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The aim of an intrusion detection systems (IDS) is to detect various types of malicious network traffic and
computer usage, which cannot be detected by a conventional firewall. Many IDS have been developed
based on machine learning techniques. Specifically, advanced detection approaches created by combining
or integrating multiple learning techniques have shown better detection performance than general single
learning techniques. The feature representation method is an important pattern classifier that facilitates
correct classifications, however, there have been very few related studies focusing how to extract more
representative features for normal connections and effective detection of attacks. This paper proposes a
novel feature representation approach, namely the cluster center and nearest neighbor (CANN) approach.
In this approach, two distances are measured and summed, the first one based on the distance between
each data sample and its cluster center, and the second distance is between the data and its nearest
neighbor in the same cluster. Then, this new and one-dimensional distance based feature is used to rep-
resent each data sample for intrusion detection by a k-Nearest Neighbor (k-NN) classifier. The experimen-
tal results based on the KDD-Cup 99 dataset show that the CANN classifier not only performs better than
or similar to k-NN and support vector machines trained and tested by the original feature representation
in terms of classification accuracy, detection rates, and false alarms. I also provides high computational
efficiency for the time of classifier training and testing (i.e., detection).

� 2015 Published by Elsevier B.V.
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1. Introduction

Advancements in computing and network technology have
made the activity of accessing the Internet an important part of
our daily life. In addition, the amount of people connected to the
Internet is increasing rapidly. However, the high popularity of
world-wide connections has led to security problems.

Traditionally, some techniques, such as user authentication,
data encryption, and firewalls, are used to protect computer secu-
rity. Intrusion detection systems (IDS), which use specific analyti-
cal technique(s) to detect attacks, identify their sources, and alert
network administrators, have recently been developed to monitor
attempts to break security [3]. In general, IDS are developed for sig-
nature and/or anomaly detection. For signature detection, packets
or audit logs are scanned to look for sequences of commands or
events which are previously determined as indicative of an attack.
On the other hand, for anomaly detection, IDS use behavior
80

81

82
patterns which could indicate malicious activities and analyzes
past activities to recognize whether the observed behaviors are
normal. As early IDS largely used signature detection to detect all
the attacks captured in their signature databases, they suffer from
high false alarm rates. Recent innovative approaches including
behavior-based modeling have been proposed to detect anomalies
include data mining, statistical analysis, and artificial intelligence
techniques [21,28].

Much related work in the literature focuses on the task of
anomaly detection based on various data mining and machine
learning techniques. There have been many recent studies, which
focus on combining or integrating different techniques in order
to improve detection performance, such as accuracy, detection,
and/or false alarm rates (see Table 1 in Section 2.4).

However, there are two limitations to existing studies. First,
although more advanced and sophisticated detection approaches
and/or systems have been developed, very few have focused on
feature representation for normal connections and attacks, which
is an important issue in enhancing detection performance. There
is a huge amount of related studies using either the KDD-Cup 99
Knowl.
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or DARPA 1999 dataset for experiments, however there is no an
exact answer to the question about which features of these data-
sets are more representative. Second, the time taken for training
the systems and for the detection task to further validate their sys-
tems are not considered in many evaluation methods. Recent sys-
tems that combine or integrate multiple techniques require much
greater computational effort. As a result, this can degrade the effi-
ciency of ‘on-line’ detection.

Therefore, in this study, we propose a novel feature representa-
tion method for effective and efficient intrusion detection that is
based on combining cluster centers and nearest neighbors, which
we call CANN. Specifically, given a dataset, the k-means clustering
algorithm is used to extract cluster centers of each pre-defined cat-
egory. Then, the nearest neighbor of each data sample in the same
cluster is identified. Next, the sum of the distance between a spe-
cific data sample and the cluster centers and the distance between
this data sample and its nearest neighbor is calculated. This results
in a new distance based feature that represents the data in the
given dataset. Consequently, a new dataset containing only one
dimension (i.e., distance = based feature representation) is used
for k-Nearest Neighbor classification, which allows for effective
and efficient intrusion detection.

The idea behind CANN is that the cluster centers or centroids for
a given dataset offer discrimination capabilities for recognition
both similar and dissimilar classes [9,10,35]. Therefore, the dis-
tances between a data sample and these identified cluster centers
are likely to provide some further information for recognition. Sim-
ilarly, the distance between a specific data sample and its nearest
data sample in the same class also has some discriminatory power.

The rest of this paper is organized as follows. Section 2 reviews
related literature including offering brief descriptions of super-
vised and unsupervised machine learning techniques. The tech-
niques used in this paper are also described. Moreover, the
techniques used, datasets and evaluation strategies considered in
related work are compared. The proposed approach for intrusion
detection is introduced in Section 3. Section 4 presents the exper-
imental setup and results. Finally, some conclusions are provided
in Section 5.
178

179

180

181

182
183

185185

186

187

188

189

190

191
2. Literature review

2.1. Machine learning

Machine learning requires a system capable of the autonomous
acquisition and integration of knowledge. This capacity includes
learning from experience, analytical observation, and so on, the
result being a system that can continuously self-improve and
thereby offers increased efficiency and effectiveness. The main goal
of the study of machine learning is to design and develop algo-
rithms and techniques that allow computers to learn. In general,
there are two types of machine learning techniques, supervised
and unsupervised [22] which are described in greater detail below.
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2.2. Supervised learning

Supervised learning or classification is one common type of
machine learning technique for creating a function from a given
set of training data. The training data are composed of pairs of
input objects and their corresponding outputs. The output of the
function can be a continuous value, and can predict a class label
of the input object. Particularly, the learning task is to compute a
classifier that approximates the mapping between the input–out-
put training examples, which can correctly label the training data
with some level of accuracy.
Please cite this article in press as: W.-C. Lin et al., CANN: An intrusion detection
Based Syst. (2015), http://dx.doi.org/10.1016/j.knosys.2015.01.009
The k-Nearest Neighbor (k-NN) algorithm is a conventional
non-parametric classifier used in machine learning [22]. The pur-
pose of this algorithm is to assign an unlabelled data sample to
the class of its k nearest neighbors (where k is an integer). Fig. 1
shows an example for a k-NN classifier where k = 5. Consider the
5 nearest neighbors around X for the unlabelled data to be classi-
fied. There are three ‘similar’ patterns from class C2 and two from
class C1. Taking a majority vote enables the assignment of X to
the C2 class.

According to Jain et al. [13], k-NN can be conveniently used as a
benchmark for all the other classifiers since it is likely to provide a
reasonable classification performance in most applications. Other
well-known supervised learning techniques used in intrusion
detection include support vector machines, artificial neural net-
works, decision trees, and so on [3,33,37].

2.3. Unsupervised learning

Unsupervised learning or clustering is a method of machine
learning where a model is fit to observations. It differs from super-
vised learning in the absence of prior output. In unsupervised
learning, a data set of input objects is gathered first. The input
objects are typically treated as a set of random variables. A joint
density model is then built for the data set [22].

The machine simply receives the inputs x1,x2, . . . ,xn, obtaining
neither supervised target outputs, nor rewards from its environ-
ment. It may seem somewhat mysterious to imagine what the
machine could possibly learn given that it does not get any feed-
back from its environment. However, it is possible to develop a for-
mal framework for unsupervised learning based on the notion that
the machine’s goal is to build representations of the input that can
be used for decision making, predicting future inputs, efficiently
communicating the inputs to another machine, etc.

The k-means clustering algorithm is the simplest and most com-
monly used unsupervised machine learning technique [14] being a
simple and easy way to classify a given dataset through a certain
number of clusters. The goal of the k-means algorithm is to find k
points of a dataset, which can best represent this dataset in a cer-
tain number of groups. The point, k, is the cluster center or centroid
of each cluster.

In particular, k-means is used to cluster or group N data points
into K disjoint subsets Sj containing Nj data points so as to mini-
mize the sum-of-squares criterion,

J ¼
Xk

j¼1

X
n2Sj

jxn � ljj
2 ð1Þ

where xn is a feature vector representing the n-th data point and lj

is the geometric centroid of the data points in Sj.
In the literature, it can be seen that some clustering techniques

are combined with specific supervised learning techniques for
intrusion detection. For example, Khan et al. [16] combined
self-organizing maps (SOM) and support vector machines, Xiang
et al. [37] combined Bayesian clustering and decision trees, and
C-means clustering and artificial neural networks are combined
in Zhang et al. [38].

2.4. Comparison of related work

A number of related intrusion detection systems are compared
and the results shown in Table 1. In particular, we compare the
machine learning techniques used for developing the detection
systems, datasets used for experiments, evaluation methods con-
sidered, baseline classifiers for comparisons, etc. in relevant stud-
ies. For a detailed review, readers can refer to Garcı́a-Teodoro
et al. [7] and Tsai et al. [34].
system based on combining cluster centers and nearest neighbors, Knowl.
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Table 1
Comparisons of related work.

Work Technique Dataset Problem domain Evaluation method Baseline Feature
selection

Eesa et al. [6] DTa KDD-Cup 99 Anomaly detection DRb, FPc, accuracy, ROC curved N/A Yes
de la Hoz et al. [4] GHSOMe KDD-Cup 99 + DARPA 1999 Anomaly detection DR, ROC curve NBf, RFg, DT,

AdaBoost
Yes

Feng et al. [5] SVMh+ant colony network KDD-Cup 99 Anomaly detection DR, FP, FNi SVM No
Kim et al. [17] DT + SVM A modified version of KDD-Cup 99 Anomaly and misuse

detection
DR, ROC curve DT, SVM No

Baig et al. [2] GMDHj KDD-Cup 99 Anomaly detection Accuracy, Recall, Precision, FP, FN,
ROC

NB, ANNk Yes

Shin et al. [29] Markov chain + probabilistic modeling of network
events

DARPA 2000 Anomaly detection DR, FP, ROC Markov chain
model

Yes

Lin et al. [19] SAl+DT, SVM KDD-Cup 99 Anomaly detection DR DT, SVM Yes
Sangkatsanee et al.

[27]
DT, ANN, Ripper rule Reliability Lab Data 2009/KDD-

Cup 99
Anomaly detection DR N/A Yes

Wang et al. [36] Fuzzy clustering + ANN KDD-Cup 99 Anomaly detection Precision, Recall, F-measure DT/NBm, ANN No
Tajbakhsh et al. [32] FLn+ARo KDD-Cup 99 Anomaly detection DR, FP SVM, k-NN No
Tong et al. [33] RBF, Elman neural networks DARPA 1999 Anomaly detection DR, FP ANN, SOMp No
Giacinto et al. [8] k-means, SVM ensembles KDD-Cup 99 Anomaly detection DR N/A No
Hu et al. [12] AdaBoost DT KDD-Cup 99 Anomaly detection DR, FAq, Run time N/A No
Xiang et al. [37] Bayes clustering + DT KDD-Cup 99 Anomaly detection DR, Run time DT Yes
Abadeh et al. [1] GAr+FL DARPA 1998 Anomaly detection DR, FA FL No
Chen et al. [3] GA + ANN DARPA 1998 Anomaly detection FP, FN ANN, 2 layer ANN Yes
Hansen et al. [11] GA KDD-Cup 99 Anomaly detection DR N/A No
Khan et al. [16] SOM + SVM DARPA 1998 Anomaly detection FP, FN, accuracy SVM No
Li and Guo [18] TCM k-NN KDD-Cup 99 Anomaly detection TPs, FP SVM, ANN, k-NN No
Liu et al. [20] SOM + ANN DARPA 1998 Anomaly and misuse

detection
DR, FA, FP SVM, DT, SOM Yes

Ozyer et al. [25] GA + FL KDD-Cup 99’ Anomaly and misuse
detection

DR GA No

Peddabachigari et al.
[26]

DT + SVM KDD-Cup 99’ Anomaly and misuse
detection

Accuracy SVM, DT No

Shon and Moon [30] GA + SVM DARPA 1999 Anomaly detection DR, FP, FN SVM Yes
Shon et al. [31] GA + ANN/k-NN/SVM DARPA 1998 Anomaly detection DR, FP, FN ANN, k-NN, SVM Yes
Sarasamma et al. [28] Hierarchical SOM KDD-Cup 99 Anomaly detection DR. FP SOM Yes
Zhang et al. [38] C-means clustering + ANN KDD-Cup 99’ Anomaly and misuse

detection
DR, FP ANN No

a DT: Decision Tree References.
b DR: detection rate.
c FP: false positive.
d ROC curve: Receiver Operating Characteristic curve.
e GHSOM: Growing Hierarchical SOM.
f NB: Naïve Bayes.
g RF: Random Forest.
h SVM: support vector machine.
i FN: false negative.
j GMDH: Group Method for Data Handling.
k ANN: Artificial Neural Networks.
l SA: Simulated Annealing.

m NB: Naïve Bayes.
n FL: Fuzzy Logic.
o AR: Association Rules.
p SOM: self-organizing maps.
q FA: false alarm.
r GA: Genetic Algorithm.
s TP: true positive.
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Fig. 2. The CANN process.
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As we can see from Table 1, DARPA1998 and KDD-Cup99 are the
most commonly used datasets for simulating intrusion detection
while SVM and k-NN classifiers are popular baseline techniques
used in related work proposing novel techniques. In addition, it
is the trend that related studies consider combining or integrating
two different techniques in order to improve the intrusion detec-
tion performance.

Related studies where the main focus is on developing more
advanced techniques to improve the intrusion detection perfor-
mance, tend to rely only on some feature selection methods, such
as principal component analysis (PCA), to filter out unrepresenta-
tive features in the DARPA1998 and/or KDD-Cup99 dataset (e.g.,
[20,25,39]. However, according to Table 1, very few studies com-
bine feature selection and classification techniques to examine
the effect of performing feature selection on the intrusion detec-
tion performance.

However, each study uses different features over the same data-
sets. Therefore, currently it is not known what features are more
representative in the two datasets.

The detection rate (DR), false positive (FP), false negative (FN),
true positive (TP), false alarm (FA), and the accuracy rate are most
often examined for evaluation measurements. Only Hu et al. [12]
and Xiang et al. [37] considered the run time during intrusion
detection as another performance indicator. It is known that for
intrusion detection systems the computational effort, i.e., run time,
for online detection should be as short as possible. Although this is
a very critical issue, very few have considered the detection time of
their systems.

The above discussion leads us to propose the method described
below, which can not only extract representative features for
improving detection performances, but also provide computational
efficiency.
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3. CANN: the proposed approach

3.1. The CANN process

The proposed approach is based on two distances which are
used to determine the new features, between a specific data point
and its cluster center and nearest neighbor respectively. CANN is
comprised of three steps as shown in Fig. 2.

Given a training dataset T, the first step is to use a clustering
technique to extract cluster centers. The number of clusters is
based on the number of classes to be classified. Since intrusion
detection is one classification problem, the chosen dataset has
already defined the number of classes to be classified. Therefore,
for example, if the given dataset is a three-class problem, then
the number of clusters is defined as three. Besides extracting clus-
Please cite this article in press as: W.-C. Lin et al., CANN: An intrusion detection
Based Syst. (2015), http://dx.doi.org/10.1016/j.knosys.2015.01.009
ter centers, each data point of the given dataset and its nearest
neighbor in the same cluster is identified. This can be done by cal-
culating the distances between one specific data point (Di) and all
of the other data in the same cluster. Then, the shortest distance
between two data examples representing Di and its nearest neigh-
bor can be found.

The second step is to measure and sum the distance (dis1)
between all data of the given dataset and the cluster centers and
the distance (dis2) between each data point and its nearest neigh-
bor in the same cluster. This leads to a new distance based feature
value to represent each data point of the given dataset, which is T0.
That is, the original features (i.e., the number of dimensions is usu-
ally larger than one) are replaced by one new dimension feature.

To test the new unknown data for intrusion detection, the test-
ing set S is combined with the original training set T. Then, the pro-
cesses of extracting cluster centers and nearest neighbors
(Fig. 2(a)) and new data formation (Fig. 2(b)) are executed. During
these processes, only the data samples in S are considered. As a
result, the new distance based feature dataset S0 is obtained. There-
system based on combining cluster centers and nearest neighbors, Knowl.
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fore, T0 and S0 are used to train and test the k-NN classifier for intru-
sion detection.

3.2. Extraction of cluster centers and nearest neighbors

To extract cluster centers, a clustering technique can be applied
in this stage. In this study, the k-means clustering algorithm is
used. Fig. 3 shows an example where the chosen dataset consisting
of 12 data samples (N1 to N12) is a five-class classification problem.
Thus, the number of clusters is defined as five (i.e., k = 5) for the k-
means clustering algorithm. As a result, there are five clusters,
which each cluster containing a cluster center (i.e., C1, C2, C3, C4,
and C5).

On the other hand, to identify the nearest neighbor of a data
point, Di for example, the k-NN approach is used where the dis-
tance between Di and each of the other data points in the same
cluster can be obtained. That is, the nearest neighbor of Di is based
on the shortest distance identified by k-NN. Therefore, for Fig. 3, N1

is the nearest neighbor of Di.

3.3. New data formation

After the cluster center and nearest neighbor for every data
point of the chosen dataset are extracted and identified, two types
of distances are calculated and then summed. The first type is
based on the distance from each data point to the cluster centers.
That is, if there are three cluster centers, then there are three dis-
tances between a data point to the three cluster centers, respec-
tively. The second type is based on the distance from each data
point to its nearest neighbor. Fig. 4 shows an example of five clus-
ters, in which the two types of distances for the data point Di are
obtained by

Di ¼ DiC1 þ DiC2 þ DiC3 þ DiC4 þ DiC5 ð2Þ

Specifically, the distance between two data points is based on the
Euclidean distance. For example, given that data A and B contain
n-dimensional features, their Euclidean distance is based on

dis AB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða1 � b1Þ2 þ ða2 � b2Þ2 þ . . .þ ðan � bnÞ2

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼1

ðai � biÞ2
vuut ð3Þ

Following the example shown in Fig. 3, the CANN approach trans-
forms the original n-dimensional features to the one-dimensional
distance feature by
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Fig. 3. An example of extracting cluster centers and nearest neighbors.
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Dis ðDiÞ ¼
X5

j¼1

disðDi;CjÞ þ
X
k¼1

disðDi;NkÞ ð4Þ

,where Di is the i-th data point of a given dataset, Cj is the j-th clus-
ter center identified by k-means, and Nk is the k-th data point which
is the nearest neighbor of Di. These distance values are summed to
represent the feature of Di. As a result, each data point of the given
dataset has its one dimensional distance feature. Finally, for the
dataset containing m data samples, in which each sample originally
has n dimensions, the CANN approach produces a new dataset con-
taining m data samples, in which each sample has one dimension,
i.e., the distance feature.

For classifier construction, the final step of CANN, the new data-
set is divided into the training and testing datasets to train and test
a specific classifier. In this study, we consider the k-NN classifier
since it is easy to implement and widely used as a baseline classi-
fier in many applications.

It should be noted that the CANN process can be applied to any
dataset with and without feature selection. For instance, the col-
lected dataset contains D dimensional features. When dimension-
ality reduction is required, a chosen feature selection algorithm
is used to select some representative features from the training
set resulting in D0 features where D0 < D. Next, the reduced training
dataset is used for the CANN process, which can be regarded as T
shown in Fig. 2(a) and (b). For the testing set, its features are the
same as the ones identified in the training set, i.e. D0. Then, the
reduced testing set containing D0 dimensional features, which
can be regarded as S shown in Fig. 2(c), is used for intrusion
detection.

4. Experiments

4.1. Experimental setup

4.1.1. The dataset
Since there is no standard dataset for intrusion detection, the

dataset used in this paper is based on the KDD-Cup 99 dataset1

containing 494,020 samples, which is the most popular and widely
used in related work (c.f., Table 1). Specifically, each data sample
represents a network connection represented by a 41-dimensional
feature vector, in which 9 features are of the intrinsic types, 13 fea-
tures are of the content type, and the remaining 19 features are of
the traffic type. Each pattern of the dataset is labeled as belonging
to one out of five classes, which are normal traffic and four different
classes of attacks, i.e., probing, denial of service (DoS), remote to local
1 http://www.sigkdd.org/kddcup/index.php?section=1999&method=data.
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Table 3
Performances of CANN, k-NN, and SVM over the 6-dimensonal dataset.

Accuracy Detection Rate False Alarm

CANN (k = 1) 99.76% (1) 99.99% (1) 0.003% (1)
TANN (k = 21) 93.87% (2) 93.39% (2) 28.69% (2)
k-NN (k = 5) 80.65% (3) 80.32% (3) 99.92% (3)

Table 4
Confusion matrix of k-NN over the 6-dimensonal dataset.

Predicted Accuracy (%)

Normal Probe DoS U2R R2L

Actual
Normal 73 97,204 0 0 0.075
Probe 0 0 4107 0 0 100
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(R2L), and user to root (U2R). Therefore, this is a five-class classifica-
tion dataset and the k value of k-means to extract cluster centers is
set to 5.

The dataset is a large and high dimensional dataset. A dimen-
sional reduction (or feature selection) step based on principal com-
ponent analysis (PCA) has been considered in related work for
example, to filter out unrepresentative features (e.g., [20,25]. How-
ever, as there is no standard answer about which features are well
representative for intrusion detection, this study considers two dif-
ferent numbers of features, 6 and 19, in order to fully assess the
performance of CANN. The 6-dimension KDD dataset contains
‘land’, ‘urgent’, ‘num_failed_logins’, ‘num_shells’, ‘is_host_login’,
and ‘num_outbound_cmds’ [35]. On the other hand, the KDD data-
set containing 19 features is based on the work of Zhang et al. [39].

4.1.2. Classifier design
The final step of CANN for classifier construction is based on the

k-NN algorithm. One of the baseline classifiers to compare with
CANN is the k-NN classifier. That is, the baseline k-NN classifier
is trained and tested over the original (6 and 19 dimensional)
KDD datasets without the CANN process. In particular, for the k
value of the k-NN algorithm used in CANN and the baseline, we
examine k = 1,3,5, . . . ,25 in order to obtain the best k-NN classifier
for comparison.

Another baseline classifier based on the support vector machine
(SVM), a popularly used baseline classifier in the literature, is con-
sidered. The polynomial kernel function is used to construct the
SVM, in which the degree of the polynomial is set from 1 to 5 to
obtain the SVM classifier providing the best performance for
comparison.

The 10-fold cross validation method is used to train and test
these classifiers, where the dataset is divided into 10 un-duplicated
subsets, and any nine of the ten subsets are used for training and
the remaining one for testing. Thus, the classifier will be trained
and tested10 times.

4.1.3. Evaluation methods
In this study, we consider the rates of accuracy, detection and

false alarms, which are widely used in literature, to evaluate the
performance of intrusion detection (c.f., Table 1). They can be cal-
culated by a confusion matrix as shown in Table 2.

Then, the rates of accuracy, detection and false alarm can be
obtained by:

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð5Þ

Detection Rate ¼ TP
TP þ FP

ð6Þ

False Alarm ¼ FP
FP þ TN

ð7Þ
Table 2
Confusion matrix.

# Actual n predicted! Normal Intrusions (Attacks)

Normal TN FP
Intrusions (Attacks) FN TP

True Positives (TP): the number of malicious executables correctly classified as
malicious.
True Negatives (TN): the number of benign programs correctly classified as benign.
False Positives (FP): the number of benign programs falsely classified as malicious.
False Negative (FN): the number of malicious executables falsely classified as
benign.

Please cite this article in press as: W.-C. Lin et al., CANN: An intrusion detection
Based Syst. (2015), http://dx.doi.org/10.1016/j.knosys.2015.01.009
Moreover, in order to understand the efficiency of CANN in terms of
training and testing efforts, the time for executing all three steps
will be examined and compared with the baseline classifiers.

4.2. Study I: the 6-dimensional dataset

Study I is based on the 6-dimensional KDD dataset. Table 3
shows the performance of CANN, TANN [35], and k-NN. The results
show that CANN provides the highest accuracy rate of 99.761%, sig-
nificantly outperforming TANN and k-NN. In addition, CANN can
produce the highest detection rate and lowest false alarm rate.

Tables 4 and 5 show the confusion matrices of k-NN and CANN,
respectively, for the 6-dimensional dataset. It is interesting that
with the k-NN classifier, most of the normal accesses are recog-
nized for probing U2R and R2L as DoS attacks, which results in a
very high false alarm rate. However, almost all DoS attacks are
classified correctly. This suggests that these 6-dimensonal features
are not representative enough to allow k-NN to distinguish
between these five different classes. In other words, the results
obtained using k-NN for probing U2R and R2L attacks are very sim-
ilar to the DoS attacks in the 6-dimensional feature space.

Although CANN performs the best, one weakness is that it
totally misclassifies U2R and R2L attacks into the normal traffic
class (see Table 5). This may be because these two attack categories
are similar to the pattern of normal traffic after performing the
CANN process. The proposed feature representation extracted from
the 6-dimensonal dataset allows the classifier to distinguish
between the normal traffic, probing, and DoS classes quite well
(see Table 6).

4.3. Study II: the 19-dimensional dataset

The second study is based on a 19-dimensional KDD dataset.
Table 7 shows the performance of CANN, k-NN, and SVM. As can
Dos 12 0 391,446 0 0 99.99
U2R 0 0 52 0 0 0
R2L 0 0 1126 0 0 0

Table 5
Confusion matrix of CANN over the 6-dimensonal dataset.

Predicted Accuracy (%)

Normal Probe DoS U2R R2L

Actual
Normal 97,275 0 2 0 0 99.99
Probe 0 4106 1 0 0 99.98
Dos 2 0 391,456 0 0 99.99
U2R 52 0 0 0 0 0
R2L 1126 0 0 0 0 0
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Table 7
Confusion matrix of k-NN over the 19-dimensonal dataset.

Predicted Accuracy (%)

Normal Probe DoS U2R R2L

Actual
Normal 96,964 42 118 17 126 99.68
Probe 48 4045 11 0 3 98.49
Dos 52 6 391,394 3 3 99.98
U2R 29 1 3 9 10 17.31
R2L 80 6 4 3 1033 91.74

Table 6
Performances of CANN, k-NN, and SVM over the 19-dimensonal dataset.

Accuracy Detection rate False alarm

CANN (k = 1) 99.46% (2) 99.28% (2) 2.95% (2)
SVM (degree = 2) 95.37% (3) 98.97% (3) 4% (3)
k-NN (k = 1) 99.89% (1) 99.92% (1) 0.32% (1)

W.-C. Lin et al. / Knowledge-Based Systems xxx (2015) xxx–xxx 7

KNOSYS 3053 No. of Pages 9, Model 5G

1 February 2015

Q1
be seen in this table, the k-NN classifier performs the best in terms
of accuracy and detection rates. The SVM classifier performs the
worst. Although CANN does not outperform k-NN, the accuracy
and detection rates of k-NN and CANN are very similar, being less
than 1%. This indicates that there is no significant difference in
their performances.

Tables 7–9 show the confusion matrices of k-NN, CANN, and
SVM respectively, for the 19-dimensional dataset. It is worth not-
ing here that k-NN can accurately recognize most normal accesses
over the 19-dimensonal dataset, which is different from the result
obtained using the 6-dimensonal dataset. However, these 19-
dimensional features are not discriminative enough for k-NN to
detect the U2R attacks.

On the other hand, although CANN can correctly classify some
U2R and R2L attacks into the right attack groups, the accuracy rates
are not satisfactory, i.e., 3.846% and 57.016%, respectively. This
means that the distance based feature of CANN extracted from
the 19-dimensional features only allows the classifier to better dis-
tinguish between the normal accesses, probing, and DoS classes.
This result is similar to the distance based feature extracted from
the 6-dimensional features which shows that CANN is not good
at detecting U2R and R2L attacks. In summary, CANN is good at
Table 8
Confusion matrix of CANN over the 19-dimensonal dataset.

Predicted Accuracy (%)

Normal Probe DoS U2R R2L

Actual
Normal 94,398 221 2130 35 493 97.04
Probe 201 3598 306 1 1 87.61
Dos 1076 177 390,190 8 7 99.68
U2R 36 1 11 2 2 3.85
R2L 471 1 10 2 642 57.02

Table 9
Confusion matrix of SVM over the 19-dimensonal dataset.

Predicted Accuracy (%)

Normal Probe DoS U2R R2L

Actual
Normal 93,367 3780 130 0 0 95.98
Probe 120 3967 20 0 0 96.59
Dos 20,760 44,639 324,329 1390 340 82.85
U2R 0 0 20 32 0 61.54
R2L 0 69 9 159 889 78.95

Please cite this article in press as: W.-C. Lin et al., CANN: An intrusion detection
Based Syst. (2015), http://dx.doi.org/10.1016/j.knosys.2015.01.009
detecting the normal traffic, probing, and DoS classes, whereas
SVM can be used for detecting the U2R and R2L classes.

These results indicate that the 19-dimensional features are
more representative for intrusion detection, making SVM and k-
NN perform very well. However, it is important to examine the
run time of these classifiers. CANN only uses the one-dimensional
feature for intrusion detection, but SVM and k-NN are trained and
tested by the original features, which can result in high computa-
tional effort.
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4.4. Efficiency evaluation

Table 10 shows the results obtained by comparing the run time
of these classifiers.2 Note that the data preparation time for k-NN
includes data pre-processing and loading. For CANN, it includes the
time for the processes of extracting cluster centers and nearest
neighbors and new data formation. This comparison does not con-
sider SVM because so much time is needed for training, e.g., over
100 h for the 19-dimensonal dataset.

As we can see, a much longer run time is needed for the dataset
containing higher numbers of dimensions needs. Thus k-NN needs
about 25 more hours to deal with the 19-dimensional dataset com-
pared with the 6-dimensional one. However, with the CANN
approach, increasing the number of dimensions for the dataset
does not greatly affect the run time. In this case, we only need
an additional 3 h.

If we consider the results from Study II, CANN does not outper-
form k-NN. However, CANN is still a good candidate for intrusion
detection since it saves over two times the run time over the 6-
and 19-dimensional dataset compared with k-NN, while still pro-
viding very similar performance to k-NN and SVM. In addition,
with the 6-dimensional dataset, CANN provides an accuracy, detec-
tion rate, and false alarm of 99.76%, 99.99%, and 0.003% respec-
tively, results which are better or similar to the best classifier for
the 19-dimensional dataset, which for 99.89%, 99.92%, and
0.0289%, respectively.

Compare the run time with the most recent related works (i.e.,
testing times). Kim et al. [17] and Nadiammai and Hemalatha [23]
obtained times of 11.2 and 8 s, respectively, whereas CANN
requires about 13 s. However, it should be noted that it is very dif-
ficult to make a direct comparison between these works since the
computing environments and relevant settings are different. The
run time could certainly be enhanced by using more efficient com-
puting equipment, but not the detection performance. Thus,
although the methods discussed in these two works may be more
efficient than CANN, they only provide about 99% accuracy and
0.15% false alarm rates, which are all lower than the ones produced
by CANN. Moreover, CANN performs better than the winner of the
KDD’99 contest, which provides 97.12% accuracy and 0.03 false
alarm rates.
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4.5. Discussion

Regarding the previous results, if we consider the average accu-
racy, detection rate, and false alarm rate, for the 6-dimensional
dataset, CANN performs the best in terms of the detection rate
and false alarm rate, whereas for the 19-dimensional dataset k-
NN performs the best in terms of accuracy.

We further examine these two approaches over the five classes
(including the four attack classes) in advance. Fig. 5 shows the dif-
ference in performance. To detect the normal, probe, and DoS clas-
ses, the CANN approach performs slightly better than k-NN.
2 The software is based on Matlab 7 and carried out on an Intel Pentium 4, with
3.4 GHz CPU, and 1.5 GB RAM.
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Table 10
Run time of CANN and k-NN.

Data preparation Training and testing Total

6-dimension dataset CANN 40 min (0.7 h) 1570 min (26 h) 1648 min (27 h)
k-NN 20 min (0.3 h) 2765 min (46 h) 2785 min (46 h)

19-dimension dataset CANN 180 min (3 h) 1608 min (27 h) 1750 min (30 h)
k-NN 20 min (0.3 h) 4210 min (70 h) 4230 min (71 h)

Fig. 5. The performances of CANN and k-NN over 5 classes.
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However, k-NN can correctly detect some U2R and R2L cases, but
CANN cannot.

These results show that with the 19-dimensional dataset U2R
and R2L attacks are very hard to detect by all methods, except
for k-NN. According to the definition of KDD-Cup 99, U2R is either
unauthorized access to a local super user or administrator privi-
leges by a local unprivileged user. These attacks are opportunities
for exploitation where the hacker starts off with a normal user
account but attempts to abuse vulnerabilities in the system in
order to gain super user privileges e.g., perl, xterm. On the other
hand, R2L refers to a remote user obtaining unauthorized user priv-
ileges on a local host. In the attack the user sends packets to a
machine over the internet, to which she/he does not have access
to in order to expose the machines vulnerabilities and exploit priv-
ileges which a local user would have, e.g., xlock, guest, xnsnoop,
phf, sendmail dictionary, etc.

These results indicate that with 6 and 19 features the classifier
cannot detect representative U2R attacks whereas with 19 features
it can somewhat detect representative R2L attacks. Similarly,
transforming the 6 and 19 features by CANN still cannot lead to
effective detection of U2R and R2L attacks. According to Jeya
et al. [15], the four attack classes have different representative fea-
tures among the 41. Therefore, CANN is generally suitable for
detection of normal or attack cases in the binary classification
problem, with a false alarm rate of 0.003%. However, for U2R and
R2L attacks, for which there are fewer cases among all accesses,
existing approaches still have room for improvement.
566

567

568Q6
5. Conclusion

This paper presents a novel feature representation approach
that combines cluster centers and nearest neighbors for effective
Please cite this article in press as: W.-C. Lin et al., CANN: An intrusion detection
Based Syst. (2015), http://dx.doi.org/10.1016/j.knosys.2015.01.009
and efficient intrusion detection, namely CANN. The CANN
approach first transforms the original feature representation of a
given dataset into a one-dimensional distance based feature. Then,
this new dataset is used to train and test a k-NN classifier for
classification.

The experimental results show that CANN performs better than
the k-NN and SVM classifiers over the original 6-dimension data-
set, providing higher accuracy and detection rates and a lower false
alarm rate. On the other hand, CANN performs similar to the k-NN
and SVM classifiers over the original 19-dimension dataset. How-
ever, the advantage of CANN is that it requires less computational
effort than the k-NN or SVM classifiers trained and tested by the
two original datasets. In other words, although CANN requires
additional computation to extract the distance based features,
the training and testing (i.e., detection) time is greatly reduced
since the new dataset only contains one dimension.

As to the limitations of this research CANN cannot effectively
detect U2L and R2L attacks, which means that this one-dimen-
sional distance based feature representation is not able to well rep-
resent the pattern of these two types of attacks. This is an issue
that future work can look into. One possibility is to consider the
weight for the distances between the data to each of the cluster
centers and its nearest neighbor. Alternatively, before performing
CANN, outlier detection and removal can be employed in order
to first filter out noisy or bad data from the given dataset. Finally,
as CANN is applicable to the 5-class intrusion detection problem,
other domain datasets including different numbers of dimensions
and classes can be used to examine its effectiveness.
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