) = y2(s). The
control of the inner process uses the inner loop and this comprises
an inner comparator and an inner loop measurement of output
y2(s). The main objective of the inner loop is to limit the effect of
inner process gain variations on the control system performance
[5,33]. Such gain variations might arise from changes in operating
point due to set point changes or sustained disturbances. The
advantages of cascade controller as compared to other single loop
controllers [9,33] are (a) Disturbances arising in the inner loop are
corrected by the inner controller before they influence the outer
loop controller variable. The correction is much better when the
inner loop has a faster response than the outer loop; (b) The speed
of system response is greatly improved if the resulting inner control
loop has a faster response than the outer loop process; (c) Because
of the auxiliary feedback, parameters variations in the inner loop
process can be corrected within its own loop.

In this paper, the system is designed with a single loop control
system with a PD controller and a cascade control system with a
PID controller. The responses of the two control systems are com-
pared for both reference tracking and disturbance rejection. Two
controllers are selected and termed here as C1(s) and C2(s) as the
outer controller and the inner controller respectively. Here, PD
controller is made as outer controller and PID as inner controller
and are represented as

C1ðsÞ ¼ Kp þ Kds ð4Þ

C2ðsÞ ¼ Kp þ
Ki

s
þ Kds ð5Þ

The overall performance of the cascade system can be analyzed
with the decomposed performance diagram as shown in Fig. 2 and
the closed loop transfer function [33] can be represented as
YðsÞ ¼ G1ðsÞG2ðsÞC1ðsÞC2ðsÞ
1þ G2ðsÞC2ðsÞ þ G1ðsÞG2ðsÞC1ðsÞC2ðsÞ

� �
RðsÞ

þ G1ðsÞ
1þ G2ðsÞC2ðsÞ þ G1ðsÞG2ðsÞC1ðsÞC2ðsÞ

� �
d1ðsÞ ð6Þ

Here, in the AGC loop of the reheat type thermal system, G1-

(s) = Primary Control loop; G2(s) = Secondary Control loop; and d1-

(s) = load disturbance (SLP). For design of the PD–PID Cascade
controller for the investigated system a more recent and powerful
algorithm ‘‘Bat Algorithm (BA)’’ is used. The gains of primary and
secondary controllers such as KPi, KDi, and KIi are optimized simulta-
neously. The design problem can be formulated as the following
constrained optimization problem, where the constraints are the
PD–PID Cascade controller parameter bounds given below:

Minimize the objective function = J, Eq. (1).

Subject to Kmin
Pi � KPi � Kmax

Pi ; Kmin
Ii � KIi � Kmax

Ii ; Kmin
Di � KDi � Kmax

Di

ð7Þ

where Kmin
Pi ;Kmax

Pi ;Kmin
Ii ;Kmax

Ii ;Kmin
Di ;K

max
Di are the minimum values and

maximum values of controller gains respectively. The minimum
and maximum bounds for controller gains are chosen as 0 and 1.
Bat Algorithm (BA)

Bat Algorithm is a meta-heuristic nature inspired algorithm for
the first time developed by Yang [30]. Among all bats, microbats
use echolocation to distinguish their prey, avoid obstacles, and
identify their roosting crevices in the dark. Microbats can also
use time delay between their ears and loudness variations to sense
three-dimensional surroundings. Mainly some features of the
echolocation are chosen in optimization problem so that they can
be linked with the objective function, which makes it possible to
formulate a smart, bat algorithm. They emit loud sound and hear
back the echo that comes from nearby objects. The sound pulse
they use varies with their hunting strategies. Studies show that
microbats emit sound waves with frequency in the range of 20–
150 kHz. They also have good sight and hearing capabilities. To
determine the location and size of their prey, they rely on the fre-
quency of the echo reaching to their ears. The BA is formulated ide-
alizing bats characteristics in hunting their prey. The bat algorithm
is formulated by idealizing the echolocation behavior of bats at
first, which includes the behavior of microbats and Acoustics of
Echolocation [29,30]. For simplicity, the following approximate or
idealized rules are generally followed. (a) All bats use echolocation
to sense distance, and they also ‘know’ the difference between
food/prey and background barriers in some magical way. (b) Bats
fly randomly with velocity vi at position xi with a fixed frequency
fmin, varying wavelength k and loudness A0 to search for prey. They
can automatically adjust the wavelength (or frequency) of their
emitted pulses and adjust the rate of pulse emission r 2 [0, 1],
depending on the proximity of their target. (c) As the speed of
sound in air is typically v = 340 m/s, the wavelength k of the ultra-
sonic sound bursts with a constant frequency is given by (4). (d)
Although the loudness can vary in many ways, it can be assumed
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that the loudness varies from a large (positive) A0 to a minimum
constant value Amin.

f ¼ v
k

ð8Þ
Bat motion

Each bat is associated with a velocity v t
i and a location xt

i ; at
iteration t, in a d- dimensional search or solution space [29].
Among all the bats, there exists a current best solution x�. There-
fore, the above three rules can be translated into the updating
equations for xt

i and velocities v t
i :

f i ¼ f min þ ðf max � f minÞ � b; ð9Þ
v t

i ¼ ðxt
i � x�Þ � f i; ð10Þ

xt
i ¼ xt�1

i þ v t
i ; ð11Þ

where b 2 ½0;1� is a random vector drawn from a uniform distribu-
tion. Here x� is the current global best location (solution) which is
located after comparing all the solutions among all the n bats. As
the product kifi is the velocity increment, it can be used either fi

(or ki) to adjust the velocity change while fixing the other factor ki

(or fi), depending on the type of the problem of interest. The choice
of fmin and fmax (fmin = 0 and fmax = 100) depends on the domain size
of the problem of interest. Initially, each bat is randomly assigned a
frequency which is drawn uniformly from [fmin, fmax]. For the local
search part, once a solution is selected among the current best solu-
tions, a new solution for each bat is generated locally using random
walk

xnew ¼ xold þ eAt ; ð12Þ

where e 2 ½�1;1� is a random number, while At ¼< At
i > is the aver-

age loudness of all the bats at this time step.

Variations of loudness and pulse rates

In order to provide an effective mechanism to control the explo-
ration and exploitation and switch to exploitation stage when nec-
essary, we have to vary the loudness Ai and the rate ri of pulse
emission during the iterations. Since the loudness usually
decreases. Once a bat has found its prey, while the rate of pulse
emission increases, the loudness can be chosen as any value of con-
venience, between Amin and Amax, assuming Amin = 0 means that a
bat has just found the prey and temporarily stop emitting any
sound. With these assumptions,

Atþ1
i ¼ aAt

i ; rtþ1
i ¼ r0

i ½1� expð�ctÞ�; ð13Þ

where a and c are constants.
The pseudo code of Bat is available in literature [30]. The tuned

parameters for the Bat algorithm for the system considered are
obtained by using minimization of cost function given by Eq. (1).
The tuned parameters for the algorithm are n = 20; N = 15;
A = 0.5; r = 0.25.

Results and analysis

Performance comparison of PI, PID, and PD–PID Cascade controller

The three areas system under study is provided with PI, PID, and
PD–PID cascade controller separately and in each case controller
gains are optimized simultaneously using BA. The optimum gains
are as follows. The PI controller gains are KP1

⁄ = 0.09037,
KI1
⁄ = 0.2200, KP2

⁄ = 0.0798, KI2
⁄ = 0.1065, KP3

⁄ = 0.0181, KI3
⁄ = 0.1762.

The PID controller gains are KP1
⁄ = 0.0110, KI1

⁄ = 0.3058,
KD1
⁄ = 0.0728, KP2

⁄ = 0.0103, KI2
⁄ = 0.0994, KD2

⁄ = 0.0118, KP3
⁄ = 0.0089,
KI3
⁄ = 0.1402, KD3

⁄ = 0.0054. The gains of PD–PID cascade controllers
are shown in second column of Table 2. The dynamic responses for
each controller are obtained and compared (Fig. 3). The settling
time and the peak deviations are noted from the Fig. 3 and shown
in Table 1. Critical observation of the numerical values of settling
time and the peak deviations in the Table 1 as well as from
Fig. 3, it is clearly seen that the responses corresponding to PD–
PID cascade controller are better than both PI and PID controllers
from the point of view of settling time, peak overshoot and magni-
tude of oscillations. The convergence of the cost curve for the Bat
algorithm obtained in this optimization is shown in Fig. 4 and com-
pared with that of CS and GA. When GA is used for optimization, a
population size of 20 with 300 number of generation having muta-
tion probability 0.06 and crossover probability 0.81 is considered.
In case of CS, for the system considered are (Number of nests).
n = 25, Discovery rate of alien eggs/solutions, pa = 0.25. In both
GA and CS, these values are selected based on the minimization
of objective function given by Eq. (1). It is seen that the cost curve
obtained with bat algorithm converges somewhat faster than the
other two.

Performance comparison of PID, and PD–PID Cascade controller with
Random load pattern

To justify the better performance of the proposed controller and
optimization technique, a random load pattern as shown in Fig. 5(a)
is applied to the control area1 and the performance of the proposed
PD–PID Cascade controller under such condition is examined. Con-
troller gains are optimized simultaneously using BA. The PI control-
ler gains are KP1

⁄ = 0.0793, KI1
⁄ = 0.3013, KP2

⁄ = 0.2171, KI2
⁄ = 0. 6115,

KP3
⁄ = 0.0451, KI3

⁄ = 0.4131. The PID controller gains are
KP1
⁄ = 0.0211, KI1

⁄ = 0.3118, KD1
⁄ = 0.0767, KP2

⁄ = 0.0677, KI2
⁄ = 0.0904,

KD2
⁄ = 0.0410, KP3

⁄ = 0.0109, KI3
⁄ = 0.4162, KD3

⁄ = 0.0053. The PD–PID
Cascade controller gains KP1

⁄ = 0.5211, KP2
⁄ = 0.1111, KP3

⁄ = 0.3333,
KD1
⁄ = 0.4125, KD2

⁄ = 0.5019, KD3
⁄ = 0.7010, KI11

⁄ = 0.3419, KI12
⁄ =

0.6001, KI13
⁄ = 0.2581, KP11

⁄ = 0.6704, KP12
⁄ = 0.3155, KP13

⁄ = 0.3233,
KD11
⁄ = 0.3001, KD12

⁄ = 0.8103, KD13
⁄ = 0.2389. The dynamic responses

obtained are represented in Fig. 5(b), and (c), where the perfor-
mances of conventional PI and PID controllers are compared with
the proposed PD–PID Cascade controller. Critical observation of
the dynamic responses reveals that the responses with proposed
PD–PID Cascade controller provide the better performance following
random load change. Only two dynamic responses are shown in
Fig. 5 to validate the statement.

Sensitivity analysis

Sensitivity analysis has been carried out to see the robustness of
the optimum gains of PD–PID cascade controller (KPi

⁄ , KIi
⁄ , KDi

⁄ )
obtained at nominal loading (50% of area capacity) conditions
and nominal SLP to wide changes in system loading conditions,
the magnitude of SLP, and the inertia constant, H. The loading is
changed to ±25%. Similarly the SLP is changed in step of 1% and
H is changed to ±25%. In each changed condition, KPi, KIi, and KDi

are optimized using BA and the optimum parameters are shown
in Table 2. The system dynamic responses corresponding to opti-
mum gain at each changed condition are obtained and are com-
pared with that of changed system condition using KPi

⁄ , KIi
⁄ , and

KDi
⁄ obtained at nominal condition (Figs. 6–13). Critical observation

of the dynamic responses, it is clearly seen that the responses are
more or less same and showing a good tolerance limit with respect
to wide changes in system conditions and parameters. Thus, the
gains of PD–PID controller obtained at nominal condition and
parameter are robust and need not be reset for wide change in sys-
tem conditions and parameters. Only eight numbers of responses
are shown to justify the above statement.



Fig. 3. Comparison of dynamic responses for different classical controllers (a) frequency deviations in Area1 vs. time, (b) frequency deviation in Area2 vs. time, (c) Tie-line
power deviations in the line connecting Area1 and Area2 vs. time, (d) Tie-line power deviations in the line connecting Area1 and Area3 vs. time.

Table 1
Values of setting time, peak overshoot and peak undershoot of Fig. 3.

Fig. No. Settling time (s) Peak overshoot Peak undershoot (�ve)

PI PID PD–PID Cascade PI PID PD–PID Cascade PI PID PD–PID Cascade

Fig. 3(a) 50.66 36.83 32.02 0.00964 0.0087 0.009 0.02467 0.0268 0.0237
Fig. 3(b) 52.01 39.71 28.34 0.00265 0.00031 0.0026 0.0014 0.0144 0.01328
Fig. 3(c) 59.08 39.07 30.13 0.0007 0.00077 0 0.00807 0.0144 0.0100
Fig. 3(d) 69.56 68.44 44.58 0.00067 0.0009 0 0.0088 0.0690 0.0081

Table 2
Optimum values of variables at different system conditions and system parameters.

Gains Loading
50%

Loading
25%

Loading
75%

H = 3.75 s H = 6.25 s SLP in Area-
1 2%

SLP in Area-
1 3%

SLP in Area-
1 4%

SLP in Area-
1 5%

SLP 1 in Area-1
& 2

SLP 1 in Area-1,
2 & 3

KP1
⁄ 0.4282 0.5760 0.5300 0.3111 0.3079 0.2742 0.1102 0.4182 0.0979 0.0710 0.0670

KP2
⁄ 0.6311 0.0010 0.0010 0.5191 0.0111 0.1717 0.4777 0.2114 0.1971 0.3145 0.4640

KP3
⁄ 0.3900 0.1611 0.1466 0.4190 0.3169 0.3977 0.1004 0.5966 0.3397 0.0716 0.4375

KD1
⁄ 0.3690 0.6640 0.5325 0.2399 0.1290 0.1641 0.7231 0.4081 0.4125 0.3481 0.2126

KD2
⁄ 0.5510 0.7300 0.2610 0.7648 0.1761 0.6321 0.3794 0.5679 0.1731 0.6284 0.2175

KD3
⁄ 0.4924 0.7100 0.4897 0.2294 0.3024 0.2366 0.2218 0.0200 0.4140 0.2264 0.0156

KI11
⁄ 0.2660 0.6600 0.4411 0.6155 0.8104 0.3664 0.4000 0.6600 0.1904 0.6786 0.5775

KI12
⁄ 0.6311 0.6270 0.8900 0.3993 0.4739 0.8654 0.3979 0.8900 0.3939 0.6999 0.6129

KI13
⁄ 0.5881 0.4531 0.3190 0.4015 0.2150 0.4864 0.4811 0.3024 0.2210 0.3077 0.5458

KP11
⁄ 0.6654 0.6900 0.6590 0.2110 0.2355 0.6264 0.5921 0.6317 0.2737 0.5337 0.5790

KP12
⁄ 0.4151 0.8100 0.4275 0.5311 0. 3154 0.5852 0.7111 0.6033 0. 3224 0.2882 0.2139

KP13
⁄ 0.4855 0.6100 0.6099 0.5080 0.6079 0.3167 0.3133 0.2590 0.6010 0.7087 0.3766

KD11
⁄ 0.3308 0.0918 0.4830 0.1908 0.2898 0.6348 0.5438 0.0847 0.4898 0.7900 0.0464

KD12
⁄ 0.4734 0.1860 0.6425 0.5734 0.5011 0.4254 0.1255 0.1488 0.5051 0.4770 0.0599

KD13
⁄ 0.2000 0.7101 0.4155 0.2001 0.1999 0.14448 0.2009 0.3333 0.2047 0.2906 0.3855
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Fig. 4. The convergence curves for various algorithms.

Fig. 5. (a) Random load pattern, (b) frequency deviation in Area1 obtained using
PID and PD–PID Cascade controller vs. time, (c) frequency deviation in Area 2
obtained using PID and PD–PID Cascade controller vs. time.

Fig. 6. Comparison of frequency deviation in Area1 vs. time for 2% SLP in Area1with
KIi
⁄ , KPi

⁄ , KDi
⁄ corresponding to 1% and 2% SLP in Area1.

Fig. 7. Comparison of frequency deviation in Area1 vs. time for 5% SLP in Area1with
KIi
⁄ , KPi

⁄ , KDi
⁄ corresponding to 1% and 5% SLP in Area1.

Fig. 8. Comparison of frequency deviation in Area1 vs. time for 25% loading with KIi
⁄ ,

KPi
⁄ , KDi

⁄ corresponding to 50% nominal loading and 25% loading.

Fig. 9. Comparison of frequency deviation in Area1 vs. time for 75% loading with KIi
⁄ ,

KPi
⁄ , KDi

⁄ corresponding to 50% nominal loading and 75% loading.
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Fig. 10. Comparison of frequency deviation in Area1 vs. time for H = 3.75 s with KIi
⁄ ,

KPi
⁄ , KDi

⁄ corresponding to H = 5 s (Nominal) and H = 3.75 s.

Fig. 11. Comparison of frequency deviation in Area1 vs. time for H = 6.25s with KIi
⁄ ,

KPi
⁄ , KDi

⁄ corresponding to H = 5 s (Nominal) and H = 6.25 s.

Fig. 12. Comparison of frequency deviation in area1 vs. time for 1% SLP in area 1 &
area 2 simultaneously with KIi

⁄, KPi
⁄ , KDi

⁄ corresponding to 1% SLP in area 1 & area 2
simultaneously and 1% SLP in area1.

Fig. 13. Comparison of frequency deviation in Area1 vs. time for 1% SLP in area1,
area2, and area3 simultaneously with KIi

⁄ , KPi
⁄ , KDi

⁄ corresponding to 1% SLP in area1,
area2, and area3 simultaneously and 1% SLP in area1.
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Conclusion

A maiden attempt has been made to apply a new powerful
meta-heuristic optimization technique called Bat algorithm for
optimization of several gains such as KPi, KIi, and KDi of PD–PID cas-
cade controller simultaneously. Results reveal that BA performs
much better than GA and BF. An attempt has been made to apply
heuristically optimized PD–PID Cascade controller for the first time
in AGC. Comparison of performances of PI, PID, and PD–PID Cas-
cade controllers reveals better dynamic performance of the later
from the view point of settling time, magnitude of oscillations
and peak overshoot under both considering 1% step load perturba-
tion and random load pattern in area1. Sensitivity analysis of the
optimum gains obtained at nominal conditions and parameters
reveals that they are robust and need not be reset for wide change
in system conditions and parameters. It is also required to mention
that there is a scope for application of MPC based cascade control
strategy in AGC.

Appendix A

Nominal parameter of the system are f = 60 Hz; Tgi = 0.08 s;
Tti = 0.3 s; Tri = 10 s; Kri = 0.5; Kpi = 120 Hz/pu MW; Tpi = 20 s;
T12 = 0.086 pu MW/rad; Hi = 5 s; Di = 8.33 � 10�3 pu MW/Hz; Bi =
bi = 0.425 pu MW/Hz; Ri = 2.4 pu Hz/MW; loading = 50%; Nominal
SLP = 1%.
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