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KEYWORDS Abstract In this paper an adaptive neuro-fuzzy inference system (ANFIS) controller using error

Adaptive neuro-fuzzy infer- and derivative of error inputs is proposed for the speed control of a separately excited DC motor
ence; (SEDM) using chopper circuit. This paper investigates the design and simulation of an adaptive
neuro-fuzzy inference system (ANFIS) controller for the speed of DC motor. The performance
of the proposed system has been compared with conventional one, where the conventional PI con-
troller (speed controller) in the chopper-fed DC motor drive is replaced by the adaptive neuro-fuzzy
controller to improve the dynamic behavior of the model. Computer Simulation is conducted to
demonstrate the performance of the proposed controller and results show that the proposed design
succeeded over the conventional PI controller where it make reduction of number of ripples and rise
time. The entire system has been modeled using MATLAB 2009 toolbox.
© 2011 Ain Shams University. Production and hosting by Elsevier B.V.
All rights reserved.

Chopper circuit;
SEDM;
Speed control

1. Introduction

Direct current (DC) motors have been widely used in many
industrial applications such as electric vehicles, steel rolling
mills, electric cranes, and robotic manipulators due to precise,
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wide, simple, and continuous control characteristics. So we
studied this example of its importance and try to solve its
problems in different ways. Traditionally armature control
method was widely used for the speed control of low power
DC motors. However the controllability, cheapness, higher
efficiency, and higher current carrying capabilities of static
power converters brought a major change in the performance
of electrical drives. The desired torque-speed characteristics
could be achieved by the use of conventional proportional
integral-derivative (PID) controllers. Since PID controllers
require exact mathematical model. The adaptive neuro-fuzzy
inference system (ANFIS), developed in the early 1990s by
Jang [1], combines the concepts of fuzzy logic and neural
networks to form a hybrid intelligent system that enhances
the ability to automatically learn and adapt hybrid systems
have been used by researchers for modeling and predictions
in various engineering systems. The basic idea behind these
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neuro-adaptive learning techniques is to provide a method for
the fuzzy modeling procedure to learn information about a
data.

Set, in order to automatically compute the membership
function parameters that best allow the associated FIS to track
the given input/output data. The membership function param-
eters are tuned using a combination of least squares estimation
and back-propagation algorithm. These parameters associated
with the membership functions will change through the learn-
ing process similar to that of a neural network. Their adjust-
ment is facilitated by a gradient vector, which provides a
measure of how well the FIS is modeling the input/output data
for a given set of parameters. Once the gradient vector is
obtained, any of several optimization routines could be applied
in order to adjust the output so as to reduce error between the
actual and desired outputs. This allows the fuzzy system to
learn from the data it is modeling. The approach has the
advantage over the pure fuzzy paradigm that the need for
the human operator to tune the system by adjusting the
bounds of the membership functions is removed. An open loop
control system which can predict the dynamic behavior of
systems involving mechanic and electronic modules has been
successfully designed and implemented to control the speed
of a DC motor [2]. The superior performance of artificial intel-
ligence (AI) based controllers urged power system and power
electronic engineers to replace conventional speed control
circuit with intelligent speed controllers [3.4].

2. Modeling of DC motor

The DC motor is the obvious proving ground for advanced
control algorithms in electric drives due to the stable and
straight forward characteristics associated with it. It is also ide-
ally suited for trajectory control applications. From a control
systems point of view, the DC motor can be considered as
SISO plant, there by eliminating the complications associated
with a multi-input drive system [5].

2.1. Dynamics of a DC motor

Dynamics of a DC motor is described by the following
equation:

Ki(t) = JdajTgl) + Do(t) + T (t) — Ty 2)

Table 1 Definition of parameters.

No Definition Symbols Unit

1 Rotor speed (1) rad s

2 Armature resistance R Q

3 Armature inductance L H

4 Armature current i(r) A

5 Armature voltage V(1) v

6 Load torque T, Nm

7 Rotor inertia J kg m?

8 Is torque constant K, Vsrad™!
9 Back EMF constant k, Vsrad™!
10 Viscous friction coefficient D Nmsrad!
11 Coulomb friction torque Tk Nm

where the parameters of the DC motor are shown in Table 1.
In order to control a plant, a discrete time model of the plant is
required. The following discrete time model of a DC motor is
used:

where k indicates the kth discrete time moment, 4, A,, and A3
are real constants, and A4 is a real parameter which depends
on the load of the motor [3].

2.2. Chopper-fed DC motor drive

A DC motor consists of stator and armature winding in the

rotor as in Fig. 1. The armature winding is supplied with a

DC voltage that causes a DC current to flow in the winding.

The field circuit of the motor is excited by a constant

source. The steady state speed of the motor can be described
as:

V—iR

K

) =

4)

where ki is the duty cycle. The speed of a DC motor can be
controlled by varying the voltage applied to the terminal.
These can be done by using a pulse-width modulation
(PWM) technique as shown in Fig. 2, where T is the signal per-
iod, td is the pulse-width, and V,, is the signal amplitude. A

Figure 1 Dynamic equivalent circuits of a DC motor.
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Figure 2 Pulse width modulation.
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field voltage signal with varying pulse-width is applied to the
motor terminal. The average voltage is calculated from

I td
= — =—V =K
Va T /(; V(t)dl T m 1 Vm (5)

It can be mentioned from these equation that the average DC
component of the voltage signal is linearly related to the pulse-
width of the signal, or the duty cycle of the signal, since the
period is fixed.

The PWM voltage waveform for the motor is to be
obtained by using a special power electronic circuit called a
DC chopper. The action done by the DC chopper is supplying
a train of unidirectional voltage pulses to the armature wind-
ing of the PM-DC motor as shown in Fig. 2. If ¢, is varied
keeping T constant, the resultant voltage wave represents a
form of pulse width modulation, and hence the chopper is
named as the PWM chopper [6,7].

2.3. Modeling and control of SEDM using MATLAB
SimPowerSystems

Fig. 3 shows MATLAB/SimPowerSystems model of a sepa-
rately excited DC motor which has been selected to control
[8]. It consists of a separately excited DC motor fed by a DC
source through a chopper circuit. A single GTO thyristor with
its control circuit and a free-wheeling diode form the chopper
circuit. The motor drives a mechanical load characterized by
inertia J, friction coefficient B, and load torque 7;. The control
circuit consists of a speed control loop and a current control
loop. A proportional-integral (PI) speed control loop senses
the actual speed of the motor and compares it with the reference
speed to determine the reference armature current required by
the motor. One may note that any variation in the actual speed
is a measure of the armature current required by the motor. The
current control loop consists of a hysteresis current controller
(HCC). The block diagram of a hysteresis current controller
is shown in Fig. 4. HCC is used to generate switching patterns
required for the chopper circuit by comparing the actual cur-
rent being drawn by the motor with the reference current. A

Speed Controller
DISCRETE
Current Controller

positive pulse is generated if the actual current is less than ref-
erence armature current, whereas a negative pulse is produced
if the actual current exceeds reference current [9]. In this paper,
an adaptive neuro-fuzzy inference system (ANFIS) controller
has been proposed for the speed control of separately excited
DC motor in the constant torque region, which is detailed in
the following part of this paper.

3. Adaptive neuro-fuzzy mode speed controller
3.1. Adaptive neuro-fuzzy principle

A typical architecture of an ANFIS is shown in Fig. 5, in
which a circle indicates a fixed node, whereas a square indi-
cates an adaptive node. For simplicity, we consider two inputs
x, y and one output z. Among many FIS models, the Sugeno
fuzzy model is the most widely applied one for its high inter-
pretability and computational efficiency. For a first order Su-
geno fuzzy model, a common rule set with two fuzzy if—then
rules can be expressed as:

Rule 1: if x is A; and y is By, then
I =px gyt (6)

Rule 2: if x is 4, and y is B, then
D =DhX+ Gy +n (7)

where A4; and B; are the fuzzy sets in the antecedent, and p,, ¢;
and r; are the design parameters that are determined during the
training process. As in Fig. 5. The ANFIS consists of five lay-
ers [10,11].

The task done by each layer is explained next.

Layer 1: Is composed of a number of computing nodes

whose activation functions are fuzzy logic
membership functions (triangular functions).
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Figure 3 MATLAB/SimPowerSystems model of a separately excited DC motor speed control.
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Block diagram of a hysteresis current controller.

Backproepagation
< Algoritim
Ay (
X ‘/ I
4>
Input X )
B
Output +
y w2 I,
B'a & N
“ AND Normalizer Output
Reference value
MF’s
Layerl Layer2 Layer3 Layer4 Layer5

Figure 5 Corresponding ANFIS architecture.

Layer 2: Chooses the minimum value of the inputs.

Layer 3: Normalizes each input with respect to the oth-
ers (The ith node output is the ith input
divided by the sum of all the other inputs).

Layer 4: ith node output is a linear function of the third
layer’s ith node output and the ANFIS input
signals.

Layer 5: Sums all the incoming signals. The ANFIS
structure can be tuned automatically by a
least-square estimation (for output member-
ship functions) and a back propagation algo-
rithm (for output and input membership
functions) [11].

3.2. Adaptive neuro-fuzzy controller

The ANFIS controller generates change in the reference volt-
age Vier, based on speed error e and derivate in the speed error
Ae defined as:

e(t) = Wrer — @ (8)
Ae(t) = [d(wrwer — )]/ dt 9)
where w.r and @ are the reference and the actual speeds. In
this study first order Sugeno type fuzzy inference is used for

ANFIS and the typical fuzzy rule is:
If e is Ai and de is Bi then

z = fle, de)

where A; and B; are fuzzy sets in the antecedent and z = f
(e, de) is a crisp function in the consequent.
The significances of ANFIS structure are:

Layer 1: Each adaptive node in this layer generates the
membership grades for the input vectors A4;, i
=1, 2, 3. In this paper, the node function is a
triangular membership function:

0 e < a;
e—a;
01 o o bi—a; a; < e S bi 11
P = My (e) = Ge pcos (11)
ci—b; i E€XCG
0 e;<e

Layer 2: The total number of rule is nine in this layer.
Each node output represents the activation
level of a rule

0} = W; =min(u,,(e) - ug(e)) (12)

Layer 3: Fixed node 7 in this layer calculates the ratio
of the ith rule’s activation level to the total
of all activation level:

w

Z?:lWJ
Layer 4: Adaptive node i in this layer calculates the

contribution of ith rule towards the overall
output, with the following node function:

0;} = W,Z; = W(P;e + g;de + r;) (14)

0} =T = (13)
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Layer 5: The single fixed node in this layer computes
the overall output as the sum of each rule’s
contribution

2
— Wz, + W,Z,
0; = Wz =————7"— 15
i ,:Zl ! W1 + W2 ( )
The parameters to be trained are «;, b; and ¢; of the premise
parameters and p;, ¢,, and r; of the consequent parameters.

Fig. 6a and b show optimized membership function for e
and Ae after raining (Fig. 7). Shows the ANFIS model struc-
ture involved in this work.

The number of epochs was 150 for training. The number of
MF:s for the input variables e and de is 3 and 3 the number of
rules is then 9 (3 « 3 = 9). The triangular MF is used for two
input variables. It is clear from (11) that the triangular MF is
specified by two parameters.

Therefore, the ANFIS used here contains a total of 39 fitting
parameters, of which 12 (2 %3 + 2% 3 = 12) are the premise
parameters and 27 (3 « 9 = 27) are the consequent parameters.

4. Simulation results of speed neuro-fuzzy controller

An adaptive neuro fuzzy inference system (ANFIS) controller
is simulated for chopper-fed DC motor drive with parameters

) Anfis Model Structure g@@
input inputmf ruls outputmf output
®
Logical Operations
[
[ ] or
— not
|d|ckmaachmdelnsee detailed information || [ Updste | [ Help | [ Ciose | |

Figure 7 The neuro fuzzy controller structure.

as shown in Table 2. The model chosen here for simulation and
is taken from [8], where it is simulated and compared to the
conventional PI controller. The second section discusses the
comparison between conventional PI controller (speed control-
ler), fuzzy self tuning PID (FPID) controller (where the

(@)  jnimfi inlmi2 intmi3
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S 05k i
[
1 l l 1 | l 1 1 |
10 a0 B0 B0 100 120 140 180 180
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Figure 6 Membership functions for (a) speed error signal and (b) derivative of speed error signal.
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Table 2 Definition of parameters and its value.

No Definition Symbols Data/unit
1 Shaft power P 5 hp

2 Rated Voltage v 240 (rms)V
3 Armature resistance R, 0.6

4 Armature inductance L, 0.012 H

5 Field resistance Ry 240 H

6 Field inductance L, 120

7 Moment of inertia J 0.05 kg m?
8 Viscous friction coefficient B 02Nms
9 Coulomb friction torque Tr 0.5 N m

conventional PI controller (speed controller) in the chopper-
fed DC motor drive was replaced by the self tuning PID
controller) [12] and (ANFIS) controller as shown in Fig. 7.
The third and last section discusses the effect of increasing
temperature on armature resistance of DC motor [13] and its
impact on speed (Fig. 8).

4.1. The following observations can be made after demonstration
of chopper-fed DC motor drive

Starting the simulation and observing the motor voltage (V,),
current (/,) and speed (w) on the scope.

(1) 0 < t < 0.8 s: Starting and steady state operation: Dur-
ing this period, the load torque is 7, = 5 N m.

(2) t = 0.8 s: Reference speed Step: The reference speed is
increased from 120 to 160 rad/s. The PI speed controller
regulates the speed in approximately 0.25 s while FPID
speed controller regulates the speed in ~0.07 s and the
ANFIS speed controller regulates the speed in ~0.04 s.

nuro fuzzy
Current Controller speed control

Pulses to GTO

[

(3) t = 1.5s: Load torque step: When the load torque is sud-
denly increased from 5 to 25 N m [8] the speed is nearly
constant for ANFIS, however for PI and FPID the
speed is badly affected.

4.2. Comparisons between the conventional PI, FPID and
ANFIS controller

The comparisons between the conventional PI, FPID and AN-
FIS controller are shown in Figs. 9—11.

Simulation results and comparisons prove that ANFIS per-
forms good response where rise time = 0.08 s, at 1 = 0.8s
(when the reference speed is increased), while for PI speed con-
troller = 0.24 s and for FPID speed controller = 0.2 s.

4.3. Temperature effect on SEDM

In all of the electrical machines, the electrical, magnetic and
thermal processes are internally coupled together in some
sense. The temperature distribution is affected by the proper-
ties of the conducting and magnetic materials and the perfor-
mance of the electromagnetic force, which is generated from
the reaction between stator and rotor. The most temperature
sensitive parameters are the winding resistance and the iron
core of the stator.

Winding resistance is a major factor in motor selection be-
cause it seriously affects K,,. Winding resistance and motor
current produce power loss in the form of heat and motor tem-
perature rise (TPR). These losses are also referred to as I°R
losses and directly degrade motor efficiency.

Most motor windings are copper wire which has a positive
temperature coefficient. A winding temperature rise from 25 to
155 °C increases wire resistance as much as 50%. Likewise, a
proportional decrease in resistance occurs for temperature
drops [13].

Scope

F

Demux
= Discrete,
wm (radss) Ts= 1e-005 s.
la
Speed Reference m
E- If
(rad/s)
.

[T

B

Discrete DC_Machine

Load Torque SHP/240 W

(N.m)

L TL

m —
Ls

T

Gto

Vde*
280V

'||-"—“—*|—“—1

l
.
!

o N [o} A

P e T
]

V240 v

Figure 8 Model of a separately excited DC motor speed control with (ANFIS).
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Figure 9  Speed response of pl controller.

120
Te0F Ir——l——‘ The motor resistance increases with temperature as:
o} / R,(t) = Ry(10)[1 + o] (16)
|
170+ I.-—'I - where R, (1) = resistance at 155°C, R,(fy) = resistance at
el | 25°C, t = rise in temperature and o = temperature coeffi-
|.' cient of resistance at 0 °C = 0.00393 for copper magnet wire.
ail | Then R, () = 0912 Q.
HI Figs. 12 and 13 show the effect of increasing temperature on
| { 1 speed of DC motor
wf f
{ (1) 0 <t < 0.8s: Starting and steady state operation: Dur-
m'lnl ing this period, the load torque is 7, = 5 N m.
ok
(2) t = 0.8s: Reference speed step: The reference speed is
-';(nn _112 "t. EIIE ulﬂ l' 1'_. 111 tlE 113 = increased from 120 to 160 rad/s. The PI speed controller
. o ’ Tiftie S “ ’ ’ g regulates the speed in approximately 0.3 s while ANFIS
speed controller regulates the speed in ~0.1 s.
Figure 10  Speed response of (FPID) self tuning controller.

Figure 11

Speed response of (ANFIS).
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Figure 12

Speed response of pl controller under effect of temperature.
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Figure 13  Speed response of (ANFIS) under effect of temperature.

Table 3 Comparison results between PI, FPID, and ANFIS
controllers.

Control strategies  Rise time (s)  Time for speed regulation (s)

Conventional PI 0.24 0.25
FPID 0.2 0.07
ANFIS 0.08 0.04

Table 4 Comparison results between PI, FPID, and ANFIS
controllers.

Control Setting Setting time Overshoot
strategies time before after changing

changing load (s)

load (s)
Conventional PI 0.58 0.2 Yes
FPID 0.2 0.2 No
ANFIS 0.09 0.02 No

(3) t = 1.5s: Load torque step: When the load torque is sud-
denly increased from 5 to 25N m [8] the speed is
decreased for both PI and ANFIS but in PI controller
the speed is badly affected.

5. Conclusions

Speed controller system based on (ANFIS) controller has been
successfully developed using MATLAB (2009) to control the
speed of a separately excited DC motor. This paper Lies in
the application of (ANFIS) controller to control a separately
excited DC motor. This paper also discusses the effect of
increasing temperature on armature resistance of DC motor
and its impact on speed. The performance of the system has
been compared with conventional PI controller and fuzzy self
tuning PID controller. An improved speed response has been
achieved with the ANFIS than the other techniques men-
tioned. The performance has been tested by simulations.
There is a reduction in number of ripples as well as steady

state error and rise time and no overshoot appears. Moreover
ANFIS controller regulates the speed in time less than previ-
ously mentioned controllers and FPID controller as shown in
Table 3.

Actually, the proposed ANFIS speed controller improves
the performance in both transient and steady state response
in comparison to the conventional PI controller as shown in
Tables 3 and 4.
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