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Abstract In this paper an adaptive neuro-fuzzy inference system (ANFIS) controller using error

and derivative of error inputs is proposed for the speed control of a separately excited DC motor

(SEDM) using chopper circuit. This paper investigates the design and simulation of an adaptive

neuro-fuzzy inference system (ANFIS) controller for the speed of DC motor. The performance

of the proposed system has been compared with conventional one, where the conventional PI con-

troller (speed controller) in the chopper-fed DC motor drive is replaced by the adaptive neuro-fuzzy

controller to improve the dynamic behavior of the model. Computer Simulation is conducted to

demonstrate the performance of the proposed controller and results show that the proposed design

succeeded over the conventional PI controller where it make reduction of number of ripples and rise

time. The entire system has been modeled using MATLAB 2009 toolbox.
� 2011 Ain Shams University. Production and hosting by Elsevier B.V.

All rights reserved.
1. Introduction

Direct current (DC) motors have been widely used in many

industrial applications such as electric vehicles, steel rolling
mills, electric cranes, and robotic manipulators due to precise,
o.uk (B.A.A. Omar).

y. Production and hosting by

Shams University.
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wide, simple, and continuous control characteristics. So we
studied this example of its importance and try to solve its
problems in different ways. Traditionally armature control

method was widely used for the speed control of low power
DC motors. However the controllability, cheapness, higher
efficiency, and higher current carrying capabilities of static

power converters brought a major change in the performance
of electrical drives. The desired torque-speed characteristics
could be achieved by the use of conventional proportional
integral-derivative (PID) controllers. Since PID controllers

require exact mathematical model. The adaptive neuro-fuzzy
inference system (ANFIS), developed in the early 1990s by
Jang [1], combines the concepts of fuzzy logic and neural

networks to form a hybrid intelligent system that enhances
the ability to automatically learn and adapt hybrid systems
have been used by researchers for modeling and predictions

in various engineering systems. The basic idea behind these
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Figure 1 Dynamic equivalent circuits of a DC motor.
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neuro-adaptive learning techniques is to provide a method for

the fuzzy modeling procedure to learn information about a
data.

Set, in order to automatically compute the membership
function parameters that best allow the associated FIS to track

the given input/output data. The membership function param-
eters are tuned using a combination of least squares estimation
and back-propagation algorithm. These parameters associated

with the membership functions will change through the learn-
ing process similar to that of a neural network. Their adjust-
ment is facilitated by a gradient vector, which provides a

measure of how well the FIS is modeling the input/output data
for a given set of parameters. Once the gradient vector is
obtained, any of several optimization routines could be applied

in order to adjust the output so as to reduce error between the
actual and desired outputs. This allows the fuzzy system to
learn from the data it is modeling. The approach has the
advantage over the pure fuzzy paradigm that the need for

the human operator to tune the system by adjusting the
bounds of the membership functions is removed. An open loop
control system which can predict the dynamic behavior of

systems involving mechanic and electronic modules has been
successfully designed and implemented to control the speed
of a DC motor [2]. The superior performance of artificial intel-

ligence (AI) based controllers urged power system and power
electronic engineers to replace conventional speed control
circuit with intelligent speed controllers [3,4].

2. Modeling of DC motor

The DC motor is the obvious proving ground for advanced

control algorithms in electric drives due to the stable and
straight forward characteristics associated with it. It is also ide-
ally suited for trajectory control applications. From a control

systems point of view, the DC motor can be considered as
SISO plant, there by eliminating the complications associated
with a multi-input drive system [5].

2.1. Dynamics of a DC motor

Dynamics of a DC motor is described by the following
equation:

KPxðtÞ ¼ �RiðtÞ � L
diðtÞ
dt
þ VðtÞ ð1Þ

KtiðtÞ ¼ J
dxðtÞ
dt
þDxðtÞ þ T1ðtÞ � Tf ð2Þ
Table 1 Definition of parameters.

No Definition Symbols Unit

1 Rotor speed x(t) rad s�1

2 Armature resistance R X
3 Armature inductance L H

4 Armature current i(t) A

5 Armature voltage V(t) v

6 Load torque TL Nm

7 Rotor inertia J kg m2

8 Is torque constant Kt V s rad�1

9 Back EMF constant kp V s rad�1

10 Viscous friction coefficient D Nm s rad�1

11 Coulomb friction torque TF Nm
where the parameters of the DC motor are shown in Table 1.

In order to control a plant, a discrete time model of the plant is
required. The following discrete time model of a DC motor is
used:

VðKÞ¼A1xðKþ1ÞþA2xðKÞþA3xðK�1ÞþA4ðK;K�1Þ ð3Þ

where k indicates the kth discrete time moment, A1, A2, and A3

are real constants, and A4 is a real parameter which depends
on the load of the motor [3].

2.2. Chopper-fed DC motor drive

A DC motor consists of stator and armature winding in the
rotor as in Fig. 1. The armature winding is supplied with a

DC voltage that causes a DC current to flow in the winding.
The field circuit of the motor is excited by a constant

source. The steady state speed of the motor can be described

as:

x ¼ V� iR

K1

ð4Þ

where k1 is the duty cycle. The speed of a DC motor can be
controlled by varying the voltage applied to the terminal.
These can be done by using a pulse-width modulation

(PWM) technique as shown in Fig. 2, where T is the signal per-
iod, td is the pulse-width, and Vm is the signal amplitude. A
Figure 2 Pulse width modulation.
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field voltage signal with varying pulse-width is applied to the

motor terminal. The average voltage is calculated from

Vag ¼
1

T

Z T

0

VðtÞdt ¼ td

T
Vm ¼ K1Vm ð5Þ

It can be mentioned from these equation that the average DC
component of the voltage signal is linearly related to the pulse-

width of the signal, or the duty cycle of the signal, since the
period is fixed.

The PWM voltage waveform for the motor is to be

obtained by using a special power electronic circuit called a
DC chopper. The action done by the DC chopper is supplying
a train of unidirectional voltage pulses to the armature wind-

ing of the PM-DC motor as shown in Fig. 2. If td is varied
keeping T constant, the resultant voltage wave represents a
form of pulse width modulation, and hence the chopper is

named as the PWM chopper [6,7].

2.3. Modeling and control of SEDM using MATLAB
SimPowerSystems

Fig. 3 shows MATLAB/SimPowerSystems model of a sepa-
rately excited DC motor which has been selected to control

[8]. It consists of a separately excited DC motor fed by a DC
source through a chopper circuit. A single GTO thyristor with
its control circuit and a free-wheeling diode form the chopper

circuit. The motor drives a mechanical load characterized by
inertia J, friction coefficient B, and load torque TL. The control
circuit consists of a speed control loop and a current control
loop. A proportional-integral (PI) speed control loop senses

the actual speed of the motor and compares it with the reference
speed to determine the reference armature current required by
the motor. One may note that any variation in the actual speed

is a measure of the armature current required by the motor. The
current control loop consists of a hysteresis current controller
(HCC). The block diagram of a hysteresis current controller

is shown in Fig. 4. HCC is used to generate switching patterns
required for the chopper circuit by comparing the actual cur-
rent being drawn by the motor with the reference current. A
Figure 3 MATLAB/SimPowerSystems model of
positive pulse is generated if the actual current is less than ref-

erence armature current, whereas a negative pulse is produced
if the actual current exceeds reference current [9]. In this paper,
an adaptive neuro-fuzzy inference system (ANFIS) controller
has been proposed for the speed control of separately excited

DC motor in the constant torque region, which is detailed in
the following part of this paper.

3. Adaptive neuro-fuzzy mode speed controller

3.1. Adaptive neuro-fuzzy principle

A typical architecture of an ANFIS is shown in Fig. 5, in

which a circle indicates a fixed node, whereas a square indi-
cates an adaptive node. For simplicity, we consider two inputs
x, y and one output z. Among many FIS models, the Sugeno

fuzzy model is the most widely applied one for its high inter-
pretability and computational efficiency. For a first order Su-
geno fuzzy model, a common rule set with two fuzzy if–then
rules can be expressed as:

Rule 1: if x is A1 and y is B1, then

z1 ¼ p1xþ q1yþ r1 ð6Þ

Rule 2: if x is A2 and y is B2, then

z2 ¼ p2xþ q2yþ r2 ð7Þ

where Ai and Bi are the fuzzy sets in the antecedent, and pi, qi
and ri are the design parameters that are determined during the
training process. As in Fig. 5. The ANFIS consists of five lay-

ers [10,11].
The task done by each layer is explained next.

Layer 1: Is composed of a number of computing nodes

whose activation functions are fuzzy logic
membership functions (triangular functions).
a separately excited DC motor speed control.



Figure 5 Corresponding ANFIS architecture.

Figure 4 Block diagram of a hysteresis current controller.
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Layer 2: Chooses the minimum value of the inputs.
Layer 3: Normalizes each input with respect to the oth-

ers (The ith node output is the ith input

divided by the sum of all the other inputs).
Layer 4: ith node output is a linear function of the third

layer’s ith node output and the ANFIS input

signals.
Layer 5: Sums all the incoming signals. The ANFIS

structure can be tuned automatically by a
least-square estimation (for output member-

ship functions) and a back propagation algo-
rithm (for output and input membership
functions) [11].

3.2. Adaptive neuro-fuzzy controller

The ANFIS controller generates change in the reference volt-
age Vref, based on speed error e and derivate in the speed error

De defined as:

eðtÞ ¼ xref � x ð8Þ
DeðtÞ ¼ ½dðxref � xÞ�=dt ð9Þ

where xref and x are the reference and the actual speeds. In
this study first order Sugeno type fuzzy inference is used for
ANFIS and the typical fuzzy rule is:

If e is Ai and de is Bi then

z ¼ fðe; deÞ
where Ai and Bi are fuzzy sets in the antecedent and z = f
(e, de) is a crisp function in the consequent.

The significances of ANFIS structure are:

Layer 1: Each adaptive node in this layer generates the
membership grades for the input vectors Ai, i

= 1, 2, 3. In this paper, the node function is a
triangular membership function:

O1
i ¼ lAi

ðeÞ ¼

0 e 6 ai
e�ai
bi�ai ai 6 e � bi
ei�e
ei�bi bi 6 e 6 ci

0 ei 6 e

8>>><
>>>:

ð11Þ

Layer 2: The total number of rule is nine in this layer.
Each node output represents the activation

level of a rule

O1
i ¼Wi ¼ minðlAi

ðeÞ � lBi
ðeÞÞ ð12Þ

Layer 3: Fixed node i in this layer calculates the ratio

of the ith rule’s activation level to the total
of all activation level:

O3
i ¼Wi ¼

WPn
j¼1WJ

ð13Þ

Layer 4: Adaptive node i in this layer calculates the

contribution of ith rule towards the overall
output, with the following node function:

O4
i ¼WiZi ¼WiðPieþ qideþ riÞ ð14Þ



Figure 7 The neuro fuzzy controller structure.
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Layer 5: The single fixed node in this layer computes

the overall output as the sum of each rule’s
contribution

O5
i ¼

X2
i¼1

WiZi ¼
W1Z1 þW2Z2

W1 þW2

ð15Þ

The parameters to be trained are ai, bi and ci of the premise

parameters and pi, qi, and ri of the consequent parameters.

Fig. 6a and b show optimized membership function for e

and De after raining (Fig. 7). Shows the ANFIS model struc-
ture involved in this work.

The number of epochs was 150 for training. The number of

MFs for the input variables e and de is 3 and 3 the number of
rules is then 9 (3 \ 3 = 9). The triangular MF is used for two
input variables. It is clear from (11) that the triangular MF is
specified by two parameters.

Therefore, the ANFIS used here contains a total of 39 fitting
parameters, of which 12 (2 \ 3 + 2 \ 3 = 12) are the premise
parameters and 27 (3 \ 9 = 27) are the consequent parameters.

4. Simulation results of speed neuro-fuzzy controller

An adaptive neuro fuzzy inference system (ANFIS) controller
is simulated for chopper-fed DC motor drive with parameters
Figure 6 Membership functions for (a) speed erro
as shown in Table 2. The model chosen here for simulation and

is taken from [8], where it is simulated and compared to the
conventional PI controller. The second section discusses the
comparison between conventional PI controller (speed control-
ler), fuzzy self tuning PID (FPID) controller (where the
r signal and (b) derivative of speed error signal.



Table 2 Definition of parameters and its value.

No Definition Symbols Data/unit

1 Shaft power P 5 hp

2 Rated Voltage v 240 (rms)V

3 Armature resistance Ra 0.6

4 Armature inductance La 0.012 H

5 Field resistance Rf 240 H

6 Field inductance Lf 120

7 Moment of inertia J 0.05 kg m2

8 Viscous friction coefficient B 0.2 N m s

9 Coulomb friction torque TF 0.5 N m
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conventional PI controller (speed controller) in the chopper-
fed DC motor drive was replaced by the self tuning PID
controller) [12] and (ANFIS) controller as shown in Fig. 7.

The third and last section discusses the effect of increasing
temperature on armature resistance of DC motor [13] and its
impact on speed (Fig. 8).

4.1. The following observations can be made after demonstration

of chopper-fed DC motor drive

Starting the simulation and observing the motor voltage (Va),
current (Ia) and speed (x) on the scope.

(1) 0 < t< 0.8 s: Starting and steady state operation: Dur-
ing this period, the load torque is TL = 5 N m.

(2) t= 0.8 s: Reference speed Step: The reference speed is
increased from 120 to 160 rad/s. The PI speed controller
regulates the speed in approximately 0.25 s while FPID

speed controller regulates the speed in �0.07 s and the
ANFIS speed controller regulates the speed in �0.04 s.
Figure 8 Model of a separately excited D
(3) t = 1.5 s: Load torque step: When the load torque is sud-

denly increased from 5 to 25 N m [8] the speed is nearly
constant for ANFIS, however for PI and FPID the
speed is badly affected.
4.2. Comparisons between the conventional PI, FPID and
ANFIS controller

The comparisons between the conventional PI, FPID and AN-

FIS controller are shown in Figs. 9–11.
Simulation results and comparisons prove that ANFIS per-

forms good response where rise time = 0.08 s, at t= 0.8 s

(when the reference speed is increased), while for PI speed con-
troller = 0.24 s and for FPID speed controller = 0.2 s.

4.3. Temperature effect on SEDM

In all of the electrical machines, the electrical, magnetic and
thermal processes are internally coupled together in some

sense. The temperature distribution is affected by the proper-
ties of the conducting and magnetic materials and the perfor-
mance of the electromagnetic force, which is generated from

the reaction between stator and rotor. The most temperature
sensitive parameters are the winding resistance and the iron
core of the stator.

Winding resistance is a major factor in motor selection be-
cause it seriously affects Km. Winding resistance and motor
current produce power loss in the form of heat and motor tem-

perature rise (TPR). These losses are also referred to as I2R
losses and directly degrade motor efficiency.

Most motor windings are copper wire which has a positive
temperature coefficient. A winding temperature rise from 25 to

155 �C increases wire resistance as much as 50%. Likewise, a
proportional decrease in resistance occurs for temperature
drops [13].
C motor speed control with (ANFIS).



Figure 9 Speed response of pI controller.

Figure 10 Speed response of (FPID) self tuning controller.

Figure 12 Speed response of pI cont

Figure 11 Speed resp
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The motor resistance increases with temperature as:

RaðtÞ ¼ Raðt0Þ½1þ a0t� ð16Þ

where Ra(t) = resistance at 155 �C, Ra(t0) = resistance at
25 �C, t= rise in temperature and a0 = temperature coeffi-

cient of resistance at 0 �C= 0.00393 for copper magnet wire.
Then Ra(t) = 0.912 X.

Figs. 12 and 13 show the effect of increasing temperature on

speed of DC motor

(1) 0 < t< 0.8 s: Starting and steady state operation: Dur-

ing this period, the load torque is TL = 5 N m.

(2) t= 0.8 s: Reference speed step: The reference speed is
increased from 120 to 160 rad/s. The PI speed controller
regulates the speed in approximately 0.3 s while ANFIS
speed controller regulates the speed in �0.1 s.
roller under effect of temperature.

onse of (ANFIS).



Figure 13 Speed response of (ANFIS) under effect of temperature.

Table 3 Comparison results between PI, FPID, and ANFIS

controllers.

Control strategies Rise time (s) Time for speed regulation (s)

Conventional PI 0.24 0.25

FPID 0.2 0.07

ANFIS 0.08 0.04

Table 4 Comparison results between PI, FPID, and ANFIS

controllers.

Control

strategies

Setting

time before

changing

load (s)

Setting time

after changing

load (s)

Overshoot

Conventional PI 0.58 0.2 Yes

FPID 0.2 0.2 No

ANFIS 0.09 0.02 No
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(3) t= 1.5 s: Load torque step: When the load torque is sud-
denly increased from 5 to 25N m [8] the speed is
decreased for both PI and ANFIS but in PI controller
the speed is badly affected.
5. Conclusions

Speed controller system based on (ANFIS) controller has been

successfully developed using MATLAB (2009) to control the
speed of a separately excited DC motor. This paper Lies in
the application of (ANFIS) controller to control a separately

excited DC motor. This paper also discusses the effect of
increasing temperature on armature resistance of DC motor
and its impact on speed. The performance of the system has

been compared with conventional PI controller and fuzzy self
tuning PID controller. An improved speed response has been
achieved with the ANFIS than the other techniques men-
tioned. The performance has been tested by simulations.

There is a reduction in number of ripples as well as steady
state error and rise time and no overshoot appears. Moreover

ANFIS controller regulates the speed in time less than previ-
ously mentioned controllers and FPID controller as shown in
Table 3.

Actually, the proposed ANFIS speed controller improves
the performance in both transient and steady state response
in comparison to the conventional PI controller as shown in

Tables 3 and 4.
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