An Improved iUPQC Controller to Provide Additional Grid-Voltage Regulation as a STATCOM

Bruno W. França, *Student Member, IEEE*, Leonardo F. da Silva, Maynara A. Aredes, *Student Member, IEEE*, and Maurício Aredes, *Member, IEEE*

Abstract— This paper presents an improved controller for the dual topology of the Unified Power Quality Conditioner (iUPQC) extending its applicability in power quality compensation, as well as in microgrid applications. By using this controller, beyond the conventional UPQC power quality features including voltage sag/swell compensation, the iUPQC will also provide reactive power support to regulate not only the load-bus voltage, but also the voltage at the grid-side bus. In other words, the iUPQC will work as a STATCOM at the grid side, while providing also the conventional UPQC compensations at the load or microgrid side. Experimental results are provided to verify the new functionality of the equipment.

Index Terms— iUPQC, Microgrids, Power quality, STATCOM, Unified Power Quality Conditioner, UPQC

I. INTRODUCTION

CERTAINLY, power-electronics devices have brought about great technological improvements. However, the increasing number of power-electronics driven loads used generally in the industry has brought about uncommon powerquality problems. In contrast, power-electronics driven loads generally require ideal sinusoidal supply voltage in order to function properly, whereas they are the most responsible ones for abnormal harmonic currents level in the distribution system. In this scenario, devices that can mitigate these drawbacks have been developed over the years. Some of the solutions involve a flexible compensator, known as the Unified Power Quality Conditioner (UPQC) [1] [2] [3] [4] [5] [6] [7] and the Static Synchronous Compensator (STATCOM) [8] [9] [10] [11] [12] [13].

The power circuit of a UPQC consists of a combination of a shunt active filter and a series active filter connected in a back-to-back configuration. This combination allows the

Manuscript received February 1, 2014; revised May 22, 2014; accepted June 30, 2014.

Copyright © 2014 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This work was supported in part by the Brazilian agencies CNPq and CAPES.

The authors are with the Department of Electrical Engineering, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, RJ, Brazil (e-mail: bruno@lemt.ufrj.br; leonardo@lemt.ufrj.br; maynara@lemt.ufrj.br; aredes@lemt.ufrj.br).

simultaneous compensation of the load current and the supply voltage, so that the compensated current drawn from the grid and the compensated supply voltage delivered to the load are kept balanced and sinusoidal. The dual topology of the Unified Power Quality Conditioner – the iUPQC – was presented in [14] [15] [16] [17] [18] [19], where the shunt active filter behaves as an ac-voltage source and the series one as an ac-current source, both at the fundamental frequency. This is a key point to better design the control gains, as well as to optimize the LCL filter of the power converters, which allows improving significantly the overall performance of the compensator [20].

The Static Synchronous Compensator (STATCOM) has been used widely in transmission networks to regulate the voltage by means of dynamic reactive-power compensation. Nowadays, the STATCOM is largely used for voltage regulation [9], while the UPQC and the iUPQC have been selected as solution for more specific applications [21]. Moreover, these last ones are used only in particular cases, where their relatively high costs are justified by the power quality improvement it can provide, which would be unfeasible by using conventional solutions. By joining the extra functionality like a STATCOM in the iUPQC device, a wider scenario of applications can be reached, particularly in case of distributed generation in smart grids and as the coupling device in grid-tied microgrids.

In [16], the performance of the iUPQC and the UPQC were compared when working as unified power quality conditioners. The main difference between these compensators is the sort of source emulated by the series and shunt power converters. In the UPQC approach, the series converter is controlled as a non-sinusoidal voltage source and the shunt one as a non-sinusoidal current source. Hence, in real time the UPQC controller has to determine and synthesize accurately the harmonic voltage and current to be compensated. On the other hand, in the iUPQC approach the series converter behaves as controlled, sinusoidal, current source and the shunt converter as a controlled, sinusoidal, voltage source. This means that it is not necessary to determine the harmonic voltage and current to be compensated, since the harmonic voltages appear naturally across the series current source and the harmonic currents flow naturally into the shunt voltage source.

In actual power converters, as the switching frequency increases, the power rate capability is reduced. Therefore, the

iUPQC offers better solutions if compared with the UPQC in case of high-power applications, since the iUPQC compensating references are pure sinusoidal waveforms at the fundamental frequency. Moreover, the UPQC has higher switching losses due its higher switching frequency.

This paper proposes an improved controller which expands the iUPQC functionalities. This improved version of iUPQC controller includes all functionalities of those previous ones, including the voltage regulation at the load-side bus, and now providing also voltage regulation at the grid-side bus, like a STATCOM to the grid. Experimental results are provided to validate the new controller design.

This paper is organized in five sections. After this introduction, in section II, the iUPQC applicability is explained as well as the novel feature of the proposed controller. Section III presents the proposed controller and an analysis of the power flow in steady state. Finally, section IV provides the experimental results and section V the conclusions.

II. EQUIPMENT APPLICABILITY

In order to clarify the applicability of the improved iUPQC controller, Fig. 1 depicts an electrical system with two buses in spotlight, bus A and bus B. Bus A is a critical bus of the power system that supplies sensitive loads and serves as point of coupling of a microgrid. Bus B is a bus of the microgrid where non-linear loads are connected, which requires premium-quality power supply. The voltages at bus A and bus B must be regulated in order to supply properly the sensitive loads and the non-linear loads. The effects caused by the harmonic currents drawn by the non-linear loads should be mitigated, avoiding harmonic voltage propagation to bus A.

The use of a STATCOM to guarantee the voltage regulation at bus A is not enough, because the harmonic currents drawn by the non-linear loads are not mitigated. On the other hand, a UPQC or an iUPQC between bus A and bus B can compensate the harmonic currents of the non-linear loads and compensate the voltage at bus B, in terms of voltage harmonics, unbalance and sag/swell. Nevertheless, this is still not enough to guarantee the voltage regulation at bus A. Hence, to achieve all the desired goals, a STATCOM at bus A and a UPQC (or an iUPQC) between bus A and B should be employed. However, the costs of this solution would be unreasonably high.

An attractive solution would be the use of a modified

Fig. 1: Example of applicability of iUPQC.

iUPQC controller to provide also reactive power support to the bus A, beside all those functionalities of this equipment, as presented in [16] and [18]. Note that the modified iUPQC serves as an intertie between buses A and B. Moreover, the microgrid connected to the bus B could be a complex system comprising distributed generation, energy management system and other control systems involving microgrid, as well as smart grid concepts [22]. In summary, the modified iUPQC can provide the following functionalities.

2

- a) "smart" circuit breaker as an intertie between the grid and the microgrid;
- b) energy and power flow control between the grid and the microgrid (imposed by a tertiary control layer for the microgrid);
- c) reactive power support at bus A of the power system;
- d) voltage/frequency support at bus B of the microgrid;
- e) harmonic voltage and current isolation between bus A and bus B (simultaneous grid-voltage and load-current activefiltering capability);
- f) voltage and current imbalance compensation.

The functionalities (d) to (f) listed above were extensively explained and verified through simulations and experimental analysis [14] [15] [16] [17] [18], whereas the functionality (c) comprises the original contribution of the present work. Fig. 2 depicts in details the connections and measurements of the iUPQC between bus A and bus B.

According to the conventional iUPQC controller, the shunt converter imposes a controlled, sinusoidal voltage at bus B, which corresponds to the above-mentioned functionality (d). As a result, the shunt converter has no further degree of freedom in terms of compensating active- or reactive-power variables to expand its functionality. On the other hand, the series converter of a conventional iUPQC uses only an activepower control variable, \bar{p} , in order to synthesize a fundamental, sinusoidal current drawn from the bus A, corresponding to the active power demanded by bus B. If the dc link of the iUPQC has no large energy storage system or even no energy source, the control variable \bar{p} also serves as an

Fig. 2: The modified iUPQC configuration.

additional active-power reference to the series converter to keep the energy inside the dc link of the iUPQC balanced. In this case, the losses in the iUPQC and the active power supplied by the shunt converter must be quickly compensated in the form of an additional active power injected by the series converter into the bus B.

The iUPQC can serve as (a) "smart" circuit breaker and as (b) power flow controller between the grid and the microgrid only if the compensating active- and reactive-power references of the series converter can be set arbitrarily. In this case, it is necessary to provide an energy source (or large energy storage) associated to the dc link of the iUPQC.

The last degree of freedom is represented by a reactivepower control variable, \bar{q} , for the series converter of the iUPQC. In this way, the iUPQC will provide reactive-power compensation like a STATCOM to the bus A of the grid. As it will be confirmed, this functionality can be added into the controller without degrading all other functionalities of the iUPQC.

III. IMPROVED IUPQC CONTROLLER

• Main controller:

Fig. 2 depicts the iUPQC hardware and the measured units of a three-phase three-wire system that are used in the controller. Fig. 3 shows the proposed controller. The controller inputs are the voltages at bus A and B, the current demanded by bus B, i_L , and the voltage v_{DC} of the common dc link. The outputs are the shunt-voltage reference and the series-current reference to the PWM controllers. The voltage and current PWM controllers can be as simple as those employed in [18], or be improved further to better deal with voltage and current imbalance and harmonics [23] [24] [25] [26] [27] [28].

Firstly, the simplified Clark transformation is applied to the measured variables. As example of this transformation, the grid voltage in $\alpha\beta$ -reference frame can be calculated as:

$$\begin{bmatrix} V_{A_{-}\alpha} \\ V_{A_{-}\beta} \end{bmatrix} = \begin{bmatrix} 1 & 1/2 \\ 0 & \sqrt{3}/2 \end{bmatrix} \begin{bmatrix} V_{A_{-}ab} \\ V_{A_{-}bc} \end{bmatrix} .$$
(1)

The shunt converter imposes the voltage at bus B. Thus, it is necessary to synthesize sinusoidal voltages with nominal amplitude and frequency. Consequently, the signals sent to the PWM controller are the Phase-Locked-Loop (PLL) outputs with amplitude equal to 1 p.u.. There are many possible PLL algorithms which could be used in this case, as verified in [29] [30] [31] [32] [33].

In the original iUPQC approach as presented in [14], the shunt-converter voltage reference can be either the PLL outputs or the fundamental positive-sequence component, V_{A+1} , of the grid voltage (bus A in Fig. 2). The use of V_{A+1} in the controller is useful to minimize the circulating power through the series and shunt converters, under normal operation, while the amplitude of the grid voltage is within an acceptable range of magnitude. However, this is not the case here, in the modified iUPQC controller, since now the grid voltage will be also regulated by the modified iUPQC. In other words, both buses will be regulated independently to track

their reference values.

The series converter synthesizes the current drawn from the grid bus (bus A). In the original approach of iUPQC, this current is calculated through the average active power required by the loads, \overline{P}_L , plus the power \overline{P}_{Loss} . The load active power can be estimated by:

$$P_L = V_{\pm 1_\alpha} \cdot i_{L_\alpha} + V_{\pm 1_\beta} \cdot i_{L_\beta} \quad , \tag{2}$$

where $i_{L_{\alpha}}$, $i_{L_{\beta}}$ are the load currents, and $V_{+1_{\alpha}}$, $V_{+1_{\beta}}$ are the voltage references for the shunt converter. A low-pass filter is used to obtain the average active power (\overline{P}_L).

The losses in the power converters and the circulating power to provide energy balance inside the iUPQC are calculated indirectly from the measurement of the dc-link voltage. In other words, the power signal \bar{P}_{Loss} is determined by a proportional-integral controller (PI block in Fig. 3), by comparing the measured dc voltage, $V_{\rm DC}$, with its reference value.

The additional control loop to provide voltage regulation like a STATCOM at the grid bus is represented by the control signal $\bar{Q}_{STATCOM}$ in Fig. 3. This control signal is obtained through a PI controller, in which the input variable is the error between the reference value and the actual aggregate voltage of the grid bus, given by:

$$V_{col} = \sqrt{V_{A+1_{\alpha}}^2 + V_{A+1_{\beta}}^2} .$$
 (3)

Fig. 3: The novel iUPQC controller.

The sum of the power signals \bar{P}_L and \bar{P}_{Loss} composes the active-power control variable for the series converter of the iUPQC, \bar{p} , described in section II. Likewise, $\bar{Q}_{STATCOM}$ is the reactive-power control variable \bar{q} . Thus, the current references $i_{\pm 1\alpha}$ and $i_{\pm 1\beta}$ of the series converter are determined by:

$$\begin{bmatrix} i_{+1_\alpha}\\ i_{+1_\beta} \end{bmatrix} = \frac{1}{V_{A+1_\alpha}^2 + V_{A+1_\beta}^2} \begin{bmatrix} V_{A+1_\alpha} & V_{A+1_\beta}\\ V_{A+1_\beta} & -V_{A+1_\alpha} \end{bmatrix} \begin{bmatrix} \bar{P}_L + \bar{P}_{LOSS}\\ \bar{Q}_{STATCOM} \end{bmatrix} .$$
(4)

Power flow in steady state:

The following procedure, based on the average power flow, is useful for estimating the power ratings of the iUPQC converters. For combined series-shunt power conditioners, as the UPQC and the iUPQC, only the voltage sag/swell disturbance and the power factor compensation of the load produce a circulating average power through the power conditioners [34], [35]. According to Fig. 4, the compensation of a voltage sag/swell disturbance at bus B causes a positivesequence voltage at the coupling-transformer ($V_{\text{series}} \neq 0$), since $V_A \neq V_B$. Moreover, V_{series} and i_{P_B} in the couplingtransformer leads to a circulating active power, \overline{P}_{inner} , in the iUPQC. Additionally, the compensation of the load power factor increases the current supplied by the shunt converter. The following analysis is valid for an iUPQC acting like a conventional UPQC or including the extra-compensation like a STATCOM.

Firstly, the circulating power will be calculated when the iUPQC is operating just like a conventional UPQC. Afterward, the equations will include the STATCOM functionality to the grid bus A. In both cases, it will be assumed that the iUPQC controller is able to force the shunt converter of the iUPQC to generate fundamental voltage always in phase with the grid voltage at bus A. For simplicity, the losses in the iUPQC will be neglected.

For the first case, the following average powers in steady state can be determined.

$$S_A = P_B \quad ; \tag{5}$$

$$\bar{Q}_{shunt} = -\bar{Q}_B \quad ; \tag{6}$$

$$\bar{Q}_{series} = \bar{Q}_A = 0 \ var \quad ; \tag{7}$$

$$\bar{P}_{series} = \bar{P}_{shunt} \quad ; \tag{8}$$

where \bar{S}_A and \bar{Q}_A are the apparent and reactive power injected in the bus A; \bar{P}_B and \bar{Q}_B are the active and reactive power injected in the bus B; \bar{P}_{shunt} and \bar{Q}_{shunt} are the active and reactive power drained by the shunt converter; \bar{P}_{series} and \bar{Q}_{series} are the active and reactive power supplied by the series converter.

Fig. 4: iUPQC Power flow in steady-state

4

Equations (5) and (6) are derived from the constraint of keeping unitary the power factor at bus A. In this case, the current passing through the series converter is responsible only for supplying the load active power, that is, it is in phase (or counter-phase) with the voltages V_A and V_B . Thus, (7) can be stated. Consequently, the coherence of the power flow is ensured through (8).

If a voltage sag or swell occurs, \overline{P}_{series} and \overline{P}_{shunt} will not be zero, and thus an inner-loop current (i_{inner}) will appear. The series and shunt converters and the aforementioned circulating active power (\overline{P}_{inner}) flows inside the equipment. It is convenient to define the following sag/swell factor. Considering V_N as the nominal voltage,

$$k_{sag/swell} = \frac{|\dot{v}_A|}{|\dot{v}_N|} = \frac{v_A}{v_N} \quad . \tag{9}$$

From (5) and considering that the voltage at bus B is kept regulated, $V_B = V_N$, it follows that

$$\sqrt{3} \cdot k_{sag/swell} \cdot V_N \cdot i_S = \sqrt{3} \cdot V_N \cdot i_{P_B} ,$$

$$i_S = \frac{i_{P_B}}{k_{sag/swell}} = i_{\bar{P}_B} + i_{inner} , \qquad (10)$$

$$i_{inner} = \left| i_{P_B} \left(\frac{1}{k_{sag/swell}} - 1 \right) \right|. \tag{11}$$

The circulating power is given by

 $\overline{P}_{inner} = \overline{P}_{series} = \overline{P}_{shunt} = 3(V_B - V_A)(i_{P_B} + i_{inner})$ (12) From (11) and (12) it follows that

$$\bar{P}_{inner} = 3(V_N - V_A) \left(\frac{\bar{P}_B}{3V_N} \frac{1}{k_{sag/swell}}\right),\tag{13}$$

$$\bar{P}_{inner} = \bar{P}_{series} = \bar{P}_{shunt} = \frac{1 - k_{sag/swell}}{k_{sag/swell}} \bar{P}_B .$$
(14)

Thus, (14) demonstrates that \overline{P}_{inner} depends on the active power of the load and the sag/swell voltage disturbance. In order to verify the effect on the power rate of the series and shunt converters, a full load system $\overline{S}_B = \sqrt{\overline{P}_B^2 + \overline{Q}_B^2} = 1pu$ with power factor ranging from 0 to 1 was considered. It was also considered the sag/swell voltage disturbance at bus A ranging $k_{sag/swell}$ from 0.5 to 1.5. In this way, the power rating of the series and shunt converters are obtained through (6), (7), (8) and (14).

Fig. 5 depicts the apparent power of the series and shunt power converters. In these figures, the $k_{sag/swell}$ axis and the power factor (PF) axis are used to evaluate the power flow in the series and shunt power converters according to the sag/swell voltage disturbance and the load power consumption, respectively. The power flow in the series converter indicates that a high power is required in case of sag voltage disturbance with high active power load consumption. In this situation, an increased \overline{P}_{inner} arises and high rated power converters are necessary to ensure the disturbance (10)

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

compensation. Moreover, in case of compensating sag/swell voltage disturbance with high reactive power load consumption, only the shunt converter has high power demand, since \bar{P}_{inner} decreases. It is important to highlight that, for each PF value, the amplitude of the apparent power is the same for capacitive or inductive loads. In other words, Fig. 5 is the same for \bar{Q}_R capacitive or inductive.

If the iUPQC performs all original UPQC functionalities together with the STATCOM functionality, the voltage at bus A is also regulated with the same phase and magnitude, that is, $\dot{V}_A = \dot{V}_B = \dot{V}_N$ and then the positive sequence of the voltage at the coupling transformer is zero ($\dot{V}_{series} = 0$). Thus, in steady state the power flow is determined by:

$$\bar{S}_A = \bar{P}_B + j\bar{Q}_{STATCOM} \quad , \tag{15}$$

$$Q_{STATCOM} + Q_{series} = Q_{shunt} + Q_B , \qquad (16)$$

$$\bar{Q}_{series} = 0 \ var \ , \tag{17}$$

$$\bar{P}_{series} = \bar{P}_{inner} = 0 W , \qquad (18)$$

Fig. 5: The apparent power of the series and shunt converters, respectively.

where $\bar{Q}_{STATCOM}$ is the reactive power that provides voltage regulation at bus A. Ideally, the STATCOM functionality mitigates the inner-loop active power flow (\bar{P}_{inner}) and the power flow in the series converter is zero. Consequently, if the series converter is properly designed along with the coupling transformer to synthesize the controlled currents $I_{+1,\alpha}$ and $I_{+1,\beta}$, as shown in Fig. 3, then a lower power converter can be employed. Contrarily, the shunt converter still has to provide the full reactive power of the load and also to drain the reactive power injected by the series converter to regulate the voltage at bus A.

5

IV. EXPERIMENTAL RESULTS

The improved iUPQC controller as shown in Fig. 3 was verified in a 5 kVA prototype, which parameters are presented in Table I. The controller was embedded in a fixed-point DSP (TMS320F2812).

In order to verify all the power quality issues described in this paper, the iUPQC was connected to a grid with a voltage sag system, as depicted in Fig. 6. The voltage sag system was composed by an inductor (L_S), a resistor (R_{Sag}) and a breaker (S_{Sag}). To cause a voltage sag at bus A, S_{Sag} is closed.

TABLE I IUPQC prototype parameters.	
Parameter	Value
Voltage	220 V rms
Grid frequency	60 Hz
Power rate	5 kVA
DC-link voltage	450 V dc
DC-link capacitors	$C = 9400 \ \mu F$
Shunt converter passive filter	$\begin{array}{l} L = 750 \ \mu H \\ R = 3.7 \ \Omega \\ C = 20.0 \ \mu F \end{array}$
Series converter passive filter	L = 1.0 mH R = 7.5 Ω C = 20.0 μ F
Sampling frequency	19440 Hz
Switching frequency	9720 Hz
PI controller (\bar{P}_{loss})	Kp = 4.0 Ki = 250.0
PI controller ($\bar{Q}_{STATCOM}$)	Kp = 0.5 Ki = 50.0

Fig. 6: iUPQC experimental scheme.

Fig. 8: The iUPQC response at no load condition: a) grid voltages V_A , b) load voltages V_B and c) grid currents.

At first, the source voltage regulation was tested with no load connected to bus B. In this case, the iUPQC behaves as a STATCOM and the breaker S_{Sag} is closed to cause the voltage sag.

To verify the grid voltage regulation, the control of the $\bar{Q}_{STATCOM}$ variable is enabled to compose the equation (4) at instant t = 0s. In this experimental case, $L_S = 10 \ mH$ and $R_{Sag} = 7.5 \ \Omega$. Before the $\bar{Q}_{STATCOM}$ variable is enabled, only the dc link and the voltage at bus B are regulated, and there is a voltage sag at bus A, as shown in Fig. 8. After t = 0s, the iUPQC starts to draw reactive current from bus A, increasing the voltage until its reference value. As can be seen in Fig. 8, the load voltage at bus B is maintained regulated during all the time, and the grid-voltage regulation of bus A has a fast response.

Next experimental case was carried out to verify the iUPQC performance during the connection of a non-linear load with the iUPQC already in operation. The load is a three-phase diode rectifier with a series RL load at the dc link ($R = 45 \Omega$ and L = 22 mH) and the circuit breaker S_{Sag} is permanently closed, with a $L_S = 10 \ mH$ and a $R_{Sag} = 15 \ \Omega$. In this way, the voltage-sag disturbance is increased due to the load connection. In Fig. 7 is possible to verify that the iUPQC is able to regulate the voltages at both sides of the iUPQC, simultaneously. Even after the load connection, at t = 0s, the voltages are still regulated and the currents drawn from bus A are almost sinusoidal. Hence, the iUPQC can perform all the power-quality compensations as mentioned before, including the grid-voltage regulation. It is important to highlight that the grid-voltage regulation is also achieved by means of the improved iUPQC controller as introduced in section III.

Finally, the same procedure was performed with the connection of a two-phase diode rectifier in order to better verify the mitigation of power quality issues. The diode

Fig. 7: The iUPQC transitory response during the connection of a three-phase diode rectifier: a) load currents, b) grid currents, c) load voltages and d) grid voltages.

rectifier has the same dc load ($R = 45 \Omega$ and L = 22 mH) and the same voltage sag ($L_S = 10 \ mH$ and $R_{Sag} = 15 \ \Omega$). Fig. 9 depicts the transitory response of the load connection. Despite the two-phase load currents, after the load connection at t = 0s, the three-phase current drained from the grid has a reduced unbalanced component. Likewise, the unbalance in the voltage at bus A is negligible. Unfortunately, the voltage at bus B has higher unbalance content. These components could be mitigated if the shunt compensator works as an ideal voltage source, i.e. if the filter inductor could be eliminated. In this case, the unbalanced current of the load could be supplied by the shunt converter and the voltage at the bus B could be exactly the voltage synthesized by the shunt converter. Therefore, without filter inductor there would be no unbalance voltage drop in it and the voltage at bus B would remain balanced. However, in a practical case, this inductor cannot be eliminated, and an improved PWM control to compensate voltage unbalances, as mentioned in section III, is necessary.

V. CONCLUSIONS

In the improved iUPQC controller, the currents synthesized by the series converter are determined by the average active power of the load and the active power to provide the dc link voltage regulation, together with an average reactive power to regulate the grid-bus voltage. In this manner, besides all the power-quality compensation features of a conventional UPQC or an iUPQC, this improved controller also mimics a STATCOM to the grid bus. This new feature enhances the

Fig. 9: The iUPQC transitory response during the connection of a twophase diode rectifier: a) load currents, b) source currents, c) load voltages and c) source voltages.

applicability of the iUPQC and provides new solutions in future scenarios involving smart grids and microgrids, including distributed generation and energy storage systems to better deal with the inherent variability of renewable resources such as solar and wind power.

Moreover, the improved iUPQC controller may justify the costs and promotes the iUPQC applicability in power quality issues of critical systems, where it is necessary not only an iUPQC or a STATCOM, but both, simultaneously. Despite the addition of one more power-quality compensation feature, the grid-voltage regulation reduces the inner-loop circulating power inside the iUPQC, which would allow lower power rating for the series converter.

The experimental results verified the improved iUPQC goals. The grid voltage regulation was achieved with no load, as well as when supplying a three-phase non-linear load. These results have demonstrated a suitable performance of voltage regulation at both sides of the iUPQC, even while compensating harmonic current and voltage imbalances.

REFERENCES

- [1] K. Karanki, G. Geddada, M.K. Mishra, and B.K. Kumar, "A Modified Three-Phase Four-Wire UPQC Topology With Reduced DC-Link Voltage Rating," *IEEE Trans. Ind. Electron.*, vol. 60, no. 9, pp. 3555-3566, Sep. 2013.
- [2] V. Khadkikar and A. Chandra, "A New Control Philosophy for a Unified Power Quality Conditioner (UPQC) to Coordinate Load-Reactive Power Demand Between Shunt and Series Inverters," *IEEE Trans. Power Del.*, vol. 23, no. 4, pp. 2522-2534, Oct. 2008.
- [3] Kian Hoong Kwan, Ping Lam So, and Yun Chung Chu, "An Output Regulation-Based Unified Power Quality Conditioner With Kalman Filters," *IEEE Trans. Ind. Electron.*, vol. 59, no. 11, pp. 4248-4262, Nov. 2012.

[4] A. Mokhtatpour and H.A. Shayanfar, "Power Quality Compensation as Well as Power Flow Control Using of Unified Power Quality Conditioner," in *Power and Energy Engineering Conference (APPEEC)*, 2011 Asia-Pacific, 2011, pp. 1-4.

7

- [5] J.A. Munoz et al., "Design of a Discrete-Time Linear Control Strategy for a Multicell UPQC," *IEEE Trans. Ind. Electron.*, vol. 59, no. 10, pp. 3797-3807, Oct. 2012.
- [6] V. Khadkikar and A. Chandra, "UPQC-S: A Novel Concept of Simultaneous Voltage Sag/Swell and Load Reactive Power Compensations Utilizing Series Inverter of UPQC," *IEEE Trans. Power Electron.*, vol. 26, no. 9, pp. 2414-2425, 2011.
- [7] V. Khadkikar, "Enhancing Electric Power Quality Using UPQC: A Comprehensive Overview," *IEEE Trans. Power Electron.*, vol. 27, no. 5, pp. 2284-2297, 2012.
- [8] L. G B Rolim et al., "Custom Power Interfaces for Renewable Energy Sources," in *Industrial Electronics*, 2007. ISIE 2007. IEEE International Symposium on, 2007, pp. 2673-2678.
- [9] N. Voraphonpiput and S. Chatratana, "STATCOM Analysis and Controller Design for Power System Voltage Regulation," in *Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005 IEEE/PES*, 2005, pp. 1-6.
- [10] J. J. Sanchez-Gasca, N. W. Miller, E.V. Larsen, A. Edris, and D. A. Bradshaw, "Potential benefits of STATCOM application to improve generation station performance," in *Transmission and Distribution Conference and Exposition, 2001 IEEE/PES*, vol. 2, 2001, pp. 1123--1128 vol.2.
- [11] A.P. Jayam, N.K. Ardeshna, and B.H. Chowdhury, "Application of STATCOM for improved reliability of power grid containing a wind turbine," in *Power and Energy Society General Meeting - Conversion* and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp. 1-7.
- [12] C.A Sepulveda, J.A Munoz, J.R. Espinoza, M.E. Figueroa, and P.E. Melin, "All-on-Chip dq-Frame Based D-STATCOM Control Implementation in a Low-Cost FPGA," *IEEE Trans. Ind. Electron.*, vol. 60, no. 2, pp. 659-669, 2013.
- [13] B. Singh and S.R. Arya, "Back-Propagation Control Algorithm for Power Quality Improvement Using DSTATCOM," *IEEE Trans. Ind. Electron.*, vol. 61, no. 3, pp. 1204-1212, 2014.
- [14] M. Aredes and R.M. Fernandes, "A dual topology of Unified Power Quality Conditioner: The iUPQC," in *Power Electronics and Applications, 2009. EPE '09. 13th European Conference on*, 2009, pp. 1-10.
- [15] M. Aredes and R.M. Fernandes, "A unified power quality conditioner with voltage SAG/SWELL compensation capability," in *Power Electronics Conference*, 2009. COBEP '09. Brazilian, 2009, pp. 218-224.
- [16] B.W. Franca and M. Aredes, "Comparisons between the UPQC and its dual topology (iUPQC) in dynamic response and steady-state," in *IECON* 2011 - 37th Annual Conference on IEEE Industrial Electronics Society, 2011, pp. 1232-1237.
- [17] B.W. Franca, L.G.B. Rolim, and M. Aredes, "Frequency switching analysis of an iUPQC with hardware-in-the-loop development tool," in *Power Electronics and Applications (EPE 2011), Proceedings of the* 2011-14th European Conference on, 2011, pp. 1-6.
- [18] B.W. Franca, L.F. da Silva, and M. Aredes, "Comparison between alphabeta and DQ-PI controller applied to IUPQC operation," in *Power Electronics Conference (COBEP)*, 2011 Brazilian, 2011, pp. 306-311.
- [19] R.J. Millnitz dos Santos, M. Mezaroba, and J.C. da Cunha, "A dual unified power quality conditioner using a simplified control technique," in *Power Electronics Conference (COBEP)*, 2011 Brazilian, 2011, pp. 486-493.
- [20] Yi Tang et al., "Generalized Design of High Performance Shunt Active Power Filter With Output LCL Filter," *IEEE Trans. Ind. Electron.*, vol. 59, no. 3, pp. 1443-1452, Mar. 2012.
- [21] H. Akagi, E. Watanabe, and M. Aredes, *Instantaneous Power Theory and Applications to Power Conditioning*. New York: Wiley-IEEE Press, 2007.
- [22] J.M. Guerrero, Poh Chiang Loh, Tzung-Lin Lee, and M. Chandorkar, "Advanced Control Architectures for Intelligent Microgrids-Part II: Power Quality, Energy Storage, and AC/DC Microgrids," *IEEE Trans. Ind. Electron.*, vol. 60, no. 4, pp. 1263-1270, Apr. 2013.
- [23] S.R. Bowes and S. Grewal, "Novel harmonic elimination PWM control strategies for three-phase PWM inverters using space vector techniques," *IEE Proc Electr Power Appl*, vol. 146, no. 5, pp. 495-514, 1999.
- [24] M. Liserre, R. Teodorescu, and F. Blaabjerg, "Multiple harmonics control for three-phase grid converter systems with the use of PI-RES current

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2014.2345328, IEEE Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

controller in a rotating frame," *IEEE Trans. Power Electron.*, vol. 21, no. 3, pp. 836-841, May. 2006.

- [25] R. Teodorescu, F. Blaabjerg, U. Borup, and M. Liserre, "A new control structure for grid-connected LCL PV inverters with zero steady-state error and selective harmonic compensation," in *Applied Power Electronics Conference and Exposition, 2004. APEC '04. Nineteenth Annual IEEE*, vol. 1, 2004, pp. 580--586 Vol.1.
- [26] Xiaoming Yuan, W. Merk, H. Stemmler, and J. Allmeling, "Stationaryframe generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions," *IEEE Trans. Ind. Appl.*, vol. 38, no. 2, pp. 523-532, 2002.
- [27] D.N. Zmood and D.G. Holmes, "Stationary frame current regulation of PWM inverters with zero steady-state error," *IEEE Trans. Power Electron.*, vol. 18, no. 3, pp. 814-822, May. 2003.
- [28] D.N. Zmood, D.G. Holmes, and G.H. Bode, "Frequency-domain analysis of three-phase linear current regulators," *IEEE Trans. Ind. Appl.*, vol. 37, no. 2, pp. 601-610, 2001.
- [29] M. Ciobotaru, R. Teodorescu, and F. Blaabjerg, "A New-Single PLL Structure Based on Second Order Generalized Integrator," in *Power Electronics Specialists Conference, 2006. PESC '06. 37th IEEE*, Jeju, 2006, pp. 1-6.
- [30] D. R. Costa Jr., L. G. B. Rolim, and M. Aredes, "Analysis and Software Implementation of a Robust Synchronizing Circuit Based on pq Theory," in *IEEE Trans. Ind. Electron.*, vol. 53, 2006, pp. 1919-1926.
- [31] M. K. Ghartemani, "A Novel Three-Phase Magnitude-Phase-Locked Loop System," in *IEEE Trans. Circuits Syst. I, Reg. Papers*, vol. 53, August 2006, pp. 1798-1802.
- [32] M.S. Padua, S.M. Deckmann, G.S. Sperandio, F.P. Marafao, and D. Colon, "Comparative analysis of Synchronization Algorithms based on PLL, RDFT and Kalman Filter," *Industrial Electronics, 2007. ISIE 2007. IEEE International Symposium on*, pp. 964 970, Jun. 2007.
- [33] Joao A. Moor Neto, Lisandro Lovisolo, Bruno W. França, and Mauricio Aredes, "Robust positive-sequence detector algorithm," *Industrial Electronics*, 2009. IECON '09. 35th Annual Conference of IEEE, pp. 788 - 793, Nov. 2009.
- [34] V. Khadkikar, A. Chandra, A.O. Barry, and T. D. Nguyen, "Steady state power flow analysis of unified power quality conditioner (UPQC)," in *Industrial Electronics and Control Applications, 2005. ICIECA 2005. International Conference on*, 2005, pp. 6 pp.--6.
- [35] V. Khadkikar, A. Chandra, A.O. Barry, and T. D. Nguyen, "Conceptual Study of Unified Power Quality Conditioner (UPQC)," in *Industrial Electronics, 2006 IEEE International Symposium on*, vol. 2, 2006, pp. 1088-1093.

Bruno W. França was born in Rio de Janeiro, Brazil, in 1986. He received the B.Sc. and M.Sc. degree in Electrical Engineering from the Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil, in 2009 and 2012, respectively. He is currently working toward the D.Sc. degree in the same institution. Since 2003, he has been involved in research projects with the Laboratory of Power Electronics and Medium Voltage Applications (LEMT/COPPE/UFRJ).

Leonardo F. da Silva was born in Rio de Janeiro, Brazil. He received the electrotechnical degree from E.T.E Ferreira Viana. He is currently B.Sc. student from Universidade Estadual do Rio de Janeiro (UERJ) and works as technical researcher at the Laboratory of Power Electronics and Medium Voltage Applications (LEMT/COPPE/UFRJ)

Maynara A. Aredes was born in Rio de Janeiro, Brazil, in 1989. She is currently an undergraduate student of Electrical Engineering at the Federal University of Rio de Janeiro; and working as a researcher at the Laboratory of Power Electronics and Medium Voltage Applications (LEMT/COPPE/UFRJ).

8

Maurício Aredes received the Dr. Ing. degree from the Technische Universität Berlin, Germany, in 1996. Since 1997, he has been an Associate Professor at UFRJ, where he teaches power electronics. His current research interests include HVDC and flexible ac transmission systems, active filters, renewable energy systems and power quality issues.