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 Abstract— This paper presents an improved controller for the 

dual topology of the Unified Power Quality Conditioner (iUPQC) 
extending its applicability in power quality compensation, as well 
as in microgrid applications. By using this controller, beyond the 
conventional UPQC power quality features including voltage 
sag/swell compensation, the iUPQC will also provide reactive 
power support to regulate not only the load-bus voltage, but also 
the voltage at the grid-side bus. In other words, the iUPQC will 
work as a STATCOM at the grid side, while providing also the 
conventional UPQC compensations at the load or microgrid side. 
Experimental results are provided to verify the new functionality 
of the equipment. 
 

Index Terms— iUPQC, Microgrids, Power quality, 
STATCOM, Unified Power Quality Conditioner, UPQC 
 

I. INTRODUCTION 

ERTAINLY, power-electronics devices have brought about 
great technological improvements. However, the 

increasing number of power-electronics driven loads used 
generally in the industry has brought about uncommon power-
quality problems. In contrast, power-electronics driven loads 
generally require ideal sinusoidal supply voltage in order to 
function properly, whereas they are the most responsible ones 
for abnormal harmonic currents level in the distribution 
system. In this scenario, devices that can mitigate these 
drawbacks have been developed over the years. Some of the 
solutions involve a flexible compensator, known as the 
Unified Power Quality Conditioner (UPQC) [1] [2] [3] [4] [5] 
[6] [7] and the Static Synchronous Compensator (STATCOM) 
[8] [9] [10] [11] [12] [13]. 

The power circuit of a UPQC consists of a combination of a 
shunt active filter and a series active filter connected in a 
back-to-back configuration. This combination allows the 
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simultaneous compensation of the load current and the supply 
voltage, so that the compensated current drawn from the grid 
and the compensated supply voltage delivered to the load are 
kept balanced and sinusoidal. The dual topology of the 
Unified Power Quality Conditioner – the iUPQC – was 
presented in [14] [15] [16] [17] [18] [19], where the shunt 
active filter behaves as an ac-voltage source and the series one 
as an ac-current source, both at the fundamental frequency.  
This is a key point to better design the control gains, as well as 
to optimize the LCL filter of the power converters, which 
allows improving significantly the overall performance of the 
compensator [20]. 

The Static Synchronous Compensator (STATCOM) has 
been used widely in transmission networks to regulate the 
voltage by means of dynamic reactive-power compensation. 
Nowadays, the STATCOM is largely used for voltage 
regulation [9], while the UPQC and the iUPQC have been 
selected as solution for more specific applications [21]. 
Moreover, these last ones are used only in particular cases, 
where their relatively high costs are justified by the power 
quality improvement it can provide, which would be 
unfeasible by using conventional solutions. By joining the 
extra functionality like a STATCOM in the iUPQC device, a 
wider scenario of applications can be reached, particularly in 
case of distributed generation in smart grids and as the 
coupling device in grid-tied microgrids. 

In [16], the performance of the iUPQC and the UPQC were 
compared when working as unified power quality 
conditioners. The main difference between these compensators 
is the sort of source emulated by the series and shunt power 
converters. In the UPQC approach, the series converter is 
controlled as a non-sinusoidal voltage source and the shunt 
one as a non-sinusoidal current source. Hence, in real time the 
UPQC controller has to determine and synthesize accurately 
the harmonic voltage and current to be compensated. On the 
other hand, in the iUPQC approach the series converter 
behaves as controlled, sinusoidal, current source and the shunt 
converter as a controlled, sinusoidal, voltage source. This 
means that it is not necessary to determine the harmonic 
voltage and current to be compensated, since the harmonic 
voltages appear naturally across the series current source and 
the harmonic currents flow naturally into the shunt voltage 
source. 

In actual power converters, as the switching frequency 
increases, the power rate capability is reduced. Therefore, the 
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additional active-power reference to the series converter to 
keep the energy inside the dc link of the iUPQC balanced. In 
this case, the losses in the iUPQC and the active power 
supplied by the shunt converter must be quickly compensated 
in the form of an additional active power injected by the series 
converter into the bus B. 

The iUPQC can serve as (a) “smart” circuit breaker and as 
(b) power flow controller between the grid and the microgrid 
only if the compensating active- and reactive-power references 
of the series converter can be set arbitrarily. In this case, it is 
necessary to provide an energy source (or large energy 
storage) associated to the dc link of the iUPQC. 

The last degree of freedom is represented by a reactive-
power control variable, ݍത, for the series converter of the 
iUPQC. In this way, the iUPQC will provide reactive-power 
compensation like a STATCOM to the bus A of the grid. As it 
will be confirmed, this functionality can be added into the 
controller without degrading all other functionalities of the 
iUPQC. 

III. IMPROVED IUPQC CONTROLLER 

 Main controller: 
Fig. 2 depicts the iUPQC hardware and the measured units 

of a three-phase three-wire system that are used in the 
controller. Fig. 3 shows the proposed controller. The controller 
inputs are the voltages at bus A and B, the current demanded 
by bus B, iL, and the voltage vDC of the common dc link. The 
outputs are the shunt-voltage reference and the series-current 
reference to the PWM controllers. The voltage and current 
PWM controllers can be as simple as those employed in [18], 
or be improved further to better deal with voltage and current 
imbalance and harmonics [23] [24] [25] [26] [27] [28]. 

Firstly, the simplified Clark transformation is applied to the 
measured variables. As example of this transformation, the 
grid voltage in αβ-reference frame can be calculated as: 

 
V_
V_ஒ

൨ ൌ 
1 1 2⁄

0 √3 2⁄
൨ 
V_ୟୠ
V_ୠୡ

൨  . (1) 

The shunt converter imposes the voltage at bus B. Thus, it 
is necessary to synthesize sinusoidal voltages with nominal 
amplitude and frequency. Consequently, the signals sent to the 
PWM controller are the Phase-Locked-Loop (PLL) outputs 
with amplitude equal to 1 p.u.. There are many possible PLL 
algorithms which could be used in this case, as verified in [29] 
[30] [31] [32] [33].  

In the original iUPQC approach as presented in [14], the 
shunt-converter voltage reference can be either the PLL 
outputs or the fundamental positive-sequence component, 

ܸାଵ, of the grid voltage (bus A in Fig. 2). The use of ܸାଵ in 
the controller is useful to minimize the circulating power 
through the series and shunt converters, under normal 
operation, while the amplitude of the grid voltage is within an 
acceptable range of magnitude. However, this is not the case 
here, in the modified iUPQC controller, since now the grid 
voltage will be also regulated by the modified iUPQC. In other 
words, both buses will be regulated independently to track 

their reference values. 
The series converter synthesizes the current drawn from the 

grid bus (bus A). In the original approach of iUPQC, this 
current is calculated through the average active power 
required by the loads, തܲ, plus the power തܲ௦௦. The load 
active power can be estimated by: 
 

ܲ ൌ ାܸଵ_ఈ ∙ ݅_ఈ  ାܸଵ_ఉ ∙ ݅_ఉ  , (2) 

where ݅_, ݅_ஒ are the load currents, and ାܸଵ_ఈ, ାܸଵ_ஒ are the 
voltage references for the shunt converter. A low-pass filter is 
used to obtain the average active power ( തܲ). 

The losses in the power converters and the circulating 
power to provide energy balance inside the iUPQC are 
calculated indirectly from the measurement of the dc-link 
voltage. In other words, the power signal തܲ௦௦ is determined 
by a proportional-integral controller (PI block in Fig. 3), by 
comparing the measured dc voltage, VDC, with its reference 
value. 

The additional control loop to provide voltage regulation 
like a STATCOM at the grid bus is represented by the control 
signal തܳௌ்்ைெ in Fig. 3. This control signal is obtained 
through a PI controller, in which the input variable is the error 
between the reference value and the actual aggregate voltage 
of the grid bus, given by:  
 

ܸ ൌ ටVାଵ_
ଶ 	Vାଵ_ஒ

ଶ   . (3) 

Fig. 3: The novel iUPQC controller. 
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compensation. Moreover, in case of compensating sag/swell 
voltage disturbance with high reactive power load 
consumption, only the shunt converter has high power 
demand, since തܲ decreases. It is important to highlight 
that, for each PF value, the amplitude of the apparent power is 
the same for capacitive or inductive loads. In other words, Fig. 
5 is the same for തܳ capacitive or inductive. 

If the iUPQC performs all original UPQC functionalities 
together with the STATCOM functionality, the voltage at 
bus A is also regulated with the same phase and magnitude, 
that is, Vሶ ൌ Vሶ ൌ Vሶ and then the positive sequence of the 
voltage at the coupling transformer is zero ሺVሶୗୣ୰୧ୣୱ ൌ 0ሻ. 
Thus, in steady state the power flow is determined by: 
 

ܵ̅ ൌ തܲ  ݆ തܳௌ்்ைெ  , (15) 

 തܳௌ்்ைெ  തܳ௦௦ ൌ തܳ௦௨௧ 	 തܳ  , (16) 

 തܳ௦௦ ൌ  ,		ݎܽݒ	0
(17) 

 തܲ௦௦ ൌ തܲ ൌ 0	ܹ		, 
(18) 

where തܳௌ்்ைெ is the reactive power that provides voltage 
regulation at bus A. Ideally, the STATCOM functionality  
mitigates the inner-loop active power flow ( തܲ) and the 
power flow in the series converter is zero. Consequently, if the 
series converter is properly designed along with the coupling 
transformer to synthesize the controlled currents ܫାଵ_ఈ and 
 ାଵ_ఉ, as shown in Fig. 3, then a lower power converter can beܫ
employed. Contrarily, the shunt converter still has to provide 
the full reactive power of the load and also to drain the 
reactive power injected by the series converter to regulate the 
voltage at bus A.  

IV. EXPERIMENTAL RESULTS 

The improved iUPQC controller as shown in Fig. 3 was 
verified in a 5 kVA prototype, which parameters are presented 
in Table I. The controller was embedded in a fixed-point DSP 
(TMS320F2812). 

In order to verify all the power quality issues described in 
this paper, the iUPQC was connected to a grid with a voltage 
sag system, as depicted in Fig. 6. The voltage sag system was 
composed by an inductor (ܮௌ), a resistor (ܴௌ) and a breaker 
(SSag). To cause a voltage sag at bus A, SSag is closed. 

 
TABLE I 

IUPQC PROTOTYPE PARAMETERS. 

Parameter Value 

Voltage 220 V rms 

Grid frequency 60 Hz 

Power rate 5 kVA 

DC-link voltage 450 V dc 

DC-link capacitors C = 9400 µF 

Shunt converter passive filter 
L = 750 µH 
R = 3.7 Ω 
C = 20.0 µF 

Series converter passive filter 
L = 1.0 mH 
R = 7.5 Ω 
C = 20.0 µF 

Sampling frequency 19440 Hz 

Switching frequency 9720 Hz 

PI controller ( തܲ௦௦ሻ 
Kp = 4.0 

Ki = 250.0 

PI controller ( തܳௌ்்ைெሻ 
Kp = 0.5 
Ki = 50.0 

 
 

Fig. 6: iUPQC experimental scheme. 

 

 
Fig. 5: The apparent power of the series and shunt converters, 
respectively. 
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At first, the source voltage regulation was tested with no 
load connected to bus B. In this case, the iUPQC behaves as a 
STATCOM and the breaker SSag is closed to cause the voltage 
sag. 

To verify the grid voltage regulation, the control of the 
തܳௌ்்ைெ variable is enabled to compose the equation (4) at 
instant t = 0s. In this experimental case, ܮௌ ൌ  and ܪ݉	10
ܴௌ ൌ 7.5	Ω. Before the തܳௌ்்ைெ variable is enabled, only 
the dc link and the voltage at bus B are regulated, and there is 
a voltage sag at bus A, as shown in Fig. 8. After t = 0s, the 
iUPQC starts to draw reactive current from bus A, increasing 
the voltage until its reference value. As can be seen in Fig. 8, 
the load voltage at bus B is maintained regulated during all the 
time, and the grid-voltage regulation of bus A has a fast 
response. 

Next experimental case was carried out to verify the iUPQC 
performance during the connection of a non-linear load with 
the iUPQC already in operation. The load is a three-phase 
diode rectifier with a series RL load at the dc link (ܴ ൌ 45	Ω 
and ܮ ൌ  and the circuit breaker SSag is permanently (ܪ݉	22
closed, with a ܮௌ ൌ and a ܴௌ ܪ݉	10 ൌ 15	Ω. In this way, 
the voltage-sag disturbance is increased due to the load 
connection. In Fig. 7 is possible to verify that the iUPQC is 
able to regulate the voltages at both sides of the iUPQC, 
simultaneously. Even after the load connection, at t = 0s, the 
voltages are still regulated and the currents drawn from bus A 
are almost sinusoidal. Hence, the iUPQC can perform all the 
power-quality compensations as mentioned before, including 
the grid-voltage regulation. It is important to highlight that the 
grid-voltage regulation is also achieved by means of the 
improved iUPQC controller as introduced in section III.  

Finally, the same procedure was performed with the 
connection of a two-phase diode rectifier in order to better 
verify the mitigation of power quality issues. The diode 

rectifier has the same dc load (ܴ ൌ 45	Ω and ܮ ൌ  and (ܪ݉	22
the same voltage sag (ܮௌ	 ൌ 	and ܴௌ ܪ݉	10	 ൌ 	15	Ω). Fig. 
9 depicts the transitory response of the load connection. 
Despite the two-phase load currents, after the load connection 
at t = 0s, the three-phase current drained from the grid has a 
reduced unbalanced component. Likewise, the unbalance in 
the voltage at bus A is negligible. Unfortunately, the voltage at 
bus B has higher unbalance content. These components could 
be mitigated if the shunt compensator works as an ideal 
voltage source, i.e. if the filter inductor could be eliminated. In 
this case, the unbalanced current of the load could be supplied 
by the shunt converter and the voltage at the bus B could be 
exactly the voltage synthesized by the shunt converter. 
Therefore, without filter inductor there would be no unbalance 
voltage drop in it and the voltage at bus  B would remain 
balanced. However, in a practical case, this inductor cannot be 
eliminated, and an improved PWM control to compensate 
voltage unbalances, as mentioned in section III, is necessary.  

V. CONCLUSIONS 

In the improved iUPQC controller, the currents synthesized 
by the series converter are determined by the average active 
power of the load and the active power to provide the dc link 
voltage regulation, together with an average reactive power to 
regulate the grid-bus voltage. In this manner, besides all the 
power-quality compensation features of a conventional UPQC 
or an iUPQC, this improved controller also mimics a 
STATCOM to the grid bus. This new feature enhances the 

Fig. 8: The iUPQC response at no load condition: a) grid voltages VA, b) load 
voltages VB and c) grid currents. 

Fig. 7: The iUPQC transitory response during the connection of a three-phase
diode rectifier: a) load currents, b) grid currents, c) load voltages and d) grid
voltages. 
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applicability of the iUPQC and provides new solutions in 
future scenarios involving smart grids and microgrids, 
including distributed generation and energy storage systems to 
better deal with the inherent variability of renewable resources 
such as solar and wind power. 

Moreover, the improved iUPQC controller may justify the 
costs and promotes the iUPQC applicability in power quality 
issues of critical systems, where it is necessary not only an 
iUPQC or a STATCOM, but both, simultaneously. Despite the 
addition of one more power-quality compensation feature, the 
grid-voltage regulation reduces the inner-loop circulating 
power inside the iUPQC, which would allow lower power 
rating for the series converter.  

The experimental results verified the improved iUPQC 
goals. The grid voltage regulation was achieved with no load, 
as well as when supplying a three-phase non-linear load. 
These results have demonstrated a suitable performance of 
voltage regulation at both sides of the iUPQC, even while 
compensating harmonic current and voltage imbalances. 
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