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a b s t r a c t

Decentralized load frequency control (LFC) for multi-area power systems is studied in this paper. A
method to analyze the stability of a multi-area power system under a decentralized LFC is derived by
accounting the inherent structure of the multi-area power system. The method separates the local trans-
fer matrix from the tie-line power flow network, and the impacts of the tie-line power flow network and
the local load frequency controllers on the power system can be easily checked. This result makes it pos-
sible to tune the local LFC controller for each area by first ignoring the tie-line power flow network.
Decentralized LFC tuning on a three-area and a four-area power system shows that the proposed method
is easy to apply for multi-area power systems and good damping performance can be achieved.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Load frequency control (LFC) is a major function of automatic
generation control (AGC) systems. Usually AGC is organized in
three levels:

� Primary control is performed by the speed governors of the gen-
erating units, which provide immediate (automatic) action to
sudden change of load (or change of frequency). With primary
control, a variation in system frequency greater than the dead
band of the speed governor will result in a change in unit power
generation. Transients of primary control are in the time-scale
of seconds.
� Secondary control restores frequency to its nominal value and

maintains the power interchange among areas by adjusting
the output of selected generators. Transients of secondary con-
trol are in the order of minutes.
� Tertiary control is an economic dispatch that is used to drive the

system as economically as possible and restore security levels if
necessary. Tertiary control is usually performed every 5 min.

The speed governor on each generating unit provides the pri-
mary speed control function, and all generating units contribute
to the overall change in generation, irrespective of the location of
the load change, using their speed governing. However, primary
ll rights reserved.
control action is usually not sufficient to restore the system fre-
quency, especially in an interconnected power system so the sec-
ondary control loop is required to adjust the load reference set
point through the speed-changer motor. Secondary control is com-
monly referred to as load frequency control [1].

See [2,3] for a complete review of recent advance in LFC. LFC
becomes more significant today with the increasing size and com-
plexity of interconnected power systems. Multivariable control
techniques can be used to design centralized load frequency con-
trollers, however, due to the inherent structure of large-scale
power systems, decentralized load frequency control is more
appealing for its simplicity in design and implementation. [4]
discussed robust decentralized load frequency control for power
systems with parametric uncertainties based on the Riccati-equa-
tion approach; [5] studied automatic generation control problem
in a four-area power system using layered artificial neural network
(ANN) technique; [6] treated the decentralized load frequency
control design as a decentralized controller design problem for a
multi-input multi-output control system, and discussed local area
LFC design using structured singular values method; [7] proposed a
systematic approach to design sequential decentralized load fre-
quency controllers based on l synthesis technique; [8] proposed
a decentralized adaptive load frequency control scheme to cope
with changes in the parameters of power systems; and [9] studies
a four-area power system using fuzzy logic controller.

Most of the methods suggest complex state-feedback or high-
order dynamic controllers, which are not practical for industrial
practices. Design of PI and PID-type load frequency controllers at-
tracts attention in the past few years. Rerkpreedapong et al. [10]
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Nomenclature

Dfi incremental frequency deviation of Area #i (Hz)
DPGi incremental change in generator output in Area #i

(p.u. MW)
DXGi incremental change in governor valve position in Area

#i
DPdi load disturbance in Area #i (p.u. MW)
DPtiei incremental change in tie-line power between Area #i

and other areas (p.u. MW)

Ggi(s) transfer function of the governor in Area #i
Gti(s) transfer function of the turbine in Area #i
Gpi(s) transfer function of the generator in Area #i
Ri droop characteristic for Area #i (Hz/p.u. MW)
Bi the frequency bias setting of Area #i (p.u. MW/Hz)
Tij synchronizing coefficients between Area #i and #j

(p.u. MW/Hz)

Area #3Area #2

Area #1

Area #n

Tie-line
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designed robust decentralized PI-type load frequency controller
using genetic algorithms (GA) and linear matrix inequalities
(LMI) methods, and [11] used an iterative LMI algorithm; [12] dis-
cussed load frequency control using fuzzy gain scheduling of PI
controllers; and [13–15] considered various methods to optimize
PID gains for a three-area power system. These methods greatly
simplify the complexity of the load frequency controllers. How-
ever, they are not very flexible, since the design methods rely on
the parameters and/or the structure of the power systems. If the
parameters or the structure are changed, the controllers have to
be re-designed and are not easy to re-tune.Recently, attention
has been paid to the tuning of PID-type load frequency control.
[16] proposed a tuning method for single-area power system,
and the result is extended to two-area systems [17–19] proposed
to tune PID load frequency controller via internal model control
(IMC) technique. It was shown that with two tuning parameters
the method can achieve good performance for power systems with
non-reheated, reheated, and hydro turbines, and it can be extended
to tune decentralized load frequency controller for multi-area
power systems by assuming that there is no tie-line power flow
among areas.The above idea for decentralized load frequency con-
troller design and tuning will be further investigated in this paper,
specifically, a method to analyze the stability of a multi-area power
system under a decentralized LFC is proposed taking the inherent
structure of the multi-area power system into consideration. This
result makes it possible to easily check the impacts of the tie-line
power flow network and the local load frequency controllers on
the whole power system. Decentralized LFC tuning on a three-area
and a four-area power system shows that the proposed method is
easy to apply for multi-area power systems and good damping per-
formance can be achieved.
Fig. 1. Simplified diagram of a multi-area interconnected power system.

Fig. 2. Block diagram of control area i.
2. Decentralized load frequency control

Consider the load frequency control problem for a multi-area
power system as shown in Fig. 1, and each area has the structure
shown in Fig. 2.

The load frequency control problem requires that not only the
frequency deviation of each area must return to its nominal value
but also the tie-line power flows must return to their scheduled
values. So a composite variable, the area control error (ACE), is
used as the feedback variable to ensure the two objectives. For Area
#i, the area control error is defined as

ACEi ¼ DPtiei þ BiDfi ð1Þ

The feedback control for Area #i takes the form

ui ¼ �KiðsÞACEi ð2Þ

A decentralized controller can be tuned assuming that there are
no tie-line power flows, i.e., DPtiei = 0 (i = 1, . . . ,n). In this case the
local feedback control will be
ui ¼ �KiðsÞBiDfi ð3Þ

Denote the transfer functions of the governor, the turbine and the
generator for Area #i by Ggi(s), Gti(s), and Gpi(s), respectively, then
the transfer function from Dfi to ui can be easily found as

GiðsÞ ¼
GgiGtiGpi

1þ GgiGtiGpi=Ri
ð4Þ

So it is clear that to tune a decentralized load frequency controller,
one just needs to tune PID controller for the following transfer func-
tion for Area #i.

PiðsÞ ¼ GiðsÞBi ð5Þ



W. Tan / Energy Conversion and Management 52 (2011) 2015–2023 2017
3. LFC-PID tuning via IMC

The difficulty in PID design and tuning for load frequency con-
trol lies in the fact that the power system model (5) is of high order
and generally under-damped. Most of the existing PID tuning
methods concentrate on over-damped processes, so direct applica-
tion of existing PID tuning methods for LFC is not appropriate. Nev-
ertheless, in [16,17], a PID load frequency controller tuning method
was proposed based on the PID tuning method proposed in [20,18],
it was shown that for LFC tuning purpose, the transfer function of
the power systems can be approximated with a second-order oscil-
latory model, and a PID tuning procedure can be done based on a
two-degree-of-freedom (TDF) internal model control (IMC) meth-
od. In [19] it is observed that the TDF-IMC design method can be
directly applied to plant model (5) thus the approximation in
[18] is not necessary, so the method is not only applicable to power
systems with non-reheat turbines, but also to power systems with
reheat and hydro turbines.

The IMC-PID tuning procedure goes as follows [18,19]:

(i) Decompose the plant model ePðsÞ into two parts:
ePðsÞ ¼ PMðsÞPAðsÞ ð6Þ
where PM(s) is the minimum-phase (invertible) part and PA(s)
is the allpass (nonminimum-phase with unity magnitude)
part.
(ii) Design a setpoint-tracking IMC controller
QðsÞ ¼ P�1
M ðsÞ

1
ðksþ 1Þr

ð7Þ

where k is a tuning parameter such that the desired setpoint
response is 1

ðksþ1Þr , and r is the relative degree of PM(s).

(iii) Design a disturbance-rejecting IMC controller of the form
Q dðsÞ ¼
amsm þ � � � þ a1sþ 1

ðkdsþ 1Þm
ð8Þ

where kd is a tuning parameter for disturbance rejection, m is
the number of poles of ePðsÞ such that the Qd(s) needs to can-
cel. Suppose p1, . . . ,pm are the poles to be canceled, then
a1, . . . ,am should satisfy

1� ePðsÞQðsÞQ dðsÞ
� �

js¼p1 ;���;pm
¼ 0 ð9Þ
(iv) Transform it to a conventional unity feedback controller
KðsÞ ¼ QðsÞQdðsÞ
1� ePðsÞQðsÞQ dðsÞ

ð10Þ
(v) Expand K(s) into Maclaurin series to get the PID parameters,
or approximate it in the frequency domain by the procedure
proposed in [18,19].

The performance of the resulting PID controller is related to two
tuning parameters which makes it flexible to re-tune when neces-
sary. For load frequency control, we need to use Qd to cancel the
undesirable poles (e.g., oscillatory and/or unstable poles) of Pi(s)
(5) to achieve good disturbance rejection performance. MATLAB-
based programs for general TDF-IMC design and PID reduction
are available for such purpose.

4. Stability analysis of decentralized LFC

It is shown that the decentralized load frequency control of
multi-area power systems requires tuning the local PID controller
for the model (5). Each local PID can be tuned independently. How-
ever, since tie-line power flows among areas are ignored in the lo-
cal load frequency control design, we need to check the stability of
the whole system to ensure the designed decentralized PID con-
troller works after the local controllers have been tuned. Many
multivariable stability theories can be applied to check the stability
of a multi-area power system under a decentralized LFC controller.
However, we note that the multi-area power system has its specific
structure, so a simple method can be derived for the stability
analysis.

For Area #i, it is easy to find the transfer function from the tie-
line power flow deviation DPtiei to the frequency deviation Dfi by
using the well-known Mason’s rule as

Dfi ¼ �MiðsÞDPtiei ð11Þ

where Mi(s) is given by

MiðsÞ :¼ GpiðsÞ þ GgiðsÞGtiðsÞGpiðsÞKiðsÞ
1þ GgiðsÞGtiðsÞGpiðsÞ=Ri þ GgiðsÞGtiðsÞGpiðsÞKiðsÞBi

ð12Þ

Since the tie-line power flow equals

DPtiei ¼
Xn

j–i

Tij

s
ðDfi � DfjÞ ð13Þ

then we have

Dfi ¼ �MiðsÞ
Xn

j–i

Tij

s
ðDfi � DfjÞ; i ¼ 1;2; . . . ;n ð14Þ

Denote

Df ¼ ½Df1; . . . ;Dfn�T ð15Þ

and put (14) into the matrix form, we have

Df ¼ �MðsÞ T
s
Df ð16Þ

where the ‘local transfer matrix’ M(s) is a diagonal matrix defined
by

MðsÞ :¼

M1ðsÞ 0 � � � 0
0 M2ðsÞ � � � 0

..

. ..
. . .

. ..
.

0 0 � � � MnðsÞ

2
66664

3
77775 ð17Þ

and the ‘tie-line network matrix’ T is a constant matrix defined by

T :¼

Pn
j–1

T1j �T12 � � � �T1n

�T21
Pn
j–2

T1j � � � �T2n

..

. ..
. . .

. ..
.

�Tn1 �Tn2 � � �
Pn
j–n

T1j

2
666666666664

3
777777777775

ð18Þ

It is not hard to verify that all the closed-loop transfer functions
for the n-area power system with a decentralized LFC controller
contains (I + M(s)T/s)�1 as in (16), so we have:

Theorem 1. Given an n-area power system shown in Fig. 1 and
assume that each area has the structure as shown in Fig. 2. Then the
whole power system is stable if and only if the following transfer
function is stable.

hðsÞ :¼ detðI þMðsÞT=sÞ ð19Þ

It is observed that the local transfer matrix M(s) and the tie-line
power flow network T are separated from each other in h(s) due to
the inherent structure of the multi-area power systems, so it is
easy to check the effects of local controllers (M(s)) and the tie-line
interconnection network (T) on the stability of the whole power
system.
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Fig. 3. Responses of the three-area power system: Df (solid: proposed; dashed: [4]).

2018 W. Tan / Energy Conversion and Management 52 (2011) 2015–2023
For example, consider the two-area case, we have

T ¼
T12 �T12

�T21 T21

� �
ð20Þ

Suppose T12 = T21 = c, then

T ¼
c �c
�c c

� �
¼ c

1
�1

� �
1 �1½ � ð21Þ

Since det(I + AB) = det(I + BA) for any compatible matrices A and B,
we have

hðsÞ ¼ detðI þMT=sÞ ¼ 1þ eMðsÞc=s ð22Þ
where

eMðsÞ ¼ 1 �1½ �
M1ðsÞ 0

0 M2ðsÞ

� �
1
�1

� �
¼ M1ðsÞ þM2ðsÞ ð23Þ

So the maximum c such that the power system remains stable is the
largest gain which destabilizes eMðsÞ=s. It can be checked by using
the root locus of eMðsÞ=s. The procedure is discussed in detail in [18].

For interconnected power systems with more than two areas,
the tie-lie power flow network T is much more complicated and
the stability of the whole power system relies on the structure of
the tie-line network, the magnitude of each tie-line flow, and the
local load frequency controllers. Checking the roots of h(s) under
different tie-line network structure and magnitude can verify the
performance of the designed decentralized LFC.

In summary, the decentralized load frequency controller for a
multi-area power system can be tuned by first assuming that the
tie-line power flow is zero and tune the local PID controller for
model (5) using the IMC-PID method by carefully choosing the
two tuning parameters ki and kdi (i = 1, . . . ,n). After that, check
the minimal damping ratio of h(s) (19) to ensure the tuned decen-
tralized LFC has a desired damping performance. If not, detune the
local PID controller by re-selecting ki and kdi.

5. Illustrative examples

Two examples are considered in this section to illustrate the
proposed method.

5.1. A three-area power system

Consider a three-area power system discussed in [4]. The trans-
fer functions for the power systems are:

Ggi ¼
1

TGisþ 1
; Gti ¼

1
TTisþ 1

; Gpi ¼
KPi

TPisþ 1
; ði ¼ 1;2;3Þ ð24Þ

with

TG1 ¼ 0:08; TT1 ¼ 0:3; TP1 ¼ 20; KP1 ¼ 120; R1 ¼ 2:4
TG2 ¼ 0:072; TT2 ¼ 0:33; TP2 ¼ 25; KP2 ¼ 112:5; R2 ¼ 2:7 ð25Þ
TG3 ¼ 0:07; TT3 ¼ 0:35; TP3 ¼ 20; KP3 ¼ 115; R3 ¼ 2:5

The frequency bias settings are Bi = 0.4 (i = 1,2,3) and the synchro-
nizing coefficients are

T12 ¼ T13 ¼ T21 ¼ T23 ¼ T31 ¼ T32 ¼ 0:5 ð26Þ

Adopting IMC-PID tuning procedure discussed in Section 3 and
choose k = 0.04, kd = 0.4 for each area, we have the local PID
controllers

K1ðsÞ ¼ 4:8279þ 6:3387
s

þ 1:4448s

K2ðsÞ ¼ 7:4252þ 9:0186
s

þ 2:0507s ð27Þ

K3ðsÞ ¼ 5:8979þ 7:4629
s

þ 1:7059s
The roots of h(s) for the current tie-line network all lies on the left-
hand plane so the designed decentralized system is stable. In fact,
the minimal damping ratio of all the roots is about 0.295, so the per-
formance of the designed decentralized system is good enough.

To show the performance of the decentralized PID controller, a
step load DPd1 = 0.01 is applied to Area #1 at t = 1, followed by a
step load DPd2 = 0.01 at Area #2 and a step load D Pd3 = 0.01 at Area
#3. The responses of the power system are shown in Figs. 3 and 4.
Also shown are the responses of the decentralized state-feedback
controller designed in [4]. It is observed that the proposed decen-
tralized PID controller achieves better damping for frequency and
tie-line power flow deviations in all the three-areas.

The power systems may be subjected to uncertainties in the
parameters due to parameter estimation errors or operating point
changes. So a detailed robustness analysis against the uncertainties
should be performed to ensure that the designed system is robust.
For single-area power system, the procedure is detailed in [21,18].
For multi-area power systems, the procedure is difficult to apply
since the number of uncertainties in the structure and in the
parameters is large. However, robustness analysis for each area
may help understand the robustness of the whole system. Anyway,
if the local controller is not robust against parameter uncertainties
in its area, it is hardly robust against parameter uncertainties from
other areas. The singular value singular (SSV) plots against 50%
uncertainties in the five parameters (TG, TT, TP, KP, and R) for each
area are shown in Fig. 5. Since the maximum of each structured
singular value is less than 1, so each local PID controller can guar-
antee 50% uncertainties in all the five parameters in each area.

The responses of the system when the parameters of each area
are changed by 50% under the current tie-line network are shown
in Fig. 6. It clearly verifies the statement above. The decentralized
controller designed in [4] cannot guarantee system stability when
all the parameters are at their upper bounds, so its responses are
not shown here.

Now that the designed decentralized controller are robust
against parameter variations in each area. Is it robust against tie-
line power flow network? Using Theorem 1, it is easy to verify that
the largest Tij such that the decentralized system becomes unstable
under current tie-line structure is about 1.62, while currently Tij is
0.5, thus the tuned decentralized PID controller is quite robust
against tie-line operation. To verify this, suppose the synchronizing
coefficients are increased by 100%, the responses of the power
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system are shown in Fig. 7. The proposed decentralized LFC shows
better performance than the one designed in [4].

Another issue not considered in the decentralized LFC tuning
procedure is the generation rate constraint (GRC), which would
influence the dynamic responses of power systems significantly.
If the generation rate constraint (GRC) is 0.0017 MW/s for each
area, the power system will be unstable with the proposed decen-
tralized LFC controller. However, if the anti-GRC scheme proposed
in [18] is used, the power system will be stable. Fig. 8 shows the
responses of the system when there are load disturbances of mag-
nitude 0.01 simultaneously at the three-areas at t = 1. The param-
eter kc (Fig. 8 in [18]) in the anti-GRC scheme is chosen as 1 for
each area. The effectiveness of the anti-GRC scheme is clear. When
there are uncertainties in the parameters of each area and the tie-
line power flow magnitude, the anti-scheme still works well. For
brevity, the figures are not shown here.

5.2. A four-area power system

Consider a four-area power system discussed in [6]. The simpli-
fied diagram of the power system is shown in Fig. 9. Area #1, #2
and #3 are interconnected with each other, but Area #4 is only
connected with Area #1.

The transfer functions for the power systems are:

Ggi ¼
1

TGisþ 1
; Gti ¼

1
TTisþ 1

; Gpi ¼
KPi

TPisþ 1
; ði ¼ 1;2;3;4Þ

ð28Þ

with

TG1 ¼ 0:08; TT1 ¼ 0:3; TP1 ¼ 20; KP1 ¼ 120; R1 ¼ 2:4;

TG2 ¼ 0:072; TT2 ¼ 0:33; TP2 ¼ 25; KP2 ¼ 112:5; R2 ¼ 2:7; ð29Þ

TG3 ¼ 0:07; TT3 ¼ 0:35; TP3 ¼ 20; KP3 ¼ 125; R3 ¼ 2:5;

TG4 ¼ 0:085; TT4 ¼ 0:375; TP1 ¼ 15; KP4 ¼ 115; R4 ¼ 2:0

The frequency bias settings are Bi = 0.425 (i = 1, . . . ,4) and the syn-
chronizing coefficients are

T12 ¼ T13 ¼ T21 ¼ T23 ¼ T31 ¼ T32 ¼ T14 ¼ T41 ¼ 0:545;

T24 ¼ T42 ¼ T34 ¼ T43 ¼ 0:
ð30Þ
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Adopting IMC-PID tuning procedure discussed in Section 3 and
choose k = 0.1, kd = 0.6 for each area, we have the local PID
controllers

K1ðsÞ ¼ 0:6553þ 1:1028
s

þ 0:3902s

K2ðsÞ ¼ 1:4516þ 1:5600
s

þ 0:5749s ð31Þ

K3ðsÞ ¼ 0:8084þ 1:1771
s

þ 0:4478s

K4ðsÞ ¼ 0:3449þ 1:0256
s

þ 0:4298s

The roots of h(s) for the current tie-line network all lies on the left-
hand plane so the designed decentralized system is stable. In fact,
the minimal damping ratio of all the roots is about 0.1968, so the
performance of the designed decentralized system is good.
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To show the performance of the decentralized PID controller,
step loads DPd1 = DPd2 = 0.01 are applied simultaneously at Areas
#1 and #2 at t = 1 and followed by step loads DPd3 = DPd4 = 0.01
simultaneously at Areas #3 and #4. The responses of the system
are shown in Figs. 10 and 11. Also shown are the responses of
the decentralized state-feedback controller designed in [6]. It is
0 10 20 30 40−0.01

−0.005

0

0.005

0.01

Δ 
P tie

1 (M
W

)

Time (sec.)

0 10 20 30 40
−0.01

−0.005

0

0.005

0.01

Δ  
P tie

3 (M
W

)

Time (sec.)

Fig. 11. Responses of the four-area power sys
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Fig. 12. Responses of the four-area power system under magnitude
observed that the proposed decentralized PID controller achieves
better damping for frequency and tie-line power flow deviations
in all the four areas.

It is easy to verify that the designed LFC is robust against uncer-
tainties in the parameters of each area as in the previous example.
For brevity the figures are omitted here. Using theorem 1, it is easy
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tem: DPtie (solid: proposed; dashed: [6]).
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to verify that the largest Tij such that the decentralized system be-
comes unstable under current tie-lie structure is about 1.64, while
currently Tij is 0.545, thus the tuned decentralized PID controller is
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Fig. 14. Responses of the four-area power system under structure variation in the
quite robust against tie-line operation. To verify this, suppose the
synchronizing coefficients are increased by 100%, the responses
of the power system are shown in Fig. 12. The proposed decentral-
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ized LFC shows acceptable damping (with minimal damping ratio
of h(s) equals 0.065), while the decentralized controller designed
in [4] no longer stabilizes the power system.

Despite the possible magnitude change of the tie-line power
flow network, its structure may also be changed. We consider
two circumstances under the current network structure:

Case 1. Area #4 is connected to Area #2 and #3
(T24 = T42 = T34 = T43 = 0.545);

Case 2. Area #2 is disconnected from Area #1 (T12 = T21 = 0).

The system responses under the same load disturbances as be-
fore are shown in Figs. 13 and 14. It is observed that the designed
decentralized LFC works well in the two cases. In fact, the minimal
damping ratio of h(s) is 0.181 for Case 1 and 0.231 for Case 2, which
means that disconnecting one area from an existing power net-
work may increase the damping of the system, while connecting
more areas into an existing power network may decrease the
damping of the system. However, the conclusion is only drawn
from this example and may not be applicable to general multi-area
systems.

6. Conclusion

Decentralized load frequency controller analysis and tuning
were investigated in this paper. The local load frequency control-
lers were tuned by a two-degree-of-freedom IMC method by first
ignoring the tie-line operation, and the stability of the multi-area
power system under the decentralized LFC could be checked using
a simple method. Design practice on a three-area and a four-area
power system showed that the proposed method was easy to apply
for multi-area power systems and could achieve good damping
performance. Further research on checking the robustness of mul-
ti-area systems and on decentralized PID tuning considering the
tie-line power flow network is under progress.
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