
Electrical Power and Energy Systems 81 (2016) 1–11
Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes
Reserve market scheduling considering both capacity and energy bids
of reserve
http://dx.doi.org/10.1016/j.ijepes.2016.01.054
0142-0615/� 2016 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +98 9125195898.
E-mail addresses: m.bahmanzadeh@students.semnan.ac.ir (M. Bahmanzadeh),

aakbari@semnan.ac.ir (A. Akbari Foroud).
1 Tel.: +98 9124618433.
Majid Bahmanzadeh ⇑, Asghar Akbari Foroud 1

Electrical & Computer Engineering Faculty, Semnan University, Semnan, Iran

a r t i c l e i n f o
Article history:
Received 14 January 2015
Received in revised form 6 January 2016
Accepted 27 January 2016

Keywords:
Ancillary service market
Reserve market
Artificial neural network
Applied energy
Required capacity
a b s t r a c t

In conventional Ancillary Service Markets (ASM), where Independent System Operator (ISO) purchases
requirements for system safe and reliable operation, capacity and energy of reserves have always been
considered as individual commodities. Market participants offer their capacity bids and energy bids to
the ASM, then the ISO decides on purchasing the required capacity using an optimization model based
on capacity bids while energy bids are neglected. During the operation time, the ISO has to call some
of the purchased capacity to provide required energy for frequency response, and pay them accordingly
at their reserve bids. Therefore, the ISO has to pay for both capacity and applied energy while ISO’s model
considers capacity costs alone, thus it cannot reach the overall optimum point. To develop ISO’s model for
considering energy bids, an Artificial Neural Network (ANN) based method is proposed in this paper to
define a combination of energy and capacity bids to be substituted for solo capacity bids in ISO’s model
of market. A modified 24-bus IEEE test system is employed to illustrate the proposed methodology.

� 2016 Elsevier Ltd. All rights reserved.
Introduction

By the restructuring procedure in electrical power markets and
decomposing the vertically integrated utilities, system operation
and stability were assigned to the ISO meanwhile the ISO does
not have the authorization for free access to the system compo-
nents. So the ASMs were formed to be a place for ISO to purchase
the system operation requirements. Market participants bid to the
ASM for providing the capacity and energy, and then the ISO runs
the market model to minimize the total operation cost subject to
technical constraints [1–4]. The ISO sets the market model limita-
tions regarding to the system reliability criteria and standards;
Adequacy of these constrains should be verified by the dynamic
and static simulations of the system [5,6].

In conventional ancillary service markets, the ISO declares the
amount of required capacity by stability and reliability studies
but the amount of this capacity which is going to be called to pro-
duce energy at the operation time is not known before the end of
operation time. Because of this lack of information, at the closing
time of market, the ISO purchases the required capacity by mini-
mizing the total capacity cost based on the capacity bids alone,
and pays the capacity providers at the market clearing price, while
energy bids are neglected. Later, during the operation time, ISO has
to apply some of this purchased capacity to maintain the system
frequency and pay for their applied energy at the proposed energy
bids whereas these bids has previously been ignored at the ISO’s
decision making model. So the ISO’s total payment is different from
what is optimized in ISO’s model of market. So far, a significant
amount of work has been done that developed the ASM model,
most of them did not take the energy bids into account, some of
them tried to consider the reserve energy costs supposing that
the reserve will be fully used during the operation time, and some
others tried to evaluate the total cost in different scenarios. Never-
theless, determining a mechanism for forecasting and modeling
the effects of energy bids on the total operation cost has not been
considered.

In conventional ASM models, the ISO ignores the energy bids
while models the reserve market for purchasing the reserve capac-
ity. During the operation, ISO has to use some amount of energy of
the purchased capacity. Consequently, the reserve providers have
to be paid for their used energy; the rate of these payments is their
proposed reserve energy bids [1]. This procurement procedure
motivates the market participants to propose competitive bids
for their capacity to win in the market, and increase their energy
price to the highest level to obtain maximum profit. Final result
will be a higher total operation cost for ISO. This mechanism is
now being used in the deregulated power markets around the
world, although there might be some differences which are
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Nomenclature

CBR;gðRgÞ bid offers for capacity of reserve
EBR;gðRgÞ bid offers for energy of reserve
NRP number of reserve providers
Nz number of zones
Nline;z number of tie lines between zone z and other zones
NhdA number of implemented historical data for sensitivity

analysis
Nj number of probable features
Rg provide reserve by unit g

REg applided energy of unit g
Fi power flow of line i
Rreq
z required reserve at zone Z

Ig inertia of unit g

IReq required inertia
APE absolute percentage error of ANN output
APED difference between APEs with and without a probable

feature

MAPED mean APED
ag frequency drop of unit g

SF selected features
aNadir drop acceleration
GRLg ramp limit of unit g

Rmax
g maximum proposed reserve by generator g for increas-

ing in its output power
Rmin
g maximum proposed reserve by generator g for decreas-

ing in its output power
qCap:
R clearing price for capacity of reserve

qEnergy
R;g clearing price for capacity of reserve

z zone index
g generator index
real index for deterministic parameters
for index for forecasted parameters
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inconsiderable from this standpoint. For instance, in the United
States, PJM ISO and Midwest ISO has defined some ceiling for
capacity offers of the reserve providers [3,4].

Ref. [1], studied an ASM market for different amounts of
reserves’ energy which might be applied, and effectively repre-
sented the gap between total system operation costs in two cases,
first if energy bids were considered in the market model and in sec-
ond case, if energy bids were neglected. The energy costs over the
total costs versus the amounts of applied energy were tabulated.
Then, this table was applied for obtaining the total minimum costs.
Since that model required the operation data and the amount of
called capacity to generate energy, it can only be used for past
hours, but does not present a solution for considering the partici-
pants’ energy bids in upcoming hours. The developed Unit Com-
mitment (UC) in [7], defines the amount of required reserve
capacity as a decision variable that controls the robustness of
UC; but costs of reserves’ applied energy are ignored so the market
clearing solution would not reach to the overall optimum. ISO’s
objective of the proposed model in Refs. [8,9] is minimizing the
system operation cost considering AS capacity price, such that par-
ticipants bid for their capacity as the lost opportunity cost to ASM,
that model had ignored the reserve energy bids. Suggested model
in [10] presents an ANN based algorithm to forecast required
amounts of different types of reserves. Then, it defined the mini-
mization of total market players’ bids for energy and capacity as
the ISO’s objective, assuming that the whole purchased capacity
will be implemented. Generally, there are two viewpoints on
energy of reserve in current reserve market models. First one
ignores the cost of reserves’ energy while models the market.
The second one assumes that the purchased reserves’ capacities
will be called to generate energy with their full capacities.
Obtained results of the proposed model in this paper represents
that none of this assumptions will lead to the optimal equilibrium
point. In [11] a traditional model is proposed which simultane-
ously considers the total cost of energy of power market and
reserve capacity price, AS energy costs are remained disregarded.
Ref. [12] points to necessitation of considering generation condi-
tions for pre and post contingency, and illustrated the interconnec-
tion of economic parameter and frequency control loop
performance; for reserve costs, capacity bids alone were taken into
account. Ref. [13] considers standpoint of a generation company
which models the market to find its optimal strategy. First differ-
ent scenarios are made; then, the expected profit of the generation
company is optimized for each scenario. In that model imple-
mented energy of reserves is neglected. Refs. [14,16] ignore
reserves’ energy bids while they study the bidding strategies of
generation companies in a joint energy and reserve market. Ref.
[18] also disregards reserve energy bids while discusses from ISO
standpoint.

Lack of a model for considering energy bids in ISO’s model of
reserve market leaded to a gap between the final settlements
and the ISO’s objective function for deciding on purchasing reserve
at the closing time of market; the final result is deviation from
overall optimum point of the market, which is investigated in
Ref. [1]. Providing a practicable method for considering the reserve
energy costs in ASMs is the target point of this study. Since the
amount of applied energy and its effects on market problem is
not determined before the operation time a forecasting progress
is needed. In this paper a forecasting algorithm based on artificial
neural network is employed to estimate the impact of reserve
energy payments on total operation costs.

The rest of the paper is organized as follows. Implemented ISO’s
model in a conventional ASM and its modifications for entrance of
the energy bids are introduced in next section. The proposed fore-
casting algorithm is presented in Section ‘Proposed algorithm for
determining the combination of energy bids and capacity bids for
optimal market operation’. Section ‘Numerical results’ presents
an example and numerical analyses to illustrate the proposed
model, and Section ‘Conclusion’ concludes this paper.
Problem description

Implemented reserve market model in the conventional ASMs

In a power market, it is ISO’s responsibility to ensure optimal
usage of the system in terms of technical requirements. Welfare
maximizing or minimizing the total cost can be considered as the
system economic objective function; this optimization is restricted
by technical constraints, including the limitations of generation
units, power system restrictions and criteria of the system stability
[15].

In a general classification, frequency control services are
divided into three groups based on performance and response
time: 1 – Regulation and frequency response service, with
the response time of less than a minute, 2 – Spinning reserve,



Table 1
Frequency control services categories based on response time.

Row Type of services Response time

1 Regulation and frequency
response

Less than a minute (moment to
moment)

2 Spinning reserve Less than 10 min
3 Non-spinning reserve Less than 30 min
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3 – Non-spinning reserve [10]. This classification may vary in dif-
ferent ASMs around the world; however, it is generally as Table 1.

In order to purchase any of these services, the ASM model can
be simultaneously implemented with the markets of other ones
and in a more general approach, integrated with power market.
For more evaluation accuracy of the proposed method, regulation
and frequency response market is alone studied in this paper,
although this model is applicable for other mentioned ancillary
services; it is also expandable for a simultaneous reserves market.
In addition, power market can simply be synchronized needless of
any major modification.

For reserve procurement, first ISO studies the dynamic and reli-
ability of the system to determine the requirements which ensure
maintaining the system reliable operation. Then, the ISO runs the
market and purchases the required capacity from reserve provi-
ders. These requirements including required reserve capacity,
required inertia, response time, etc. will be applied in reserve mar-
ket model as constraints. And then, the obtained results will be
evaluated by dynamic modeling to confirm its sufficiency or deter-
mine the required adjustments, if any [1–3,8,9]. The proposed
model in this paper applies an ANN based method to develop the
reserve market model, shown in Fig. 1.

ISO’s objective function
In the conventional reserve markets, the objective of the ISO is

minimizing the total cost of required reserve capacity.

ISO’s Objective Function : Min
XNRP

g¼1

CBR;gðRgÞ ð1Þ

Market players in a reserve market offer two separate bids, one
for capacity and the other for energy [3]. The capacity bids are
related to lost opportunity cost of the power producers for not
attending to the power market [8], and will be applied at ISO’s
objective mentioned in (1), while energy bids are related to the
Fig. 1. Reserve procurement procedure and scope of proposed model.
condition in which the purchased capacity is asked to generate
by the ISO. Reserve providers will be paid at market clearing price
for provided capacity while energy payments are pay as bid.

Constraints
There are three general types of constraints that the main prob-

lem is restricted by them.

1. Constraints related to generation units

Unit constraints :
Rmin
g 6 Rg 6 Rmax

g

�GRLg 6 Rg 6 GRLg

(
ð2Þ

where Rmax
g and Rmin

g;i denote the maximum acceptable increase or
decrease in generation by the reserve provider. Generation Ramp
Limit (GRL) defines the permitted loading slope of generation unit;
and it declares the response time.

2. Power system restrictions
DC Load flow is considered as a determiner of the system require-
ments and constraints, including lines capacity, transformers
capacity, etc.

3. Restrictions related to the system security
These restrictions depend on the characteristic of the system

and also market rules and criteria which might vary from market
to market [3,4]; i.e. some markets consider enough preparation
to ensure system’s safe operation in case of one contingency while
some other for two. However, reliability studies and dynamic sim-
ulation determine the worst contingency condition and enough
preparations which should be performed to avoid entering into
the operation range of protective relays accordingly. Outage prob-
ability of the transmission lines and generation units, and their
capacity are the main measures for determining the worst contin-
gency condition. System’s security requirements consist of total
required reserves (Rreq), zonal required reserve (Rreq

z ), required iner-

tia (IReq), and the required acceleration (�aNadir) for compensating
the frequency droop [5,8–10]. a is the ratio of power variations
to the frequency deviations. To obtain these parameters, at first,
dynamic modeling calculates the rate of frequency droop in case
of worst contingency condition without implementation of
reserves. Then its deviation from the maximum permitted margins
by protection system is obtained. Then, the required reserve capac-
ity, inertia and acceleration are determined to maintain this devi-
ation [5]. These required preparations are entered to the model
as the security constraints (3).

Security constraints:

Fmin
i 6 Fi 6 Fmax

iXNRP;z

g¼1

Rg þ
XNline;z

i¼1

ðFmax
i � FiÞ P Rreq

z

Total Required Reserve :
XNRP

g¼1

Rg P Rreq

Required Inertia :
XNRP

g¼1

Ig P IReq

Required response time :
XNRP

g¼1

ag P �aNadir

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

ð3Þ

Fi represents the power flow of transmission lines that must remain
in the range of the lines capacity, Fmax

i is the maximum available
lines capacity. For each line, Fmax

i is equal to maximum permitted
flow of the line minus its transmission flow from power market.
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Maximum permitted line flow is the nominal capacity of the trans-

mission line restricted by the stability criteria. Fmin
i is same as Fmax

i

for the reverse flow direction. Congestion on transmission lines lim-
its the accessibility of reserves and divides system to several zones;
second constraint ensures of enough reserve supply for each zone,
so that the total internal reserve plus the lines available capacity
in order to access to reserve from other zones must be over than
the required reserve in that zone. Third limit considers the total
required reserve of the system.

In case of worst contingency, system needs to enough Inertia
(IReq) and acceleration in the total power generation (�aNadir).
Fourth constraint refers to providing the required inertia for the
assurance of the system stability maintenance. For each unit, ag

is the percentage of sensitivity of its output power to the frequency
deviations, where the base is system’s required acceleration
(�aNadir) for compensation of worst contingency. In other words,
ag is the percentage of inverted droop characteristic [20]. The last
constraint refers to the droop characteristic of reserves, which is in

form of
PNPFR

RP
g¼1 ag P �aNadir for frequency response service, where

aNadir is taken 100%. For next reserves which will enter to the sys-
tem in the next steps, this constraint will be in form ofPNSFR

RP
g¼1 ag P aRecovery. The regulation and frequency response provi-

ders must be able to maintain the system frequency during the
worst contingency and prevents frequency falls down below the
permitted margins then begin to restore the system frequency to
its nominal value, afterward, the next reserves in terms of their
performance rate will enter to the system respectively, and the fas-
ter reserves capacity will be released in order to get ready to con-
front with the next probable events. Thus rate of frequency
recovery must be more than the rate of frequency droop aNadir

[5,20]. Droop and recovery times of the system are specified in
Fig. 2, which refers to an incident occurred in England’s power sys-
tem resulting in outage of 1220 MW of the generation capacity on
15th August 1995 at 12:25:30 am [2].

Payments
ISO declares market price and capacity payments by solving the

problem and finding the minimum system cost based on the listed
constraints (usually through Lagrange relaxation method). Then,
after operating the system, payments related to energy will be
determined according to the amount of utilized energy of each unit
based on the pay as bid. The relation set (4) defines the amount of
payment for each part of the reserve:

Reserve capacity payment : qCap:
R � Rg ð4:1Þ

Reserve energy payment : qEnergy
R � REg ð4:2Þ

where:

qCap:
R ¼ðlagrangian coefficient of the related constraintÞ

qEnergy
R ¼Reserve’s energy bid offer of thewinner generation unit g
Entrance of the energy bids into the market model

The weakness of mentioned structure in Section ‘Implemented
Reserve Market Model in the Conventional ASMs’ is that the energy
bids have no effect on ISO’s decision making model for selecting
reserve providers, according to (1), while ISO also has to pay them
for their applied energy, (4.1) and (4.2). This encourages market
players to offer competitive capacity bids to win in the ASM, but
to increase their energy bids to make more income. In other words,
in conventional ASM, ISO’s market model does not fit to its final
total payment.
In the following method, instead of solo capacity bids, a combi-
nation of capacity bids and energy bids are taken into account in
ISO’s objective, in order to consider influences of energy costs, rela-
tion (5); so the objective of the model becomes more appropriate
to the total payments [1].

ISO’sObjective Function : Min
XNRP

g¼1

CBR;gðRgÞþX �EBR;gðRgÞ 06X61

ð5Þ
If X is taken zero, the problem will be obtained as the conven-

tional methods. In this model, determining the X is major step to
make the objective (5). The price of capacity is achieved from
resolving the ISO’s problem and payments will be as follows:

Reserve capacity payment : qCap:
R � X � EBR;g

� �
� Rg ð6:1Þ

Reserve energy payment : qEnergy
R;g � REg ð6:2Þ

where:

qCap:
R ¼ clearing price of reserve capacity :

qCap:
R ¼ lagrangian coefficient of the reserve capacity constraint

qEnergy
R;g ¼Reserve’s energy bid offer of thewinner generation unit g

X times of the energy bid of each market player is added to its
proposed capacity price to determine the cost function for pur-
chasing capacity, which will increase the market prices; thus this
added amount will be deducted at payments to neutralize the
effect of increased prices. Costs related to the used energy are also
considered as previous.

The combination of each winner participant’s bids

CBCap
R;g þ X � CBEnergy

R;g

� �
must had been less than the market price

qCap:
R

� �
; therefore, the paying price to him will be more than its

bid for selling capacity CBCap
R;g 6 qCap:

R � X � CBEnergy
R;g

� �� �
. The energy

related payments are based on the energy bids. Thus both pay-
ments to a winner satisfy its offered prices.

Defining the X is the crucial point in this method. A recursive
solution approach is used for determining X in Ref. [1], so that X
increases from 0 to 1 by step size of 0.01 in each iteration and
the capacity price is obtained from minimizing the total operation
cost; a table is established which represents the total operation
cost of the system for different values of X versus the applied
amount of energy. And then the total costs in case of using the con-
ventional method are compared with the case that energy bids are
taken into account in the objective of ISO. Due to explicit depen-
dency of the recursive solution method to the amount of applied
energy, it can only be implemented for the past hours that the
amount of applied energy of reserves are known and will not be
applicable for ahead hours. However, the effects of considering
the combination of bids are cleared well.

In the following, it will be presented that the amount of applied
energy is not the only effective factor on X and a model for assign-
ing Xwill be introduced and evaluated, then the whole algorithm is
assessed.
Proposed algorithm for determining the combination of energy
bids and capacity bids for optimal market operation

X is input of the ISO’s problem but it will not be calculable
before the end of operation time, thus determining X for next hours
requires a forecasting process. Because of the complexity of the
required forecasting problem, an ANN based method is applied in
this paper to approximate the functioning of the system based



Fig. 2. Frequency deviations during generation outage at England power system.
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on its nature using the historical data; error of this estimation and
its effects on equilibrium point are evaluated. After forecasting the
X, the ISO’s problem should be solved to attain the equilibrium
point. The following proposed algorithm describes the direction
of information flow and decision-making subsequence’s in an
ASM to complete resolve of the problem, step by step:

(1) Receiving the bids and constraints of market participants for
the next time interval.

(2) Receiving the historical data of market.
(3) Data preprocessing for providing the training and evaluation

samples:

(a) Calculating the X for previous hours whereby recursive

method.
(b) Substitution of some massive inputs of ANN with their

statistical criteria.

(4) Feature selection: Sensitivity analysis and determining the

effective inputs on X.
(5) Architecting the artificial neural network:
(a) Determine the structure of the neural network layers
and neurons.

(b) Training a neural network involves determining the
weights and excitation functions.

(c) Evaluation of the ANN.

(6) Implementation of neural networks to forecast X for next

hour.
(7) Implementing market-clearing problem using forecasted X.
(8) Declare price and payments related to capacity in reserve

market.
(9) Real-time operation.

(10) Performing payments for energy.
(11) Determine the real X and performance evaluation.

Stages of the proposed solution

Data preprocessing and feature selection
In order to provide the training and evaluation samples, X will

be determined for each past hour using the historical data whereby
the described iterative method in Section ‘Entrance of the energy
bids into the market model’; X calculations will be performed once
for each hour and is always utilizable. And for each time interval
that market moves forward X should be calculated only for the last
recent time period.

Sensitivity analysis of the historical data according to the algo-
rithm of Fig. 3 is applied for feature selection. The ANN is trained
and evaluated with and without each possible effective parameter
in order to measure the importance of the feature by a ranking cri-
terion. A high pass filter is used for selecting the inputs that their
cancelation increases the forecasting mechanism error to higher
than a threshold [21]. This step will be done once at the beginning
of using the proposed method in the market and then it can be
deleted from the algorithm.

Filtering threshold of this algorithm should be set less than
maximum acceptable error of forecasting process, in this study it
is assumed to be 4 percent, selected features are:

(1) Amount of required reserve capacity that is determined by
ISO.

(2) Bids for capacity.
(3) Bids for energy.
(4) Participants’ offered capacity.
(5) The amount of utilized reserve.
(6) Congestion occurrence in transmission lines, which is fore-

castable in a very good accuracy with respect to the load
forecasting techniques and system condition.

Implementing the market participants’ offers for capacity and
energy causes a significant increase in the number of inputs. Thus
four statistical criteria including minimum, maximum, average and
variance for each one of the capacity bids, energy bids, and also for
the amount of offered capacity are taken into account which
reduces the total number of relevant inputs to 12. In this paper

maximum and minimum of the offered reserve Rmin
g ;Rmax

g

� �
are

assumed to be the same, so the offered capacity has only 4 statis-
tical areas in case that these bounds are different there will be 4
more statistical criteria for the relevant inputs.

High sensitivity of X to applied energy of reserves represents a
strict dependency to the amount of applied energy which is not
known for upcoming hours until passing operation time. Thus it
must be substituted by the criteria with the same influence and
sufficient accuracy in functioning. There are two factors that lead
to difference between production and consumption which result
in reserve utilization: 1. Load forecast error, 2. in case of contin-
gency. The load forecast error involves two components of the load
fluctuations and the regular and periodic changes of load in each
time period; each reserve provider should be paid for its total gen-
erated energy which is produced to compensate this error [2].
Energy of periodic errors and the total load fluctuations energy
during an hour, which are dependent on the nature of system
loads, are estimable; as the ISO determines their probability to pur-
chase the required capacity for responding the worst possible con-
dition. In case of discrepancy between generation and
consumption, reserves will be called in percentages by system
operator, and if the difference is large, i.e. if it is brought by an
event, it will lead to implementation of full reserve capacity to
avoid frequency droop. In this model, mathematical expectation



Fig. 3. Block diagram of feature selection algorithm.
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of implementation of the reserve is considered as the alternative
input which refers to the applied amount of energy and the effects
of this substitution will be evaluated in case study.

Some features might not be selected as inputs to the proposed
forecasting method still they implicitly and strictly affect it; load
level is not an input to the implemented ANN, still amount of
required reserve capacity, congestion indicator and amount of uti-
lized reserve properly reflect its effect. Proposed offers of reserve
providers and the amount of applied energy of reserves are also
inputs of the ANN; by training the ANN using the data of similar
days, it learns to estimate the effect of number of in service units
and their characteristics.
Artificial neural network structuring, training and evaluation
Time periods are classified based on congestion occurrence and

for each class a feed forward back propagation structure with a
hidden layer is used in order to forecast the amount of X. There
are 15 inputs; including 12 inputs for received offers from market
participants, 1 for congestion status, 1 input is referring to the
required capacity and the last input is for the mathematical expec-
tation of load forecast error. In the hours with congestion on trans-
mission lines, the number of inputs of required reserve capacity
and load forecast error will be increased depending on system
zoning. There is a neuron in the output layer for X. One hidden
layer is used since it is proved that one hidden layer is enough
for ANN to simulate any complex nonlinear function [22]. The
number of hidden layer’s neurons is determined using cross
validation method, and the number of training samples is
determined to minimize the evaluation error and avoid overtrain-
ing; 30 days from the day before the forecast day and 20 days
before and after forecast day in the previous year are used as the
training samples. In order to consider the effects of time-variant
factors in the market and system, the sliding window method is
used for neural network training algorithm. Sigmoid-shaped
excitation functions have been used in this paper. After training,
the neural network response will be evaluated using validation
sample. In order to determining the neural network error, the
algorithm is frequently applied and Mean Absolute Percentage
Error (MAPE) is calculated:

MAPE ¼ 1
N

XN
i¼1

jXreal
i � Xfor

i j
Xreal

i

� 100% ð7Þ
ISO steps for modeling and running the market
For each hour, after receiving participants’ bids, the ISO has

enough inputs to run neural network in order to forecast X. Thus
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the ISO estimates X and define the market problem with the com-
bined price of capacity and energy for purchasing required capac-
ity. After the real time, energy payments are performed, so all the
proposed process is completed and the only remaining step will be
the model evaluation.

Reserve should be purchased to guarantee the reliability and
stability of the system in worst condition, still reserves’ energy is
mostly implemented to maintain the load deviations under sys-
tem’s normal condition [2–4]. Therefore, this paper develops the
reserve market model for normal operation condition while prepa-
rations (constraints) are considered for worst contingency condi-
tion. X is forecasted from the market’s historical data using the
similar days with normal operation condition [22]; then, the model
performance is also evaluated for contingency condition in Sec-
tion ‘Effect of contingency’.

Other assumptions

1. Bid of each market participant for reserve capacity is a constant
or a step function with limited number of steps.

2. Bid of each market participant for reserve energy is a linear
function.

3. Initial system operation data including forecasted load,
congestion status and the results of system stability and
Fig. 4. IEEE 24 bus relia
reliability studies which define the operation requirements
are provided.

4. It is assumed that load flow calculations regarding to power
exchanges of power market are done and output data including
bus voltages and power flow of transmission lines are available
to be used as the initial point of the power flow in the ASM, [17].

5. The ISO problem which is a nonlinear optimization is solved by
Lagrange method.

Numerical results

A modified IEEE 24 bus reliability test system is applied to illus-
trate the proposed solution method, Fig. 4. Generation units data is
as Table 2, Refs. [11,19].
ANN training and evaluation

Training and evaluation of the artificial neural network is done
by the ISO’s approach. Step by step of the procedure is as follows.

Randomly, it is assumed that the market is going to be run for
the hour 17 of Tuesday of 30th week. By the ISO’s calculations,
the amount of required capacity is 91.31 MW and there will be
congestion on some of transmission lines. Preprocessing of
bility test system.



Table 2
Generation units’ data.

Unit name Bus No. Pmin
i (MW) Pmax

i (MW) Capacity for frequency
response service
(MW/min)

G1, G2 1 15.8 20 2
G3, G4 1 15.2 76 7.6
G5, G6 2 15.8 20 2
G7, G8 2 15.2 76 7.6
G9, G10, G11 7 25 100 10
G12, G13, G14 13 68.95 197 19.7
G15–G19 15 2.4 12 1.2
G20 15 54.25 155 15.5
G21 16 54.25 155 15.5
G22 18 100 400 40
G23 21 100 400 40
G24, G25 23 54.25 155 15.5
G26 23 140 350 35

Table 4
Amount and price pairs resulted in different methods for evaluation sample.

State Zone 1 Zone 2

Purchased
cap.

Zonal
clearing
price

Purchased
cap.

Zonal
clearing
price

Considering energy
bids, real X

42.68 13.74 48.63 4.95

Considering energy
bids, forecasted X

42.68 13.42 48.63 4.87

Without considering
energy bids

42.68 7.88 48.63 2.48

Table 5
Payments in detail.

State Total payment
for capacity $

Total payment
for energy $

Total
operation
cost $

Considering energy
bids, real X

483.46 752.36 1235.8

Considering energy
bids, forecasted X

447.44 818.43 1266.0
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historical data in order to obtaining the best X for training samples
is the first step. 30 past hours from the target day and also 20 days
before and 20 days after the target day at the previous year are
considered as the similar days. Table 3 is the obtained Xs for the
30 past hours.

In this hour which the system is divided to two zones, Fig. 4,
number of neurons of hidden layer is 9 which is obtained using
cross validation of ANN results. The ANN is trained and evaluated
as follows.

Forecasted coefficient X for evaluation sample is 0.268 which
has been rounded to 0.27 while its real value is 0.28. ISO’s pur-
chased capacity from each zone and clearing prices for real X, fore-
casted X and with conventional methods (X = 0) are represented at
Table 4. Absolute forecast error is 4.04%.

Note, system conditions are the same for all three cases; i.e.
transmission lines constraint related to the lines available capacity
is the determiner parameter for different zones to access to the
resource of other zones of the system (3), so the amount of pur-
chased capacity of each zone is remained the same.

In this hour, 67.75 MW of the purchased capacity is called to
generation and payments are as shown Table 5.

Meanwhile system operation cost without considering energy
bids is $ 1669.8, it would be $ 403.8 lower using proposed method
which is 24.4 percent reduction. If the real X was accessible, it
would be a bit less ($ 434.0 which is 25.9%) so the proposed algo-
rithm error is 1.8%.

Proposed model evaluation

Evaluation of the model requires analyzing its performance over
high number of executions. Therefore, the same procedure as the
evaluation procedure of Section ‘ANN training and evaluation’
has been applied for 100 different hours and the model is evalu-
ated using the outputs. The results of 20 randomly selected of
these samples are presented in Tables 6 and 7 which are catego-
rized based on congestion according to the neural network
classifications.

Hours with transmission congestion

In case of congestion on transmission lines, the system breaks
into two zones. Results of the provided model in comparison with
Table 3
X for 30 past hours obtained from market history data whereby recursive method.

Hour X for 30 past hours

1–15 0.28 0.36 0.30 0.39 0.27 0.28 0.36
16–30 0.37 0.30 0.27 0.36 0.36 0.37 0.29
conventional method are shown in Table 6. MAPE of forecasted is
2.04% and the system cost would be 1.3% lower if the real X could
be exactly forecasted which is not possible. However the presented
algorithm leads to 23.1% reduction in total payments.

The step size of recursive algorithm for providing the training
samples is 0.01, thus the precision of forecasted X is about two dig-
its and the third digit is rounded which sometimes results to disap-
pearing the error, conversely, sometimes the error is increased.
Totally, the effect of rounding credibly assumed neutral.

Hours without congestion in transmission lines

Number of neurons of hidden layer is obtained 6 for the opti-
mum functioning of the ANN. Implementing the provided model,
in this class total payment went down 7.9% and if the real X was
available, reduction in costs would be 2.7% more. MAPE of the fore-
casting method is 4.3%.

Because of accessibility to all generation units from each point
of the system in this class, clearing prices are less than the class
with congestion on transmission lines. Graph in Fig. 5 represents
the suggested model behavior at different hours versus X. Conven-
tional method is the X = 0 which do not takes the energy bids into
account, increasing in X reduces the operation costs till the lowest
amount then it start to raise again. Due to the different systems’
conditions and variation in market rules around the world and also
the type of bid functions, the graph shape will varies for each mar-
ket but the ascending–descending trend remains the same.

Effects of forecast error

Finding a solution in order to forecast the X is the major of pro-
vided model. Error of each block of the algorithm affects the model
accuracy, graph in Fig. 6 represents the area of variation in total
required payment versus X. Minimum of the trend is reached in
X = 0.35, application of X between 0.01 and 0.69 leads to economic
0.37 0.29 0.26 0.36 0.39 0.31 0.37 0.37
0.34 0.27 0.30 0.29 0.33 0.35 0.28 0.38



Table 6
Results of proposed model in comparison with conventional method at hours with congestion on transmission lines.

Row State Zone 1 Zone 2 Total operation cost $ Operation cost without
considering energy bids $

Purchased cap. Zonal clearing price Purchased cap. Zonal clearing price

1 RX = 0.350 48.18 15.30 54.91 5.53 1421.0 1792.6
FX = 0.353 48.18 15.30 54.91 5.53 1421.0

2 RX = 0.430 49.19 17.14 56.05 6.17 1549.4 1923.9
FX = 0.416 49.19 16.85 56.05 6.09 1563.5

3 RX = 0.330 50.19 14.91 57.10 5.40 1514.1 1961.2
FX = 0.324 50.19 14.61 57.10 5.31 1548.9

4 RX = 0.330 46.67 15.07 53.19 5.40 1703.7 2317.4
FX = 0.305 46.67 14.20 53.19 5.16 1788.3

5 RX = 0.400 44.57 16.46 50.80 5.92 1530.3 2006.1
FX = 0.402 44.57 16.46 50.80 5.92 1530.3

6 RX = 0.270 45.52 13.54 51.87 4.89 1304.1 1733.5
FX = 0.271 45.52 13.54 51.87 4.89 1304.1

7 RX = 0.290 46.47 14.02 52.96 5.05 1395.7 1978.7
FX = 0.289 46.47 14.02 52.96 5.05 1395.7

8 RX = 0.320 47.42 14.65 54.04 5.29 1407.0 1853.1
FX = 0.322 47.42 14.65 54.04 5.29 1407.0

9 RX = 0.420 44.10 16.92 50.26 6.08 1568.9 2094.5
FX = 0.412 44.10 16.62 50.26 6.00 1602.9

10 RX = 0.410 47.08 16.62 53.65 5.97 1405.7 1773.0
FX = 0.394 47.08 16.03 53.65 5.81 1444.8

11 RX = 0.320 48.08 14.71 54.79 5.29 1478.7 2000.2
FX = 0.317 48.08 14.71 54.79 5.29 1478.7

12 RX = 0.360 49.09 15.69 55.94 5.62 1687.8 2224.9
FX = 0.346 49.09 15.07 55.94 5.46 1754.3

13 RX = 0.300 50.08 14.35 57.07 5.15 1564.3 2190.6
FX = 0.294 50.08 14.02 57.07 5.08 1581.0

14 RX = 0.290 46.58 14.04 53.08 5.08 1523.5 1943.1
FX = 0.296 46.58 14.36 53.08 5.16 1542.4

15 RX = 0.370 45.53 15.82 51.88 5.68 1471.6 1924.5
FX = 0.363 45.53 15.51 51.88 5.60 1473.6

RX = considering energy bids, real X. FX = considering energy bids, forecasted X.

Table 7
Results of proposed model in comparison with conventional method at hours without
congestion on transmission lines.

Row State Purchased
cap.

Market
clearing
price

Total
operation
cost $

Operation cost
without
considering
energy bids $

16 RX = 0.09 88.33 5.39 1000.9 1153.0
FX = 0.096 88.33 5.80 1029.1

17 RX = 0.12 90.21 6.02 1119.4 12552.2
FX = 0.113 90.21 5.38 1176.7

18 RX = 0.10 92.09 5.40 1008.2 1044.7
FX = 0.105 92.09 5.76 1019.8

19 RX = 0.13 93.96 6.13 1209.5 1411.4
FX = 0.124 93.96 6.02 1261.7

20 RX = 0.08 87.39 5.22 915.8 953.2
FX = 0.83 87.39 5.22 915.8

RX = considering energy bids, real X. FX = considering energy bids, forecasted X.
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benefits, the closer forecast results in less operation cost. Here,
considering the expected error of the solution method, 2.04%, it
is justified to reconsider the existing methods.

Effect of contingency

In case of events in a power system, the frequency response ser-
vice providers are the vanguards to keep the system frequency up
until the next supports get involve; their produced energy would
increase up to their full available capacity to stop frequency falling
down below the acceptable margins. Although the provided model
clears the market considering the X that is forecasted based on
mathematical expectation of applied energy which maintains the
load trace service and in case of contingency condition more
energy would be required, the rational expectation is a better
functioning of the suggested model than models which totally
ignore the energy bids in their optimization procedure.

Table 8 presents a comparison of effects of increase in amount
of applied energy between different amounts of X at a passed hour.
In real time operation 60.54% of purchased capacity had been
applied at this hour. The real X is 0.25 and the forecasted X is 0.26.

If 100% of capacity were called to generate, total payment
would grow $ 653.27 using the implemented model meanwhile
this growth would be $ 1249.4 for conventional method. As it
was anticipated, provided algorithm has a better functioning than
conventional model.

Note, if the real X was applied, the increase in system’s opera-
tion cost would be a little more than applying the forecasted X
and it is because of the forecast error, which in this case leaded
to a larger forecasted X than the real one; so when the energy
usage goes up, using forecasted X had a better action. The point
is that this could be inverse and this amount of error seems
inevitable.

The graph in Fig. 7 is the system costs versus applied energy.
X = 1 is the explicit summation of energy and capacity bids.

Amount of capacity cost at the suggested model is almost same
as conventional method, because X times of energy bid of each
winner participant is reduced from market price at the capacity
payment procedure which stops the costs go much upper, there-
fore the market players with the lower energy bids receive their
capacity revenue at a higher price; also this part of frequency
response service providers’ income is independent from amount
of their produced energy so the relevant trend on the graph is
constant.

Energy trends start at zero and goes up by increasing in the
amount of applied energy. X and rate of growth in energy cost
are inversely related; therefor by increasing in the amount of



Fig. 5. Total operation cost trend for different hours versus X.

Fig. 6. Total operation cost versus X.

Table 8
Operation cost in case PE% of capacity were called to generate $.

State PE = 60.54% (normal operation) PE = 70% PE = 80% PE = 90% PE = 100%

Conventional methods, X = 0 1003.3 1299.3 1614.7 1932.5 2252.7
Proposed algorithm, Real X 841.5 1021.7 1213.4 1406.5 1600.9
Proposed algorithm, Forecasted X 853.8 955.4 1122.8 1314.2 1507.1

Fig. 7. Operation costs in detail for an hour versus implemented energy.
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applied energy total cost of implemented algorithm will be lower
than conventional model.

If the objective of ISO were defined as minimization of the
direct summation of capacity and energy bids (X = 1), applying
higher amounts of the purchased capacity was much more cost
effective; the effect of offered energy prices is so much that at
the lower amounts of applied energy the total cost of this case is
considerably over the others. At the more reserve energy usage
the lower energy price comes over and this method is more eco-
nomical (If ISO has used more than 86% of the purchased capacity
this case had a better economic efficiency).
Conclusion

Neglecting the energy cost in conventional ASM models devi-
ates the ISO’s decisions from the optimal conditions, leading to
additional costs for providing system operation requirements. In
this paper, an applicable method is proposed for an ancillary ser-
vice market for taking the energy bids of competitors into account
to achieve the optimum performance of the market regarding to
the technical requirements of system; at first, an artificial neural
network is implemented by the ISO to forecast the effect of offered
energy prices on the equilibrium point, then the results are applied
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to modify the ISO’s problem to make it closer to what comes to
happen in operation time, and in the final step, the functioning
of the model is compared with the conventional market models
which illustrate the necessity of considering energy costs of
reserves in market equations. Effects of contingency occurrence
are studied as well.

Synchronicity of reserves’ markets and in a more general
approach considering simultaneous power market can be noticed
in future researches.
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