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Abstract—In this paper, a goal representation heuristic
dynamic programming (GrHDP) based controller is developed
for the doubly-fed induction generator based wind farm to
improve the system transient stability under fault conditions.
The proposed controller is based on adaptive dynamic pro-
gramming (ADP) techniques to approximate the optimal control
policy according to the interaction between the controller and
the power plant. Compared to existing ADP approaches with
one action network and one critic network, our GrHDP archi-
tecture introduces an additional network, i.e., the reference
network, to form an internal goal/reward representation. This
better mapping between the system state and the control action
significantly improves the control performance. The effectiveness
of the proposed approach is validated via two cases. The first
case investigates a revised four-machine two-area system with
high wind penetration and a static synchronous compensator.
The second case is a practical size power system with wind
farm in Liaoning Province in China. Detailed simulation anal-
ysis and comparative studies with traditional ADP approaches
are presented to demonstrate the superior performance of our
method.

Index Terms—Computational intelligence (CI), doubly-fed
induction generator (DFIG), goal representation heuristic
dynamic programming (GrHDP), power system stability.

I. INTRODUCTION

THE INCREASING wind generation with long-distance
power transmission in electrical power grids raise reason-

able concern of possible stability threats to the system security
operation and control. In such situations, how to design an
adaptive, optimal controller becomes a critical challenge faced
by the power grid operators and engineers around the world
today. Among many enabling technologies, the latest research
results from both the power and energy community and the
computational intelligence (CI) community have demonstrated
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that CI research could provide key technical innovations to
solve this challenging problem. Thereby in this paper, a goal
representation heuristic dynamic programming (GrHDP) based
approach is adopted to improve the transient stability of power
systems with wind penetration under fault conditions.

Doubly-fed induction generators (DFIGs) are the most
widely used wind power generators in wind power genera-
tion systems [1]. It has been recognized that the controllers
have a critical impact on the stability performance of grid-
connected DFIG. Therefore, the controllers should be designed
appropriately [2]. Among all the control designs, reactive
power control is an important issue for the grid-connected
wind farms [3]–[5]. Many wind power grid connection codes
today require the enhancement of the low voltage ride-
through (LVRT) capability of wind farms and the maintenance
of their reliability in a certain range during and after a
short-term fault. The study in [3] shows that rotor angles of
synchronous generators are directly influenced by the type of
reactive power control employed by the wind generation. The
implementation of appropriate control strategies in wind farms,
particularly the terminal voltage control, can lessen the reac-
tive power requirements of conventional synchronous units and
help to mitigate large rotor angle swings. Meanwhile, it is sug-
gested that a good control strategy for the static synchronous
compensator (STATCOM) will significantly improve the sys-
tem dynamics [6], [7]. Based on this suggestion, an approach
to conduct an impact study of a STATCOM on the integration
of a large wind farm into a weak loop power system is pre-
sented in [8]. Here it is illustrated that the size and location
of the STATCOM will both affect the voltage fluctuations.

A decoupled control technique for the active and reactive
power of doubly-fed wound rotor induction generator is pro-
posed in [9], and it has been widely used in the control design
of wind turbines (WT) with DFIG [10]–[12]. The control tech-
nique is based on the conventional proportional-integral (PI)
control, which needs an accurate wind farm and power system
model. Therefore, this technique requires a large number of
parameters to be optimized or tuned to ensure a good inter-
action between the wind farm and the power system at the
point of common coupling (PCC). For most of the research,
the parameters of the PI controllers are tuned with approxi-
mate linearization using different optimization methods. For
instance, Wu et al. [11] present an approach to use particle
swarm optimization (PSO) to optimize the control parameters
in a DFIG simultaneously based on a system-level fitness func-
tion. However, when the number of the DFIG in the system
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increases, the number of control parameters will also increase
significantly leading to the curse of dimensionality issue.

Intelligent control strategies, such as fuzzy logic, has been
successfully applied to control DFIG in different applica-
tions [13]–[15]. In [13], neuro-fuzzy vector control is imple-
mented on a laboratory DFIG. In [14], fuzzy logic control
is used for primary frequency and active power control of the
wind farms. In [15], a methodology to design an adaptive max-
imum power point tracking fuzzy system for variable speed
wind generators is proposed and tested. Such fuzzy system has
low memory occupancy and high learning capability, overcom-
ing some disadvantages of classical sensor-less peak power
tracking control methods, thus could be well implemented on
a micro-controller. However, all these aforementioned fuzzy
controls require sufficient off-line fine tuning and simulation,
which limit their large-scale applications.

After more than twenty years of studies in intelligent con-
trol in power systems, advanced control approaches, such
as adaptive dynamic programming (ADP) based methods,
have shown to be promising for power system control prob-
lems [16]–[20]. Qiao et al. [18] propose a heuristic dynamic
programming (HDP) based coordinated reactive power control
of a large wind farm and a STATCOM. The HDP based con-
troller shows improved performance of the DFIG in presence
of a grid fault, with the assumption that the controller has
been sufficiently pretrained based on the information from the
environment before connected to the grid. Meanwhile, another
category of “model free” ADP approach [21], which does not
require a detailed model of the environment or model network
to predict the system status, has successfully demonstrated
its effectiveness in many real applications including damping
control in a classic four-machine two-area system and a real
large power system in China [22], among others [23]–[26]. The
classical HDP approach has been demonstrated to be a feasible
technique to damp oscillation and to increase power system
stability. However, the reinforcement signal in the classical
HDP has been designed in a “hand-crafted” way, which may
not adapt with the system operating conditions. For instance,
many of the classic HDP methods simply use a binary rein-
forcement signal, such as a “+1” and a “−1” to represent the
“success” or “failure” of the control. Inspired by our previous
work in [27] and [28], in this paper, we develop the wind farm
power system stability control based on the new GrHDP. By
introducing of a new reference network to provide an internal
goal signal to the critic network, our GrHDP architecture forms
an internal goal/reward representation that can provide a rich
representation of the control objective compared to the tradi-
tional design. In this paper, we aim to investigate the reactive
power control of a wind farm to improve the system dynamics
during and after grid fault, namely, to reduce the oscillation
overshoot and increase the damping of the system.

The rest of the paper is organized as follows. Section II
presents the revised four-machine two-area system and the
detailed model of each part, including the DFIG model,
DFIG controller and STATCOM controller model. Section III
presents the GrHDP structure and the design of the power sys-
tem controller. Section IV presents simulation results of the
first of two cases in MATLAB/Simulink environment with two

Fig. 1. Single-line diagram of the benchmark power system that includes a
DFIG-based wind farm and a STATCOM.

Fig. 2. Schematic diagram of DFIG wind turbine system [4], [5].

different scenarios. Section V demonstrates the control perfor-
mance in another case with an equivalent practical size wind
farm system. Section VI concludes the paper and addresses
some implementation considerations.

II. SYSTEM CONFIGURATION AND MODELING

A. Overview Power System Configuration

Fig. 1 shows the revised four-machine two-area system,
which is based on the classic model. This benchmark power
system has been first investigated in [10] to study the wind
turbine with different controllers, such as the optimized PI
controller or the nonlinear controller, to improve the tran-
sient stability performance of the power system. The system
is divided into two areas, in each of which there are two
machines. In [10], the four-machine two-area system is mod-
ified by replacing generator 3 (G3) with a DFIG-based wind
farm. In this paper, instead of replacing G3 with a wind farm,
the generator 4 (G4) is replaced with a DFIG-based wind farm
and a STATCOM. The parameters of the benchmark system
and the power flow can be referenced in [10].

B. DFIG Wind Turbine System Model

Fig. 2 illustrates the wind turbine model studied in this
paper [4], [5]. In this system, the WT is connected to the
DFIG through a drive train system, which consists of a low
and a high speed shaft with a gearbox in between. The WT
with DFIG system is an induction type generator in which
the stator windings are directly connected to the three-phase
grid, and the rotor windings are fed through three-phase
back-to-back insulated-gate bipolar transistor (IGBT) based
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pulse width modulation (PWM) converters. The back-to-back
PWM converter consists of a rotor-side converter (RSC), a
grid-side converter (GSC) and a dc-link capacitor. Their con-
trollers include three parts: a RSC controller, a GSC controller,
and a wind turbine controller. Generally speaking, the objec-
tives of these controllers are to maximize power production
while maintaining the desired rotor speed and voltage [5].
Specifically, the WT controller controls the pitch angle of the
wind turbine and the reference rotor speed to the RSC and
GSC controller. Two control mechanisms are used: 1) power
optimization mechanism with sub-synchronous speed; and
2) power limitation mechanism with super-synchronous speed.
The RSC and GSC controller are to control the active and
reactive power of the DFIG using vector control technique.

1) Model of Drive Train: The drive train system consists
of a turbine, a low and a high speed shaft, and a gearbox.
This system can be represented by a two-mass model as
follows [11]:

2Ht
dω

dt
= Tm − Tsh (1)

dθtw

dt
= ωt − ωr = ωt − (1 − sr)ωs (2)

2Hg
dsr

dt
= −Tem − Tsh (3)

Tsh = Kshθtw + Dsh
dθtw

dt
(4)

where
Ht the inertia constants of the turbine;
Hg the inertia constants of the generator;
ωt the WT angle speed;
ωr the generator rotor angle speed;
θtω the shaft twist angle;
Ksh the shaft stiffness coefficient;
Dsh the damping coefficient;
Tsh the shaft torque;
Tm the wind torque;
Tem the electromagnetic torque.

2) Model of Rotor Side Controller: The RSC controller
aims to control the DFIG output active power for tracking
the input of the WT torque, and to maintain the terminal
voltage in control setting [11]. As we mentioned before, the
vector control strategy is used for the active power and reac-
tive power control of the WT with DFIG system. In order
to decouple the electromagnetic torque and the rotor exci-
tation current, the induction generator is controlled in the
stator-flux-oriented reference frame, which is synchronously
rotating, with its d axis oriented along the stator-flux vector
position [2], [4]. Thus, for the RSC, the active power and volt-
age are controlled independently via vqr and vdr, respectively.
The voltage control is achieved by controlling the reactive
power to keep it within the desired range. Fig. 3 is the overall
vector control scheme of the RSC. The rotor speed wr and
Qs are the measured system active power and reactive power,
respectively. They are compared with the desired active power
and reactive power to generate the reference signals iqr_ref and
idr_ref . The actual d − q current signals iqr and idr are then
compared with these reference signals to generate the error

Fig. 3. Schematic diagram of rotor side controller.

Fig. 4. Schematic diagram of grid side controller.

signals, which are passed through two PI controllers to form
the voltage signal references v∗

qr and v∗
dr, respectively. The

two voltage signals v∗
qr and v∗

dr are compensated by the corre-
sponding cross-coupling terms to form the voltage signals vqr

and vdr. After reference frame transformation, control signal
Vr is then used by the PWM module to generate the IGBT
gate control signals to drive the RSC.

3) Model of Grid Side Controller: The GSC, as showed in
Fig. 4, aims to maintain the dc-link voltage, and to control the
terminal reactive power [11]. In order to obtain independent
control of the active and reactive power flowing between the
grid and the grid side converter, the converter control oper-
ates in the grid-voltage oriented reference frame, which is
synchronously rotating, with its d axis oriented along the grid-
voltage vector position [2], [4]. Thus, the dc-link voltage and
reactive power are controlled independently via vdg and vqg,
respectively. The actual signal of the dc-link voltage VDC is
compared with its command value VDC_ref to form the error
signal, which is passed through the PI controller to generate
the reference signal idg_ref . Then this reference signal idg_ref

and another corresponding reference signal iqg_ref are com-
pared with the actual signals iqg and idg, respectively. These
error signals are then passed through two PI controllers to
form the voltage signal references v∗

dg and v∗
qg, respectively.

The two voltage signals v∗
dg and v∗

qg are compensated by the
corresponding cross-coupling terms to form the voltage signals
vdg and vqg. After reference frame transformation, control sig-
nal Vg is then used by the PWM module to generate the IGBT
gate control signals to drive the GSC.

C. STATCOM Model

The STATCOM and its controllers are shown in Fig. 5.
It is a shunt device of the flexible alternating current trans-
mission system (FACTS) family using power electronics to
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Fig. 5. Schematic diagram of STATCOM control.

control power flow and improve transient stability of power
grids [6]–[8]. The STATCOM regulates voltage at its termi-
nal by controlling the amount reactive power injected into or
absorbed from the power grid, which depends on the system
voltage. The STATCOM modeling is based on IGBT, but as
details of the inverter and harmonics are not represented, it
can also be used to model a gate-turn-off thyristor (GTO)
based STATCOM in transient stability studies. In the controller
design, an outer regulation loop consists of an ac voltage reg-
ulator and a dc voltage regulator, while an inner regulation
loop consists of a current regulator. The current regulator is
assisted by a feed forward type regulator which predicts V2d

and V2q from the measurements V1d, V1q and the transformer
leakage reactance [6].

During normal conditions, both active and reactive power
flow to/from the STATCOM are very low. Active power
demand is only the losses within the STATCOM, and reac-
tive power demand is within the difference between neighbor
steps of switchable ac filters [29]. When the system is under
fault conditions, both STATCOM active and reactive power
demands are significantly increased. Because of the high cost,
the rating of the STATCOM should be carefully addressed
in practical applications. The minimal capacity of STATCOM
should be chosen above the given curve for particular value
of communication delay. A detailed engineering study of the
STATCOM sizing is presented in [29]. In this paper, the
parameters of the STATCOM in the simulation are given in
the Appendix.

III. GRHDP-BASED CONTROLLER DESIGN

The GrHDP architecture includes three parts: an action net-
work, a critic network, and a reference network [27], [28].
The action network produces control signal u(t) according to
a learning policy represented by approximating network, while
the reference network provides the internal reinforcement sig-
nal (internal goal/reward representation) s(t), to interact with
the critic network to approximate the cost and reward function

J by minimizing the Bellman function as follows:

J∗(x(t)) = min
u(t)

{
U(x(t), u(t)) + γ ∗ J∗(x(t + 1))

}
(5)

where x(t) is the state vector of the system, U is the utility
function, and γ is a discount factor. These three parts are
usually implemented by using neural networks because of their
universal approximation capability and the associated back-
propagation learning algorithm. During the on-line learning,
the controller is “naive” when it starts to control, namely, the
action network, critic network and reference network are both
randomly initialized in their weights. Once a system state is
observed, an action will be subsequently produced based on
the parameters in the action network. The principle in adapting
the action network is to indirectly back propagate the error
between the desired ultimate objective, denoted by Uc, and
the approximate J function from the critic network. Based
on the instant reinforcement signal and internal reinforcement
signal, the controller will learn to accomplish the control goal.
The error functions used to update the parameters in the action
network, critic network and reference network are as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ea(t) = J(t) − Uc(t); Ea(t) = 1
2 e2

a(t)

ef (t) = αJ(t) − [J(t − 1) − r(t)] ; Ef (t) = 1
2 e2

f (t)

ec(t) = αJ(t) − [J(t − 1) − s(t)] ; Ec(t) = 1
2 e2

c(t).

(6)

The chain back-propagation rule is employed to train and
adapt the parameters in the three neural networks as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Ea(t)
∂ωa(t)

= ∂Ea(t)
∂J(t)

∂J(t)
∂u(t)

∂u(t)
∂ωa(t)

∂Ef (t)
∂ωf (t)

= ∂Ef (t)
∂J(t)

∂J(t)
∂s(t)

∂s(t)
∂ωf (t)

∂Ec(t)
∂ωc(t)

= ∂Ec(t)
∂J(t)

∂J(t)
∂ωc(t)

(7)

where ωa, ωf and ωc are the weights of action network,
reference network and critic network, respectively.

Fig. 6 shows the DFIG wind turbine system and STATCOM
with the proposed GrHDP controller. The upper area denotes
the plant to be controlled by the GrHDP controller. The system
state X(t) is measured as the GrHDP controller input signal.
Then the output signal or action signal u(t) is produced by the
controller as supplementary control signals send to the RSC
controller and the STATCOM controller, plus the steady state
values to form the total command signals. The detailed design
of the controller including the input, output and reinforcement
signal will be illustrated in the following section.

A. Input, Output, and Reinforcement Signal Design

As an on-line controller with instant learning from the envi-
ronment, the performance of the GrHDP controller is mainly
depend on the design of the input, output and reinforcement
signal. Figs. 7 and 8 show active power from area one to
area two and active power of the wind farm after a three-
phase ground-fault applied at 5 s, respectively. The applied
fault causes oscillation of the active power of the whole sys-
tem. After the fault, the active power of the wind farm (Fig. 8)
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Fig. 6. Schematic diagram of the GrHDP controller with the plant.
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Fig. 7. Active power from area one to area two after system fault.

damps within about 1 s, but the transferred active power oscil-
lation (Fig. 7) lasts much longer, i.e., 3 s. So it is reasonable
to consider the system dynamics (oscillation between the two
areas) into the input, output and reinforcement signal design.
The input signal of the controller is designed as follows:

⎧
⎨

⎩

�Vwind(t), �Vwind(t − 1), �Vwind(t − 2)

�Pwind(t), �Pwind(t − 1), �Pwind(t − 2)

�P12(t), �P12(t − 1), �P12(t − 2)

(8)

where �Vwind is the voltage deviation of the wind farm,
�Pwind is the active power deviation of the wind farm
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Fig. 8. Active power of the wind farm after system fault.

and �P12 is the deviation of transferred active power from
area one to area two. The output signals of the con-
troller are �Qref(t) and �Vref(t), which are send to the
wind farm and the STATCOM as supplementary control sig-
nals. The reinforcement signal of the controller is designed
as follows:

r(t) = −�V2
wind(t) − 0.5 ∗ �V2

wind(t − 1)

−0.1 ∗ �V2
wind(t − 2) − �P2

wind(t)

−0.5 ∗ �P2
wind(t − 1) − 0.1 ∗ �P2

wind(t − 2)

−�P2
12(t) − 0.5 ∗ �P2

12(t − 1) − 0.1 ∗ �P2
12(t − 2)

−3 ∗ �ω2
12(t) (9)

where �w12 is the oscillation between the two areas. In this
paper, we choose the rotor angle difference between G1 and
G3 to represent area oscillation.

The principle of the GrHDP controller for the benchmark
power system is discussed as follows. When the system is
under fault conditions, the supplementary control signals �Vref
and �Qref will change with the system states. With appropri-
ate adjustment, the controller can reduce the level of voltage
dips of the wind farm as well as the PCC point, and improve
the transient stability of the whole system after the fault.
Because of the direct coupling between the voltage and the
reactive power, it is straightforward to use the voltage devi-
ation �Vwind as the first of the three input signals to the
controller. The active power deviation of the wind farm �Pwind
is also considered as the second input signal to the GrHDP
controller to provide additional information, thus providing
better control performance [18]. As we mentioned before,
since the dynamics of the system last longer than (that of) the
wind farm, therefore the deviation of the transferred active
power from area one to area two (i.e., �P12) is also con-
sidered as the third and last input signal. The design of
the reinforcement signal r(t) in (9) is based on the exter-
nal environment, which is represented by the wind farm and
the system oscillation. The control of the wind farm and
the STATCOM is coordinated, to some extent, as the sys-
tem states are combined in one index as indicated in the
designed r(t).
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Fig. 9. Implementation and cooperative learning of the GrHDP controller.

B. Implementation of the Action, Critic, and Reference
Network

Fig. 9 shows the implementation of the action, critic, and
reference network. We can observe that, the s(t) signal pro-
vides an important link between the reference network and
the critic network, which makes the chain back-propagation
able to adjust the parameters in the reference network and
critic network. Furthermore, compared with the classical ADP,
the s(t) signal is served as an adaptive reinforcement signal
r(t) to the critical network. In this way, multiple-level internal
goals are formed by the GrHDP to fulfill the long-term final
goal. A cooperative learning strategy is used which involves
more interactions between the reference network and the critic
network [27]. In this learning strategy, at each epoch of the
parameter tuning, one can first adapt the reference network
weights based on the primary reinforcement signal r(t) through
back-propagation. Then the reference network will output the
secondary reinforcement signal s(t), which will be used to tune
the weights in the critic network through back-propagation.
Once the weights in critic network are tuned in this epoch,
the critic network will provide a new J(t) estimation, which
in turn can be used to adapt the weights in reference network
in the next epoch. In this way, the reference network and critic
network are trained in a more collaborative style.

The controller work flow is summarized as follows.
1) The action network receives the measured plant state

deviations �Pwind(t), �Qwind(t), and �P12(t), then
these signals are used to generate temporary control
signals �Q

′
ref(t) and �V

′
ref(t).

2) The reference network will update its weights according
to (7) first. Then the external reinforcement signal r(t),
plant state deviations �Pwind(t), �Qwind(t), �P12(t),
and temporary control signals �Q

′
ref(t) and �V

′
ref(t) are

used to generate the internal reinforcement signal s(t).
3) The critic network will update its weights according

to (7) using above internal reinforcement signal s(t).
Then the internal reinforcement signal s(t), plant state
deviations �Pwind(t), �Qwind(t), �P12(t), and tempo-
rary control signals �Q

′
ref(t) and �V

′
ref(t) are used to

estimate the cost function J.
4) Because of the adopted cooperative learning strategy,

above two steps are performed alternately until the stop
criterion is satisfied.

5) Having finished the adaptation in the reference net-
work and critic network, the action network will update
its weights according to (7) until the stop criterion is
satisfied. Then the final control signals �Qref(t) and
�Vref(t) are generated and send to the wind farm and
the STATCOM.

6) Above steps are repeated at each simulation time step
until the end of the simulation.

C. Remarks of GrHDP Controller for Power System

The reinforcement learning based GrHDP controller is a
supplement to the traditional controllers, such as power system
stabilizer (PSS) and PI controller in DFIG. PSS is primar-
ily used to damp low frequency oscillations in the range of
0.2 to 2.5 Hz. These oscillations result from the rotors of
synchronous machines oscillate with each other using trans-
mission lines between them to exchange energy [30]. The
problem is exacerbated as wind farms are always located
in remote areas where long-distance transmission lines are
required. The DFIG based wind generation with PSS is first
introduced in [31]. The PSS is specific designed on the DFIG
with a flux magnitude angle controller (FMAC), where this
form of PSS control could be applied to other DFIG control
schemes with appropriate modifications [32], [33]. However,
most of the PSS and PI controller designs in DFIG are based
on linear control theory which require a nominal power system
model formulated as a linear, time-invariant system. And the
nominal design model is obtained for a particular operating
condition. After off-line tuning of the parameters, extensive
field testing is required to test the effectiveness of the con-
troller. The designed controller based on this approach can
be very well tuned to an operating condition and will pro-
vide good damping over a certain range around the design
point. However, power systems are nonlinear systems with
wide range of operating conditions and time-varying configu-
rations. Also, it has been found that the dynamic properties of
the power systems are quite different for different operating
conditions. This situation is much more severe for the varia-
tions of wind speed and DFIG operating mode [34]. Therefore,
the fixed parameters of the traditional controllers may not be
optimal for the whole set of possible operating conditions and
configurations.

The traditional controller designs are based on linear anal-
ysis tools such as eigenvalue analysis, bode diagram, Nyquist
diagram, etc. [30]. In contrast, the GrHDP is based on on-line
learning to adjust its parameters to minimize the reinforcement
signal. Because of the universal approximation capability of
the neural network, it is possible to find the right mapping
between the input and output signal to damp the system oscil-
lation. As common sense, the initial weights are quite impor-
tant for the performance of the on-line learning GrHDP. Trial-
and-error approach is used in this paper, and a typical learning
process includes two trials [22], [26], [35]. In trial one, since
the randomly initialization, the mapping between the input
(�Vwind, �Pwind, �P12) and output u(t) is not in accor-
dance with expectation, thus the system dynamics may not be
improved. However, trial one provides the GrHDP controller
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Fig. 10. Dynamics of the benchmark power system in Case One under Scenario I. (a) Active power from area one to area two. (b) Rotor angle between area
one and area two. (c) Voltage of the wind farm. (d) Active power of the wind farm. (e) Rotor current of the DFIG. (f) Reactive power of the STATCOM.

useful information about which input∼output pairs may not
effect and should therefore be avoided. Then in trial two,
instead of random initialization, the weights in trial one is car-
ried on and the expected input∼output pairs can be achieved.

IV. SIMULATION RESULTS OF CASE ONE

The proposed GrHDP controller and the benchmark power
system is implemented in MATLAB/Simulink environment.
To make comprehensive comparison, the traditional ADP (i.e.,
direct HDP) algorithm in [21] is also applied to control the
DFIG-based wind farm and the STATCOM. Simulations are
performed on the benchmark power system in Fig. 1 under two
scenarios to verify the effectiveness of the proposed controller.
During the simulation, all the synchronous machines are
equipped with automatic voltage regulator (AVR), speed

regulator, and PSS. The proposed GrHDP controller provides
supplementary control signals to the regular PI controllers in
DFIG and STATCOM.

A. Scenario I

In this scenario, the wind speed is kept constant at 11 m/s.
The steady state commands of DFIG and STATCOM are set as
Qs0 = 0 and Vs0 = 1, respectively. A three-phase ground-fault
with ground resistance of 0.01� is applied at B9 at t = 5 s,
where the fault is cleared at t = 5.1 s without tripping the
line. The simulations are carried out to compare the transient
dynamics of the wind farm and the system using the GrHDP
controller, direct HDP controller and PI controller.

Fig. 10 demonstrates the simulation results of various vari-
ables of this benchmark under the situation of with GrHDP
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Fig. 11. Dynamics of the benchmark power system in Case One under Scenario II. (a) Active power from area one to area two. (b) Rotor angle between
area one and area two. (c) Voltage of the wind farm. (d) Active power of the wind farm. (e) Rotor current of the DFIG. (f) Reactive power of the STATCOM.

controller, direct HDP controller and PI controller. Specifically,
Fig. 10(a) shows the transferred active power from area
one to area two, Fig. 10(b) shows the rotor angle differ-
ence between the two areas, Fig. 10(c) shows the voltage
of the wind farm, Fig. 10(d) shows the active power of
the wind farm, Fig. 10(e) shows the DFIG rotor current,
and Fig. 10(f) shows the reactive power of the STATCOM.
It can be observed that by applying the GrHDP controller
and direct HDP controller, the transient stability of the wind
farm and system has been improved and the oscillations of
the system and the wind farm have been damped quickly
after the fault. Moreover, the control effect of the proposed
GrHDP controller is much better than the direct HDP con-
troller. The oscillation of the transferred active power from
area one to area two and rotor angle difference between
the two areas are much smaller with the proposed GrHDP
controller.

B. Scenario II
To verify the robustness of the proposed GrHDP controller,

the configuration of the benchmark power system in Fig. 1 is
modified. Specifically, the capacity of G1, G2, G3, and G4
are increased from 9 to 400 MW. Meanwhile, we assume one
of the transmission lines between these two areas (the lower
one in Fig. 1) is out-of-service, which represents the system
is much more vulnerable than the original one. The speed of
the wind in the DFIG-based wind farm is kept constant at
11 m/s. The steady state commands of DFIG and STATCOM
are the same as before with Qs0 = 0 and Vs0 = 1, respectively.
A three-phase ground-fault with ground resistance of 0.01�

is applied near B8 at t = 1.5 s, and the fault is cleared at
t = 1.6 s without tripping the line.

Fig. 11 demonstrates the simulation results of various vari-
ables of this benchmark under the situation of with GrHDP
controller, direct HDP controller and PI controller. Specifically,
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Fig. 12. Geography information of the Liaoning Zhangdong wind farm.

Fig. 11(a) shows the transferred active power from area one to
area two, Fig. 11(b) shows the rotor angle difference between
the two areas, Fig. 11(c) shows the voltage of the wind farm,
Fig. 11(d) shows the active power of the wind farm, Fig. 11(e)
shows the DFIG rotor current, and Fig. 11(f) shows the reac-
tive of the STATCOM. These results still demonstrate that the
system is stable while applying the GrHDP controller and the
direct HDP controller, and the transient dynamics of the wind
farm and the system have been improved. With the GrHDP
controller, the LVRT capability of the wind farm has been
improved significantly compared with the other two meth-
ods. Moreover, these results indicate the robust optimization
capability of the proposed GrHDP controller: when the sys-
tem operation condition or configuration changes, the GrHDP
controller still demonstrates satisfied control performance.

V. PRACTICAL SIZE POWER SYSTEM CONTROL CASE

Zhangdong wind farm is located in Zhangwu county in the
northwestern part of Liaoning Province in China. Since the
abundant wind energy source, the total installed wind power
capacity in this area has reached 700 MW in the year of
2012. The geography information of the wind farm is shown
in Fig. 12, where the equivalent Zhangdong wind farm sys-
tem is shown in Fig. 13. We can see that the wind farm output
power are first collected at Zhangwu 35 kV bus, then stepped
up by transformer to 220 kV transmission lines, and finally
connected to the main grid of Liaoning Province through
500 kV bus. The equivalent wind farm system is modeled in
MATLAB/Simulink environment in this paper. The network
power flow data and geometry information of a typical win-
ter day in 2012 is adopted. The bus parameters of Zhangdong
wind farm system are shown in Table I. In this table, 1 repre-
sents slack bus, 2 represents PV bus, and 3 represents PQ bus.
Pg and Qg are the generated active power and reactive power,
respectively. Pl and Ql are the active load and reactive load,
respectively. All the values are under the base of 100 MVA.
The frequency of the system is f = 50 Hz.

The transmission line parameters of Zhangdong wind farm
system are shown in Table II.

A. Controller Design for the Practical Size Power System

The structure of the controller is similar to that in Fig. 6.
However, we should notice that the system structure is now

TABLE I
ZHANGDONG WIND FARM SYSTEM DATA: BUS

TABLE II
ZHANGDONG WIND FARM SYSTEM DATA: TRANSMISSION LINE

totally different with the revised four-machine two-area system
in Section IV. Since there is no STATCOM near Zhangdong
wind farm to provide reactive power control, thus the only
controllable unit is the DFIG itself. Moreover, the system is
quite large and robust that it may not demonstrate interarea
oscillation after the fault. So the input signal of the controller
is redesigned as follows:

{
�VB15(t) �VB15(t − 1) �VB15(t − 2)

�PB15(t) �PB15(t − 1) �PB15(t − 2)
(10)

where �VB15 and �PB15 are the voltage and active power
deviations of Zhangdong wind farm at Bus15, respectively.
The output signal of the controller is �Qref(t), which acts as
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Fig. 13. Schematic diagram of the Liaoning Zhangdong wind farm system.
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Fig. 14. Learning process has been represented by the evolution of the
individual weight connecting the input units to one of the hidden units in the
action network.

supplementary reactive power control signal to the wind farm.
The reinforcement signal of the controller is redesigned as
follows:

r(t) = −(�V2
B15(t) + 0.5 ∗ �V2

B15(t − 1)

+ 0.1 ∗ �V2
B15(t − 2)) − (�P2

B15(t)

+ 0.5 ∗ �P2
B15(t − 1) + 0.1 ∗ �P2

B15(t − 2)). (11)

B. Control Results Analysis

A single-phase ground-fault is applied near Ping’an 220 kV
bus at 30.0 s. The fault lasted for 150 ms with tripping one of
the transmission lines between Gaotaishan and Ping’an. The
evolution of the individual weight connecting the input units
to one of the hidden units in the action network represents
the learning process of the GrHDP controller, and is shown in
Fig. 14. We can directly observe that all the weights are con-
verged after 30.3 s. Notice that the fault time (30.0–30.15 s)
and post-fault time (30.15–30.3 s) are two different stages to
the controller. These two stages fault time alongside the two
learning processes are demonstrated in the weights evolution.
In each stage, the weights are changing dramatically at the
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Fig. 15. Supplementary control signal generated by the action network.
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Fig. 16. Performance of Zhangdong wind farm voltage after training.

beginning and converged after the adapting occurs. This learn-
ing process is consistent with the output supplementary control
signal curve as shown in Fig. 15.

After finishing the learning process, the voltage and cur-
rent of Zhangdong wind farm at Bus15 are improved by the
proposed GrHDP controller, compared with the performance
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Fig. 17. Performance of Zhangdong wind farm current after training.

of PI controller and direct HDP controller, as shown in
Figs. 16 and 17.

VI. CONCLUSION

In this paper, an adaptive controller based on GrHDP for
DFIG-based wind farm is proposed. We presented the detailed
control architecture, and also tested the approach on two cases,
i.e., a revised four-machine two-area system with wind pen-
etration and a practical size power system with wind farm.
Comparative studies of our method with existing approaches
were also presented in this paper. Simulation results demon-
strated that with the proposed GrHDP controller, the transient
stability of the wind farm under grid fault conditions can be
improved. LVRT capability of the wind farm and the system
could also be enhanced.

The characteristics of the online GrHDP approach is similar
to other ADP approaches [21], [22], where the approxima-
tion of J is not based on the pretraining data set but on the
error functions from interaction with the environment (power
plant in this paper) in each time step. However, the formu-
lated temporal difference (TD) learning algorithm in the three
networks in GrHDP guaranteed that the expected values of
the prediction converge to the correct values, give appropri-
ate samples, and learning iterations [36]. The Robbins–Monro
algorithm is the main tool to prove the convergency of the
GrHDP approach [37]. A more detailed introduction of the
convergency analysis of GrHDP could be referenced in [38].

The adjustment of the weights in the action, critic, and
reference network is based on back-propagation that is time-
consuming. In real power system applications, the sampling
time should be long enough to guarantee the GrHDP con-
troller has adapted the weights in the three networks. During
our simulation, it takes about 0.1 ms to fully adapt the weights
in the three networks (the iteration number in the reference,
action and critic network are set as Nr = 100, Na = 150,
and Nc = 120, respectively) on an Inter(R) Xeon(R) CPU
with 3.2 GHz in MATLAB R2011b environment. So the
sampling time could be chosen as 2.0 ms (500 Hz) in real
power system applications. We should also notice that the
reinforcement signal r(t) in (9) requires real-time system sig-
nals, therefore the transmission delays in large power systems

TABLE III
STATCOM PARAMETERS IN THE SIMULATION [29]

may impact the controller performance. However, it has been
shown that the neural network based control can successfully
compensate for the communication delays [39], [40].

There are several interesting directions for future research
along this topic. For instance, the supplementary control ability
of GrHDP for high-voltage direct current and various FACTS
devices could be developed to construct wide-area damp-
ing control systems. Since the GrHDP demonstrates robust
learning and universal control characteristics, it could also be
utilized for stability enhancement of large scale interconnected
power systems.

APPENDIX

STATCOM PARAMETERS

The parameters of the STATCOM used in the first case are
shown in Table III.
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