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Optimal control of large-scale wind farm has become a critical issue for the development of renewable

energy systems and their integration into the power grid to provide reliable, secure, and efficient

electricity. Among many enabling technologies, the latest research results from both the power and

energy community and computational intelligence (CI) community have demonstrated that CI research

could provide key technical innovations into this challenging problem. In this paper, a neural network

based controller is presented for the reactive power control of wind farm with doubly fed induction

generators (DFIG). Specifically, we investigate the on-line learning and control approach based on

adaptive dynamic programming (ADP) for wind farm control and integration with the grid. This

controller can effectively dampen the oscillation of the wind farm system after the ground fault of the

grid. Compared to previous control strategies, this controller is on-line and ‘‘model free’’, and therefore,

can reduce the control complexity. Simulation studies are carried out in Matlab/Simulink and the

results demonstrated the effectiveness of the ADP controller.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The development of renewable energy for sustainable, efficient,
and clean electric power systems has become a critical research topic
world wide [1–4]. Among various renewable energy sources, wind
power is the most rapidly growing one in the world. While the wind
is random and intermittent, the major hurdle in developing such
energy has been the lack of efficient control. In this paper, we focus
on the adaptive dynamic programming (ADP) based reactive power
control of the wind farm under grid fault.

In general, there are mainly three kinds of wind power generators:
squirrel-cage induction generator, permanent magnet synchronous
generator and doubly fed induction generator (DFIG). DFIG is widely
used in the wind power system for its advantages over other two
types [5]. The characteristics of DFIG are high efficiency, flexible
control and low investment. The stator of DFIG is directly connected
to the power grid while the rotor is connected to the power grid
through a back-to-back converter, which only takes about 20–30% of
the DFIG rated capacity for the reason that the converter only supplies
the exciting current of the DFIG. The back-to-back converter consists
of three parts: rotor side converter (RSC), grid side converter (GSC)
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and DC Link capacitor. From the previous research, the controller of
the converter has significant effect on the stability of grid-connected
DFIG [6,7].

In the previous research, the stability analysis and optimal
control of wind farm with DFIG have been studied in the
community [8–16]. The key challenge for wind farm optimization
is to build an accurate wind farm model and the involvement of a
large number of parameters need to be optimized to ensure a
good interaction of the wind farm with the power grid at the
common coupling point (CCP). For instance, in [8], the authors
proposed to use particle swarm optimization (PSO) to optimize
the control parameters in a DFIG simultaneously. This method can
improve the performance of the DFIG in the power grid, however,
when the number of the DFIG in a wind farm increases, the
number of the control parameters will increase significantly (i.e.,
curse of dimensionality issue). Fuzzy logic control has been
successfully applied to control DFIG in different aspects. In [11],
fuzzy logic control was implemented on primary frequency and
active power control of the wind farm. In [12], Neuro-Fuzzy
vector control was used and realized on a laboratory DFIG. Other
advanced coordinated control approaches such as ADP based
methods have shown promising results for such a challenging
problem [17–20].

In [19], the authors proposed a heuristic dynamic program-
ming (HDP) based coordinated reactive power control of a large
wind farm and a STATCOM. This HDP controller can improve the
control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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performance of the DFIG in the power grid when there is a grid
fault. However, this HDP controller needs to be sufficiently pre-
trained based on the information from the power system before
connected to the grid. Motivated by our previous research on ADP
[29,30,21], in this paper, we use the on-line ADP architecture as
proposed in [22] for wind farm reactive power control. This ADP
control method is ‘‘model free,’’ that is to say without the
requirement of a detail physical model as well as a complex
model network to predict the system status [22]. This enables the
ADP approach to learn ‘‘on-the-fly’’ while interacting with the
power grid. This approach has been successfully demonstrated
with many applications including stabilization and tracking con-
trol of an Apache helicopter [23,24], damping oscillation control
in a classic ‘‘four machine two area’’ system, a large power system
in China [25], among others [26–28]. In this paper, we aim to
investigate the reactive power control of a wind farm connected
to the power grid under fault condition.

The rest of the paper is organized as follows. Section 2 briefly
introduces the DFIG wind system, RSC and GSC controller model.
Detailed ADP control approach has been presented in Section 3.
The power system scenario that we study in this work and
simulation results are presented in Section 4. Finally, a conclusion
is given in Section 5.
2. DFIG wind turbine system model

The wind turbine model studied in this paper is illustrated in
Fig. 1. In this system, the wind turbine is connected to the DFIG
through a drive train system, which consists of a low and a high
speed shaft with a gearbox in between. The wind turbine (WT)
with DFIG system is an induction type generator in which the
stator windings are directly connected to the three-phase grid
and the rotor windings are fed through three-phase back-to-back
insulated-gate bipolar transistor (IGBT) based pulse width mod-
ulation (PWM) converters. The back-to-back PWM converter
includes three parts: a rotor side converter (RSC), a grid side
converter (GSC) and a DC Link capacitor placed between the two
converters. Their controller also includes three parts: rotor side
converter controller, grid side converter controller and wind
turbine controller. The function of these controllers are to
produce smooth electrical power with constant voltage and
frequency to the power grid whenever the wind system is work-
ing at sub-synchronous speed or super-synchronous speed,
depending on the velocity of the wind. Vector control strategy is
Fig. 1. Schematic diagram of DFIG
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employed for both the RSC controller and the GSC controller to
achieve decoupled control of active and reactive power.
2.1. Model of drive train

The drive train system [8] includes the turbine, a low and a
high speed shaft, and a gearbox. This system can be represented
by a two-mass model as follows:

2Ht
do
dt
¼ Tm�Tsh ð1Þ

dytw

dt
¼ot�or ¼ot�ð1�srÞos ð2Þ

2Hg
dsr

dt
¼�Tem�Tsh ð3Þ

Tsh ¼ KshytwþDsh
dytw

dt
ð4Þ

where

Ht the inertia constants of the turbine
Hg the inertia constants of the generator
ot the WT angle speed
or the generator rotor angle speed
yto the shaft twist angle
Ksh the shaft stiffness coefficient
Dsh the damping coefficient
Tsh the shaft torque
Tm the wind torque
Tem the electromagnetic torque

The maximum power coefficient may be achieved by controlling
the WT speed in order to track the maximum power from wind. The
tracking strategy for the DFIG is achieved by driving the generator
speed along the optimum power speed characteristic curve, which
corresponds to the maximum energy capture from the wind.
2.2. Model of DC Link capacitor

From Fig. 1, the active power flow through the back-to-back
PWM converter is balanced by the DC Link capacitor [8]. The
power balance equation can be represented as follows:

Pr ¼ PgþPDC ð5Þ
wind turbine system [13,14].

control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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where

Pr the active power at the AC terminal of the RSC
Pg the active power at the AC terminal of the GSC
PDC the active power of the DC Link capacitor

2.3. Model of rotor side controller

As we mentioned before, the vector control strategy is used for
the active power and reactive power control of the WT with DFIG
system. For the RSC, the active power and voltage are controlled
independently via vqr and vdr , respectively. The voltage control is
achieved by controlling the reactive power to keep it within the
desired range. Fig. 2 demonstrates the overall vector control
scheme of the RSC. The rotor speeds wr and Qs are the measured
system active power and reactive power, respectively. They are
compared with the desired active power and reactive power to
generate the reference signals iqr_ref and idr_ref , respectively. The
actual d�q current signals iqr and idr are then compared with
these reference signals to generate the error signals, which are
passed through two PI controllers to form the voltage signal
reference vn

qr and vn

dr , respectively. The two voltage signals vn
qr and

vn

dr are compensated by the corresponding cross-coupling terms
to form the voltage signals vqr and vdr , respectively. These signals
are then sent to the PWM module to generate the IGBT gate
control signal Vr to drive the rotor side converter.
Fig. 2. Schematic diagram o

Fig. 3. Schematic diagram

Please cite this article as: Y. Tang, et al., Reactive power
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2.4. Model of grid side controller

The GSC, as shown in Fig. 3, aims to maintain the DC Link
voltage and control the terminal reactive power. The DC Link
voltage and reactive power are controlled independently via vdg

and vqg , respectively. The actual signal of the DC Link voltage VDC

is compared with its command value VDC_ref to form the error
signal, which is passed through the PI controller to generate the
reference signal idg_ref . Then this reference signal idg_ref and
another corresponding reference signal iqg_ref are compared with
the actual values iqg and idg , respectively. These error signals are
then passed through two PI controllers to form the voltage signal
reference vn

dg and vn
qg , respectively. The two voltage signals vn

dg and
vn

qg are compensated by the corresponding cross-coupling terms
to form the voltage signals vdg and vqg , respectively. These are
then send to the PWM module to generate the IGBT gate control
signals Vg to drive the grid side converter.
3. DFIG wind turbine system with ADP controller

3.1. On-line model-free ADP

Fig. 4 is a basic control framework of on-line model-free ADP
[22], where u is the control signal, and X is the state vector. The
reinforcement signal r is obtained from the external environment
which in this paper is the wind farm power system.
f rotor side controller.

of grid side controller.

control of grid-connected wind farm based on adaptive
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Fig. 4. Schematic diagram of ADP [22].
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ADP control comprises two main parts: an action network and
a critic network. The action network produces control signal u

according to a learning policy represented by the approximating
network, while the critic network approximates the cost/reward
function J of the Bellman equation in dynamic programming.
These two parts are usually implemented by neural networks
because of their universal approximation capabilities and the
associated back-propagation learning algorithm.

During the initial on-line learning, the controller is ‘‘naive’’ when it
starts to control, which means the action network and critic network
are both randomly initialized in their weights. Once the system state
vectors are observed, the control action will be subsequently pro-
duced based on the parameters in the action network.

The output of the critic network, the J function, approximates
the discounted total reward-to-go. Specifically, it approximates
RðtÞ as follows:

RðtÞ ¼
X1
k ¼ 1

ak�1rðtþkÞ ð6Þ

where RðtÞ is the future accumulative reward-to-go value at time t

and a is a discount factor for the infinite horizon problem
ð0oao1Þ. The a equals to 0.95 in this paper.

The critic network is trained to approximate the function JðtÞ

by minimizing the objective function, which is given as follows:

ecðtÞ ¼ aJðtÞ�½Jðt�1Þ�rðtÞ� ð7Þ

ECðtÞ ¼
1
2e2

c ðtÞ ð8Þ

The weight update rule for the critic network is a gradient-
based adaptation given by

wcðtþ1Þ ¼wcðtÞþDwcðtÞ ð9Þ

DwcðtÞ ¼ lcðtÞ �
@EcðtÞ

@wcðtÞ

� �
ð10Þ

where lcðtÞ40 is the learning rate of the critic network at time t,
and wc is the weight vector in the critic network.

The action network is trained to indirectly back propagate the
error between the desired ultimate objective Uc and the approx-
imate J function from the critic network. The weights in the action
network are tuned by minimizing the following error function:

eaðtÞ ¼ JðtÞ�UcðtÞ ð11Þ

EaðtÞ ¼ 1
2e2

aðtÞ ð12Þ

Therefore, the weights updated in the action network can be
calculated as follows:

waðtþ1Þ ¼waðtÞþDwaðtÞ ð13Þ
Please cite this article as: Y. Tang, et al., Reactive power
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DwaðtÞ ¼ laðtÞ �
@EaðtÞ

@waðtÞ

� �
ð14Þ

where laðtÞ40 is the learning rate of the critic network at time t,
and wa is the weight vector in the critic network.

3.2. ADP based wind farm controller design

Fig. 5 demonstrates the proposed DFIG wind turbine system
with ADP controller. The dashed line block denotes the wind farm
to be controlled by the ADP controller. The voltage V at bus B575

and the active power P of the wind farm are fed into the ADP
controller to produce the supplementary control signal DQref ,
then add this signal with steady state command Qs0 to form the
control signal Qref to the RSC controller of the DFIG. The lower
part of this figure is the on-line ADP controller as discussed in
[22]. The basic principle is that through control the reference
signal Qref , the DFIG could generate or absorb reactive power to
keep the voltage of DFIG at its desire set point. When the system
is stable, the control signal Qref will be constant which means the
reactive power will be constant as well. While the system is under
disturbance or grid fault, the control signal Qref will be adaptively
adjusted, which allows the DFIG to generate or absorb reactive
power according to the situation. This change could reduce the
level of voltage sags of the wind farm and at the CCP point. The
control signal will also help to dampen the oscillation of the
system after the disturbance is removed or grid fault is recovered.
Because of the direct coupling between the voltage and the
reactive power, it is straightforward to use the voltage V as an
input signal of the ADP controller. The active power of the wind
farm P will also be chosen as another input signal to provide
additional information which will help the ADP controller to
achieve better control performance [19].

3.3. Design of the critic network

Figs. 6 and 7 demonstrate the design of the critic network. It is
a three-layer neural network with 6 hidden neurons. The inputs
to the critic network are the measured system state vector VðtÞ,
PðtÞ and their one time-delayed values Vðt�1Þ, Pðt�1Þ, and the
action network output DQref . rðtÞ is used to define the error
function of the critic network, and not directly used as one of the
input states to the critic network. The output of the critic network
is the approximate discounted total toward-to-go function J.

As we have mentioned earlier, the objective of the ADP
controller is to provide an optimal control signal that can reduce
the level of voltage sags of the wind farm and at the CCP point,
and also to dampen the oscillation of the system after the
control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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Fig. 5. Schematic diagram of DFIG wind turbine system with ADP.

Fig. 6. Structure of critic network.

Fig. 7. Critic neural network with 5 inputs, 6 hidden layer neurons, and one

output neuron.

Fig. 8. Structure of action network.

Y. Tang et al. / Neurocomputing ] (]]]]) ]]]–]]] 5
disturbance is removed or grid fault is recovered. Therefore, we
design the reinforcement signal rðtÞ as follows:

rðtÞ ¼ 1
2½ðVðtÞ�1:02Þ2þ0:6ðVðt�1Þ�1:02Þ2�

þ1
2½ðPðtÞ�0:4Þ2þ0:6ðPðt�1Þ�0:4Þ2� ð15Þ
Please cite this article as: Y. Tang, et al., Reactive power
dynamic programming, Neurocomputing (2013), http://dx.doi.org/1
where the numbers 1.02 and 0.4 are the approximate per unit of
voltage and active power of the wind farm in steady-state,
respectively.

3.4. Design of the action network

Figs. 8 and 9 demonstrate the design of the action network,
which is also a three-layer neural network with 6 hidden neurons
similar to the critic network. The inputs to the action network are
the measured system state vector V(t), P(t) and their one time-
delayed values Vðt�1Þ, Pðt�1Þ. The output of the action network is
the supplementary control signal DQref .
4. Simulation results and analysis

4.1. Case 1: single machine infinite bus (SMIB) power system

We first introduce the SMIB power system application scenario
in this section. Normally, there are tens to hundreds wind
turbines in a large wind farm. Many existing research results
have demonstrated that if the controller of the wind turbines is
well-tuned, there will be no mutual interaction between wind
turbines on a wind farm (i.e., these wind turbines are mutually
independent [7]). In this paper, we take the same assumption
meaning that we consider to represent the wind farm by one large
WT with DFIG system. Fig. 10 shows the diagram of the simulated
single wind farm infinite bus system. A 30 MW wind farm
consisting of twenty 1.5 MW wind turbines connected to a
control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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Fig. 10. Single-line diagram of the benchmark power system includes a

wind farm.

74.5 75 75.5 76
−0.5

0

0.5

1

Time (s)

A
ct

iv
e 

po
w

er
 o

f w
in

d 
fa

rm
 (p

.u
)

Without ADP
With ADP

Fig. 12. Comparison of the wind farm active power with and without ADP

controller.

74.5 75 75.5 76

0

0.5

1

1.5

Time (s)

Vo
lta

ge
 o

f C
C

P 
(p

.u
)

Without ADP
With ADP

Fig. 13. Comparison of the CCP voltage with and without ADP controller at B25.

Fig. 9. Action neural network with 4 inputs, 6 hidden layer neurons, and one

output neuron.
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25 kV distribution system exports power to a 120 kV grid through
a 30 km, 25 kV feeder. This 120 kV grid represents an infinite bus
to the wind farm. Wind turbines use DFIG consisting of a wound
rotor induction generator and an AC/DC/AC insulated-gate bipolar
transistor based pulse width modulation converters. The stator
winding is connected directly to the 60 Hz grid while the rotor is
fed at a variable frequency through the AC/DC/AC converter.

In the previous section, we have designed the ADP controller
and demonstrated how to integrate it with the DFIG wind turbine
system. We have implemented the whole system in Matlab/
Simulink environment to verify the dynamic stability control by
the ADP approach in this SMIB power system. Three-phase
ground fault is applied in the simulation and the fault time is
75 ms. Because this paper focuses on the short-term stability of
the WT system under disturbance, we assume that the wind
Please cite this article as: Y. Tang, et al., Reactive power
dynamic programming, Neurocomputing (2013), http://dx.doi.org/1
speed is constant at 10 m/s during the simulation. The dynamic
performance of the wind farm with the ADP controller is com-
pared with the case without the ADP controller.

Figs. 11, 12, and 13 are the simulation results for the wind
farm voltage (575 V), wind farm active power, and CCP (25 KV)
voltage, respectively. From these figures we can see that using the
ADP controller, the dynamic performance of the wind farm has
been significantly improved. The sag and overshot magnitudes of
the active power P, voltage of the wind farm V575 and the voltage
at the CCP V25 have been significantly reduced with the ADP
controller. The oscillation damping performance with the ADP
controller has also been improved with respect to the situation
without the ADP controller.

4.2. Case 2: multi-machine power system

To verify the robustness of the proposed ADP controller, a
multi-machine power system is also used in this paper. Fig. 14
demonstrates the revised four-machine-two-area system based
on the classic model. This power system model was presented in
[9] to investigate the impact of the wind turbine with different
controllers such as the optimized PI controller and nonlinear
controller. The system is divided into two areas, each with two
machines. In [9], the four-machine-two-area system was mod-
ified by replacing generator G3 with a wind farm. In this paper,
instead of replacing G3 with a wind farm, we replace G4 with a
control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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Fig. 14. Single-line diagram of the benchmark power system that includes a wind farm and a STATCOM.

Fig. 15. Comparison of the active power from area one to area two with and

without ADP controller.

Fig. 16. Comparison of the wind farm voltage with and without ADP controller

at B575.

Fig. 17. Comparison of the wind farm active power with and without ADP

controller.
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wind farm and a static synchronous compensator (STATCOM). The
penetration of the wind power is almost 25% of the whole system.
The parameters of the system and the power flow can be found
in [9].

Because the control object changes to one DFIG and one
STATCOM, there will be two output signals of the ADP controller:
DQref for the DFIG and DVref for the STATCOM. The STATCOM is
modeled as an IGBT based STATCOM, however, as details of the
inverter and harmonics are not represented, it can be also used to
model a gate-turn-off (GTO) thyristor based STATCOM in transi-
ent stability studies.

Figs. 15–20 demonstrate the simulation results of various
variables of this benchmark under the situation of with and
without the ADP controller. Specifically, Fig. 15 shows the active
power transfer from area one to area two, Fig. 16 shows the wind
farm voltage at B575, Fig. 17 shows the wind farm active power,
Fig. 18 shows the rotor current of the DFIG, Fig. 19 shows the CCP
voltage at B12, and Fig. 20 shows the reactive power of the
STATCOM. From all these results, it can be observed that by
applying the ADP controller, the system can improve its stability
and damping characteristic after the fault. The oscillation of the
system and the wind farm decayed very quickly after the fault
was cleared. Fig. 20 also demonstrated that with the ADP
controller, the reactive power output of the STATCOM meets the
needs of the system under fault conditions. This suggests that
Please cite this article as: Y. Tang, et al., Reactive power
dynamic programming, Neurocomputing (2013), http://dx.doi.org/1
during and after the fault, the STATCOM can provide sufficient
reactive power to support the system voltage and dampen the
oscillation.
control of grid-connected wind farm based on adaptive
0.1016/j.neucom.2012.07.046i
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Fig. 19. Comparison of the CCP voltage with and without ADP controller at B12.

Fig. 20. Comparison of the reactive power of the STATCOM with and without ADP

controller.

Fig. 18. Comparison of the rotor current of the DFIG with and without ADP

controller.
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5. Conclusion and future work

In this paper, we investigate the reactive power control of DFIG
wind turbine system based on ADP. Detailed system architecture
as well as the corresponding Matlab/Simulink development have
been presented in detail. Simulation results demonstrate that the
ADP controller can significantly improve the dynamic perfor-
mance of WT system. Specifically, our simulation results demon-
strated that the sag and overshot of the active power and voltage
of the wind farm can be significantly reduced after the distur-
bance is removed or the fault is recovered. The system stability
and damping characteristic can also be improved with the ADP
controller as well.

As the penetration of wind power into the power grid
increases, accurate real-time control has become an important
and challenging issue in the community. This requires that the
control algorithm has better learning ability and better real-time
interaction with the changing environment. With the recent
development of new the ADP architectures, such as the hierarchi-
cally ADP design [29–32], it would be interesting to observe how
such recent ADP techniques could be applied to the power system
research for the smart grid development. Furthermore, in addition
to modeling and simulation studies, it is critical to study the
analytical characteristics of stability and robustness of the ADP
approaches for power system control to provide the theoretical
support of such techniques. Finally, in addition to the benchmarks
as studied in this paper, it would be interesting to model and
analyze relatively large and complex power system scenarios to
demonstrate the applications of the ADP approaches for such a
complex system control.
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