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Abstract: A new algorithm, Material Generation Algorithm (MGA), was developed and applied
for the optimum design of engineering problems. Some advanced and basic aspects of material
chemistry, specifically the configuration of chemical compounds and chemical reactions in producing
new materials, are determined as inspirational concepts of the MGA. For numerical investigations
purposes, 10 constrained optimization problems in different dimensions of 10, 30, 50, and 100, which
have been benchmarked by the Competitions on Evolutionary Computation (CEC), are selected
as test examples while 15 of the well-known engineering design problems are also determined to
evaluate the overall performance of the proposed method. The best results of different classical
and new metaheuristic optimization algorithms in dealing with the selected problems were taken
from the recent literature for comparison with MGA. Additionally, the statistical values of the MGA
algorithm, consisting of the mean, worst, and standard deviation, were calculated and compared
to the results of other metaheuristic algorithms. Overall, this work demonstrates that the proposed
MGA is able provide very competitive, and even outstanding, results and mostly outperforms other
metaheuristics.

Keywords: material generation algorithm; constrained problems; metaheuristic algorithm; optimiza-
tion; engineering design problem

1. Introduction

Optimization techniques have been proposed for the optimum design of different
problems of everyday life in order to increase the efficiency of systems and human resources.
Most of the design problems in nature are complex, with multiple design variables and
constraints that classical optimization algorithms, such as gradient-based algorithms,
cannot handle. As a solution, numerous artificial intelligence experts have introduced new
algorithms with better performance in different fields. Regarding the recent developments
in technology, new optimization methods offering higher efficiency, greater accuracy, and
increased speed rate are required to deal with difficult optimization problems.

Based on the mentioned concerns about the capabilities of optimization algorithms,
a “metaheuristic” approach has been proposed by optimization experts [1] for solving
different optimization problems. ‘Metaheuristic’ refers to specific solution techniques,
where higher-level strategies are implemented into the main searching process of the
optimization algorithms to provide a powerful searching method with specific capabilities,
including the avoidance of entrapment in local optimal solutions. The history of developing
different metaheuristic approaches as solutions in different optimization fields can be
classified into five different time periods. A brief summary of these historical time periods
is presented in Table 1.
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Table 1. Summary of historical time periods for the evolution of metaheuristics [2].

Duration Period Achievement

Pre-1940 Pre-Theoretical Limited applications without formal presentation.
1940–1980 Early Introduction of heuristics approaches.

1980–2000 Method-Centric Proposal and improvement of metaheuristics algorithms for different
applications.

2000–Present Framework-Centric Utilization of metaheuristic frameworks in different fields.

Future Scientific or Future Future development and design of metaheuristics as a matter of science
rather than a matter of art.

With the evolution of numerous metaheuristic algorithms, four different types could
be distinguished in terms of their main concepts and inspirations. The first category
includes “evolutionary algorithms,” such as the Memetic Algorithm (MA) [3], Genetic
Algorithm (GA) [4], Genetic Programming (GP) [5], Differential Evolution (DE) [6], Evo-
lution Strategies (ES) [7], and the Biogeography-Based Optimizer (BBO) [8], that have
been proposed based on the biological reproduction and evolution. The second category
contains swarm intelligence-based optimization algorithms, which are based on the coop-
erative behavior of self-organized and decentralized artificial or natural systems. Some
well-known methods of this category are Particle Swarm Optimization (PSO) [9], Ant
Colony Optimization (ACO) [10], Artificial Bee Colony (ABC) [11], Cat Swarm Optimiza-
tion (CSA) [12], Firefly Algorithm (FA) [13], and Krill Herd (KH) algorithm [14]. The
third category consists of algorithms that are motivated by physical laws, such as Simu-
lated Annealing (SA) [15], Harmony Search (HS) [16], Big-Bang Big-Crunch (BBBC) [17],
Gravitational Search Algorithm (GSA) [18], Charged System Search (CSS) algorithm [19],
Artificial Chemical Reaction Optimization Algorithm (ACROA) [20], Colliding Bodies
Optimization (CBO) [21], Chaos Game Optimization (CGO) [22,23], and Atomic Orbital
Search (AOS) [24] algorithm. Finally, metaheuristic approaches inspired by the lifestyle
of animals or humans are classified in the fourth category, which includes Imperialistic
Competitive Algorithm (ICA) [25], Cuckoo Search Algorithm (CSA) [26]. In addition to
these metaheuristic algorithms, other difficult challenges have been solved by upgrading,
developing, and hybridizing standard algorithms [27–36].

In this paper, a novel metaheuristic algorithm called the Material Generation Algo-
rithm (MGA) is proposed as an alternative approach for solving optimization problems.
The main concept of this novel algorithm is based on the principles of chemistry, regarding
the production of new materials according to the configurations of chemical compounds
and reactions. To evaluate the performance of MGA, we tested it on 15 well-known
engineering design problems and 10 constrained mathematical problems in different di-
mensions (10, 30, 50, and 100), which have been benchmarked by the Competitions on
Evolutionary Computation (CEC) and presented in detail by Wu et al. [37] at CEC 2017. The
utilized references include the results of CEC 2017, Tvrdík and Poláková [38], Polakova [39],
and Zamuda [40]. The Friedman Test [41] is also conducted as a well-known statistical test
in order to have a fair judgment about the performance of the MGA.

In recent decades there has be a great challenge for the algorithm developers to
develop new solution methods which could have better performance than the previous
methods in dealing with complex real-world problems. Due to the massive emergence of
novel metaheuristic algorithms in the past few decades, this aspect has been addressed
by Sorensen [42] as a tsunami of methods which will have advantages and also disad-
vantages in the soft computing fields in the future. However, this issue can be justified
by discovering other aspects of proposing novel algorithms which is based on the source
of inspirational concept of a novel algorithm which should be reasonable enough to be
justified alongside a well-developed mathematical model as two of the most important
principles of metaheuristic algorithms. Regarding the fact that when a novel algorithm is
proposed, it is evaluated by some of the benchmark test problems which has been solved
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by multiple methods in order to demonstrate its capability as an independent algorithm
among the other methods while this kind of proposing a testing the algorithms is not
the only aim of this area. The proposed novel algorithm can be of a great help in the
situations that the other alternatives cannot reach to a reasonable response in dealing with
a considered problem so there should be other alternatives in order to have a good chance
to provide a well-designed plan for the industry and even human-related actions in the
everyday life. A brief outline of this work is as follows:

Section 2 discusses the inspirational concept and mathematical model of the MGA
optimization algorithm. In Section 3, the problem statements, including the selected
mathematical and engineering optimization problems utilized to test the proposed MGA
as a novel metaheuristic algorithm, are presented. In Sections 4 and 5, the numerical
results of the MGA algorithm and other alternative metaheuristic methods in dealing
with the considered mathematical and engineering optimization problems are presented.
In Section 6, the key findings of this research work are concluded, future research directions
are suggested.

2. Material Generation Algorithm

In this section, the inspiration of MGA as a novel metaheuristic algorithm and the
mathematical model of this algorithm are presented.

2.1. Inspiration

A material is a mixture of multiple substances comprised of the stuffs of the universe
with volume and mass. The material generation process concerns the capability of different
substances to merge with each other in order to generate new materials with higher
functionality and improved energy levels. Elements are the basic building blocks of the
materials, which cannot be broken into parts or even changed into other elements. Materials
are engineered on an atomic, nano-, micro-, or macro-scale in order to control the specific
properties and improve the performance of a material. Uniquely-generated materials are
classified based on their general properties and specific characteristics and according to
physical and chemical changes that influence a material’s behavior.

Material chemistry is one of the most important disciplines in the material research
field. Material engineers study the configuration of materials in order to improve the
specific characteristics of materials, developing new ones that are more sustainable and
also superior to the previous ones. Chemical changes in materials are achieved by reacting
and combining various chemicals. In general, the chemical properties are altered by
the transferring or sharing of electrons between atoms of different materials, specifically,
chemical bonds formed between materials result in such modifications. In this work, three
main concepts of material chemistry (compounds, reactions, and stability) were considered
to formulate a metaheuristic optimization algorithm.

2.1.1. Chemical Compound

Most chemical elements in the universe are created through combinations with other
elements. With that being, a few chemical elements exist freely in nature. Compounds are
formed by combining multiple chemicals via chemical bonds, or the transferring or sharing
of electrons, which result in one of the following:

- Ionic compounds are created when electrons are transferred from the atoms of one
element to those of another.

- Covalent compounds form when electrons are shared between atoms of different elements.

In addition, ionic compounds contain multiple ions that are held together by the
electrostatic force called ionic bonding. Although these compounds are neutral in nature,
they consist of some negatively- and positively-charged ions, called anions and cations,
respectively. The evaporation, precipitation, or freezing of the constituent ions are the main
factors in the process of producing ionic compounds. When an atom or a small group
of atoms starts to lose or gain electrons, an ionic compound forms according to the ionic
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bonding and charged particles. As an example, the formation of sodium chloride, also
known as table salt, is depicted in Figure 1. In the process of electron transformation,
a sodium (neutral) becomes a sodium cation (Na+) when it loses one electron. In addition,
Cl becomes a chloride anion (Cl−) when it gains an electron. Thus, table salt is a solid
aggregation of Na+ and Cl− ions, which attract each other due to opposite charges.
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Figure 1. The formation of an ionic compound, NaCl.

Covalent compounds form when an atom of a chemical element shares an electron
with another element’s atom, which usually occurs between nonmetal elements and results
in an electrically neutral atom. Figure 2 displays the formation of a covalent compound
that leads to the hydrogen atom. As an example, assuming that two hydrogen atoms begin
approaching each other, the nucleus of one atom strongly attracts the electron of the other
one. A covalent bond is achieved when a specific distance between the nuclei is reached,
and the electrons are equally shared. The net repulsion between nuclei is ignored due to
the greater net attraction.
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2.1.2. Chemical Reaction

Chemical reactions are the process of transforming one material into another while
the chemical equations are used to represent chemical reactions, where the resulting
products will have different properties than the starting materials (reactants/reagents),
and intermediate materials (in some particular cases).
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An example of a chemical reaction is depicted in Figure 3, in which the magnesium
wire (Mg) and oxygen gas (O2) yield powdery magnesium oxide (MgO). As presented
in the left bulb, a fine magnesium filament is surrounded by oxygen before the reaction
occurs. As the reaction proceeds, the white colored powdery magnesium oxide coats the
bulb’s inner surface, which is demonstrated in the right bulb. In this reaction, heat and
light are also produced as intermediate materials but are not concerned in this description.
The chemical equation of the presented chemical reaction is as follows:

2Mg (s) + O2 (g)
Electricity→ 2MgO (s)

where s and g stand for solid and gas, respectively.
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2.1.3. Chemical Stability

Stability is one of the more important properties of materials in real-world applications.
When generating new materials with different characteristics, it is important to consider
the stability of the chemical compounds and reactions in different situations. In terms of
chemical stability, chemicals have the tendency to resist changes, such as decomposition,
due to internal factors and external influences such as heat, air, light, and pressure. Chem-
ical stability is the resistance of a material to change in the presence of other chemicals.
A stable chemical product refers to one that has not been specifically reactive in the envi-
ronment and retains its properties over a specific period of time. Comparatively, unstable
chemical materials easily decompose, corrode, polymerize, explode, or burn under certain
conditions.

When producing new chemical materials, the processes of transferring or sharing
electrons within the initial materials will occur in such a way that the end product will be
stable and applicable during a specific period of time.

2.2. Mathematical Model

In order to conduct an optimum design procedure, an optimization algorithm is
developed in this section based on the mentioned principles of material chemistry. The
basic concepts of the chemical compounds, reactions, and stability are utilized in order
to develop and formulate a well-defined mathematical model for the new algorithm.
Considering that many natural evolution algorithms establish a predefined population
of solution candidates that are evolved through random alterations and selection, MGA
determines a number of materials (Mat) comprised of multiple periodic table elements
(PTEs). In this algorithm, a number of materials is considered as the solution candidates
(Matn), which are comprised of some elements represented as decision variables (PTEj

i ).
The mathematical presentation of these two aspects is as follows:
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Mat =



Mat1
Mat2

...
Mati

...
Matn


=



PTE1
1 PTE2

1 · · · PTEj
1 · · · PTEd

1
PTE1

2 PTE2
2 · · · PTEj

2 · · · PTEd
2

...
...

...
. . .

...
PTE1

i PTE2
i · · · PTEj

i · · · PTEd
i

...
...

...
. . .

...
PTE1

n PTE2
n · · · PTEj

n · · · PTEd
n


,
{

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(1)

where d is the number of elements (decision variables) in each material (solution candi-
dates); and n is the number of materials considered to be the solution candidates.

In the first stage of the optimization process, PTEj
i is determined randomly while

the decision variables bounds are defined based on the considered problem. The initial
positions of PTEs are determined randomly in the search space as follows:

PTEj
i (0) = PTEj

i,min + Uni f (0, 1).
(

PTEj
i,max − PTEj

i,min

)
,
{

i = 1, 2, . . . , n.
j = 1, 2, . . . , d.

(2)

where PTEj
i (0) determines the initial value of the jth element in the ith material; PTEj

i,min

and PTEj
i,max are the minimum allowable and maximum allowable values for the jth

decision variable of the ith solution candidate, respectively; and Uni f (0, 1) is a random
number in the interval of [0, 1].

2.2.1. Modeling Chemical Compound

To mathematically model the chemical compounds, all PTEs are assumed to be in the
ground state, which can be externally excited by the magnetic fields, absorption of energy
from photons or light and interactions with different colliding bodies or particles regarding
ions or other individual electrons. Due to the different stabilities of elements, they have
a tendency to lose, gain, or even share electrons with other PTEs, resulting in ionic or
covalent compounds. To model the ionic and covalent compounds, d random PTEs are
selected using the initial Mat (Equation (1)). For the selected PTEs, the processes of losing,
gaining, or sharing electrons are modeled through the probability theory. To fulfill this
aim, a continuous probability distribution is utilized for each PTE to configure a chemical
compound, which is considered as a new PTE, as follows:

PTEk
new = PTEr2

r1 ± e−, k = 1, 2, . . . , d. (3)

where r1 and r2 are uniformly distributed random integers in the intervals of [1, n] and [1,
d], respectively; PTEr2

r1 is a randomly selected PTE from the Mat; e− is the probabilistic
component for modeling the process of losing, gaining or sharing electrons represented
with normal Gaussian distribution in the mathematical model; and PTEk

new is the new
material.

The newly-created PTEs are utilized for producing a new material (Matnew1), which
is then added to the initial material list (Mat) as a new solution candidate:

Matnew1 =
[

PTE1
new PTE2

new · · · PTEk
new · · · PTEd

new
]
, k = 1, 2, . . . , d. (4)

Then, the overall solution candidates are combined and presented as follows:
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Mat =



Mat1
Mat2

...
Mati

...
Matn

Matnew1


=



PTE1
1 PTE2

1 · · · PTEj
1 · · · PTEd

1
PTE1

2 PTE2
2 · · · PTEj

2 · · · PTEd
2

...
...

...
. . .

...
PTE1

i PTE2
i · · · PTEj

i · · · PTEd
i

...
...

...
. . .

...
PTE1

n PTE2
n · · · PTEj

n · · · PTEd
n

PTE1
new PTE2

new · · · PTEk
new · · · PTEd

new


,


i = 1, 2, . . . , n.
j = 1, 2, . . . , d.
k = 1, 2, . . . , d.

(5)

A schematic presentation of the described process for the configuration of new ma-
terials based on the concept of chemical compounds (ionic and covalent) is depicted in
Figure 4.
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Figure 4. The schematic presentation of the random periodic table elements (PTE) selection and
creating new materials.

The probabilistic approach for determining e− is modeled through normal Gaussian
distribution, which is important in statistics and often used in the natural and social sciences
to represent real-valued random variables with unknown distributions. The probability of
selecting a new element (PTEk

new) regarding the randomly selected initial element (PTEr2
r1 )

is presented as follows:

f
(

PTEk
new

∣∣∣µ, σ2
)
=

1√
2πσ2

.e
−(x−µ)2

2σ2 , k = 1, 2, . . . , d. (6)

where µ is the mean, median or expectation of the distribution correspond to the selected
random PTE (PTEr2

r1 ); σ is the standard deviation, which is set to unity in this paper; σ2 is
the variance; and e is the natural base or Naperian base of the natural logarithm.

2.2.2. Modeling Chemical Reaction

Chemical reactions are sort of production process in which different chemical changes
are determined in order to produce different products with modified properties even
different from the initial reactants. In order to mathematically model the process of
producing new materials by the chemical reaction concept, an integer random number
(l) is determined regarding the number of materials of the initial Mat are considered for
participating in a chemical reaction. Then, l integer random numbers (mj) are generated to
determine the positions of the selected materials in the initial Mat so, the new solutions are
linear combinations of the other solutions. For each material, a participation factor (p) is
also calculated since different materials would participate in the reactions with different



Processes 2021, 9, 859 8 of 35

amounts. A schematic presentation of the described process is depicted in Figure 5, and
the mathematical presentation is as follows:

Matnew2 =
∑l

m=1(pm.Matmj)

∑l
m=1(pmj)

, j = 1, 2, . . . , l. (7)

where Matm is the mth randomly selected material from the initial Mat; pm is the normal
Gaussian distribution for the mth material participation factor; and Matnew2 is the new
material produced by the chemical reaction concept.
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2.2.3. Modeling Chemical Stability

As previously described, the principle of material stability concerns the tendency
of natural systems to seek local and general equilibria at all structural levels. Material
stability is mathematically represented by determining the quality of the solutions as
Mat. Materials with the highest stability levels alongside the ones with lowest stability
levels are equivalent to the best and worst fitness values of all solution candidates in the
optimization runs.

Considering the chemical compound and chemical reaction configuration approaches,
the overall solution candidates are combined as follows:

Mat =



Mat1
Mat2

...
Mati

...
Matn

Matnew1
Matnew2


, i = 1, 2, . . . , n. (8)

Moreover, the stability levels of the initial material and newly0produced materials
should be considered in order to decide whether or not the new materials should be
included in the overall material list (Mat) corresponding to the solution candidates. The
quality of new solution candidates is then compared to the initial ones, whereby the new
materials should be substituted by initial materials with worst fitness values corresponding
to worst stability levels.

For boundary violation control, a flag is determined in order to control the violating
solution candidates while a maximum number of iteration or objective function evaluation
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can be considered as stopping criteria. The flowchart of the MGA algorithm is presented in
Figure 6.
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3. Problem Statement

In this section, a brief description of the considered design examples is presented. Re-
garding the fact that these examples are categorized as constrained optimization problems,
the general formulations of these kinds of optimization problems are presented as follows:

f (x), x = x1, x2, . . . , xn (9)

gi(x) ≤ 0, i = 1, 2, . . . , n (10)

hj(x) = 0, j = 1, 2, . . . , m (11)

where f (x) is considered as the objective function of the optimization problem that can be
considered to be maximized or minimized; gi(x) and hj(x) are the ith and jth inequality and
equality constraint, respectively; x is the position vector related to the optimization vari-
ables; and n and m are the total number of inequality and equality constraints, respectively.

In most cases, the equality constraints can be transformed into inequality constraints
by considering the following:∣∣hj(x)

∣∣− ε ≤ 0, j = 1, 2, . . . , m (12)

where ε is a predefined small positive number, which is typically near to zero. In this work,
ε was set to 0.0001.

3.1. Mathematically-Constrained Problems

The mathematical problems of the CEC 2017 benchmark suite are presented in Table 2,
while the specific details and mathematical formulations were presented in detail by
Wu et al. [39]. In order to evaluate the results of the proposed MGA, the statistical results
of different state-of-the-art metaheuristic algorithms regarding the considered constrained
problems were derived of the recent literature [38–40].

Table 2. Brief description of the Competitions on Evolutionary Computation (CEC) 2017 mathemati-
cal constrained problems [37].

No. Type D H G Bounds

C1 Non Separable 10, 30, 50 and 100 0 1 −100 ≤ xi ≤ 100
C2 Non Separable 10, 30, 50 and 100 0 1 −100 ≤ xi ≤ 100
C3 Non Separable 10, 30, 50 and 100 1 1 −100 ≤ xi ≤ 100
C4 Separable 10, 30, 50 and 100 0 2 −10 ≤ xi ≤ 10
C5 Non Separable 10, 30, 50 and 100 0 2 −10 ≤ xi ≤ 10
C6 Separable 10, 30, 50 and 100 6 0 −20 ≤ xi ≤ 20
C7 Separable 10, 30, 50 and 100 2 0 −50 ≤ xi ≤ 50
C8 Separable 10, 30, 50 and 100 2 0 −100 ≤ xi ≤ 100
C9 Separable 10, 30, 50 and 100 2 0 −10 ≤ xi ≤ 10
C10 Separable 10, 30, 50 and 100 2 0 −100 ≤ xi ≤ 100

D: Dimensions; G: Number of inequality constraints; H: Number of equality constraints.

3.2. Engineering Design Problems

The second type of constrained problems included 15 well-known engineering prob-
lems, which have been solved by different optimization algorithms. A brief description of
these design examples is presented in Table 3, and the specific details of each example are
provided in the following subsections. These examples have also been benchmarked by
Kumar et al. [43] regarding the CEC 2020 engineering design scheme.
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Table 3. Description of the constrained engineering design problems.

No. Name D G H Formulation

F1 Speed Reducer 7 11 0 [44]
F2 Tension/Compression Spring 3 4 0 [45]
F3 Pressure Vessel 4 4 0 [45]
F4 Welded Beam 4 7 0 [45]
F5 Three-Bar Truss 2 3 0 [46]
F6 Multiple Disk Clutch Brake 5 8 0 [47]
F7 Planetary Gear Train 9 10 1 [48]
F8 Step-Cone Pulley 5 8 3 [49]
F9 Hydrostatic Thrust Bearing 4 7 0 [50]
F10 Ten-Bar Truss 10 3 0 [51]
F11 Rolling Element Bearing 10 9 0 [52]
F12 Gear Train 4 1 1 [53]
F13 Steel I-Shaped Beam 4 2 0 [46]
F14 Piston Lever 4 4 0 [46]
F15 Cantilever Beam 5 1 0 [46]

D: Dimensions; G: Number of inequality constraints; H: Number of equality constraints; Min: Feasible Solutions.

4. Numerical Results of Mathematical Problems

The numerical results based on the CEC 2017 benchmark problems by means of the
MGA and other alternatives in dealing with the described constrained problems with
different dimensions of 10, 30, 50, and 100 are presented in this section. For comparison,
a total of 25 optimization runs was performed, including a maximum number of function
evaluations (20,000 × D), where D is the problem dimension. These results are presented
in Tables 4–7 for different dimensions, in which (c) is the number of violated constraints
consisting of the number of violations by more than 1, 0.01, and 0.0001; (v) is the mean
violation at the median solution; (SR) is the feasibility rate defined as the ratio of feasible
runs to total runs; and (vio) is the mean constraint violation values of all optimization runs.

Based on the obtained results of MGA in dealing with the mathematical constrained
problems of CEC 2017 with a dimension of 10, MGA was superior to the other metaheuris-
tics in most of the cases. Considering the functions with dimensions of 30, MGA outranks
two of the alternative metaheuristics while in comparing to the third one, the results of
MGA are so competitive. In dealing with functions of 50 and 100 dimensions, the results of
MGA are comparable to the others.

Regarding the fact that the considered problems of the CEC 2017 benchmark suite
are all the latest problems in the evolutionary computation field with higher levels of
complexity and difficulties while there are few approaches that can provide acceptable
results in dealing with these problems. In this regard, the reported results by MGA
are marginal because there are not any better results for the considered problems in
the literature so the MGA calculated the latest reported results which demonstrate the
capability of this algorithm in competing with other methods.

In order to have a better perspective on the performance of different metaheuristic
algorithms in dealing with the CEC 2017 benchmark problems, the box plots which are
derived of the analysis of the variance (ANOVA), which were conducted for the normalized
values of the reported bests, means, standard deviations (Std), and worsts for different
dimensions of 10, 30, 50, and 100 in Figures 7–10. It can be concluded that the MGA has
competitive performance in dealing with these problems.
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Table 4. Statistical results of different approaches for mathematical problems of CEC 2017 with 10 dimensions.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Zamuda [38]

Best 0 0 62700 13.573 0 332.30 −178.02 −0.00135 −0.00498 −0.00051
Median 0 0 2.260 × 105 13.573 0 1750.6 −26.778 −0.00135 −0.00498 −0.00051

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 3.83 × 10−2 0 0 0 0

Mean 0 0 3.259 × 105 14.418 0 808.36 −34 0 0 0
Worst 0 0 1.089 × 106 15.919 0 1819.7 −7 0 0 0

Std 0 0 2.575 × 105 1.1495 0 545.03 57 0 0 0
SR 100 100 100 100 100 0 80 100 100 100
vio 0 0 0 0 0 3.766 × 10−2 3.189 × 10−5 0 0 0

Polakova
[39]

Best 0 0 3533.77 13.5728 0 348.977 −101.211 −0.00135 −0.00498 −0.00051
Median 0 0 21,144.4 13.5853 0 1368.85 12.7815 −0.00135 −0.00498 −0.00051

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0.029702 0 0 0 0

Mean 0 0 31,548.2 13.6147 0 648.899 3.74362 −0.00135 −0.00497 −0.00051
Worst 0 0 118,005 13.8018 0 1260.3 105.62 −0.00135 −0.00485 −0.00051

Std 0 0 37,019.6 0.061549 0 283.706 69.5716 2.21 × 10−19 2.44 × 10−5 1.11 × 10−19

SR 100 100 92 100 100 0 88 100 100 100
vio 0 0 6.67 × 10−6 0 0 0.032309 2.11 × 10−5 0 0 0

Tvrdík and
Poláková

[40]

Best 0 0 6341.810292 15.919244 0 103.288465 −148.219878 −0.001348 −0.004975 −0.000510
Median 0 0 40,103.1993 35.818324 0 307.643490 −65.209283 −0.001348 −0.004975 −0.000510

c 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 5 0, 0, 2 0, 0, 2 0, 0, 1 0, 0, 1
v 0 0 0.000103 0 0 0 0 0 0 0

Mean 0 0 110,008 38.738 0.956779 549.617 −48.7352 −0.001348 0.125471 −0.00051
Worst 0 0 548,034.199888 55.717399 3.986579 2058.812018 102.366112 −0.001348 3.256178 −0.000510

Std 0 0 1.5587 × 105 8.948 × 105 1.737 × 10 4.866 × 102 6.826 × 101 6.639 × 10−19 6.522 × 10−1 0.0000
SR 100 100 44 100 100 96 68 100 100 100
vio 0 0 0.00063352 0 0 0.0053656 0.00309144 1.456 × 10−5 4 × 10−6 3.96 × 10−6

Present
Study (MGA)

Best 0 0 5731.729 15.91932 0.048494 177.1936 −204.799 −0.00103 −0.00497 −0.00048
Median 0 0 9655.116 18.9044315 1.554645 189.7318 −99.5936 0.000667 −0.00497 −0.00034

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0.070346 0 0 0 0
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Table 4. Cont.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Mean 0 0 22,532.64 18.57982 1.867275 245.6745 −86.6422 0.001115 0.04604 −0.0003
Worst 0 0 116,693.6 27.8597111 4.016201 1231.20125 8.612641 0.008756 0.57474405 8.06 × 10−5

Std 0 0 35,636.84 4.235729 1.393692 308.6091 68.43618 0.002994 0.152843 0.000167
SR 100 100 100 100 100 11 100 89 100 100
vio 0 0 0 0 0 0.059761 0 1.11 × 10−5 0 0

Table 5. Statistical results of different approaches for mathematical problems of CEC 2017 with 30 dimensions.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Zamuda
[38]

Best 0 0 2.76 × 106 13.573 0 4095.8 −234.05 −2.82 × 10−4 −0.00267 −0.000103
Median 0 0 6.58 × 106 13.573 0 4374.9 −80.772 −2.70 × 10−4 −0.00267 −9.91 × 10−5

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 2.55 × 10−2 0 0 0 0

Mean 0 0 6.70 × 106 13.854 0 5526.4 −81.088 −2.63 × 10−4 −2.67 × 10−3 −9.78 × 10−5

Worst 0 0 1.17 × 107 15.919 0 5018.0 −36.510 −2.12 × 10−4 −2.67 × 10−3 −8.96 × 10−5

Std 0 0 2.25 × 106 0.7782 0 759.06 90.929 2.04 × 10−5 0.00 × 100 3.69 × 10−6

SR 100 100 100 100 100 0 96 100 100 100
vio 0 0 0 0 0 2.57 × 10−2 4.06 × 10−6 0 0 0

Polakova
[39]

Best 0 0 39,059.8 13.5728 0 3121.78 −245.715 −0.00028 −0.00267 −0.0001
Median 0 0 20,5874 13.5728 0 5802.76 −134.373 −0.00028 −0.00267 −0.0001

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0.012659 0 0 0 0

Mean 3.87 × 10−30 5.26 × 10−30 355,118 13.5728 0 4071.08 −109.428 −0.00028 −0.00267 −0.0001
Worst 2.08 × 10−29 3.34 × 10−29 2.18 × 106 13.5728 0 2405.82 81.6284 −0.00028 −0.00267 −0.0001

Std 6.10× 10−30 8.39 × 10−30 446,751 5.44 × 10−15 0 981.519 88.7374 0 1.33 × 10−18 0
SR 100 100 100 100 100 0 96 100 100 100
vio 0 0 0 0 0 0.015016 8.20 × 10−6 0 0 0
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Table 5. Cont.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Tvrdík
and

Poláková
[40]

Best 0 0 217,854.405028 64.671883 0 1976.35821 −330.786337 −0.000284 −0.002666 −0.000103
Median 0 0 736,404.82 113.424634 0 3827.58828 −32.589365 −0.000284 −0.002666 −0.000103

c 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 4 0, 0, 2 0, 0, 2 0, 0, 1 0, 0, 1
v 0 0 0.001441 0 0 0 0.000067 0 0 0

Mean 0 0 1.299 × 106 115.734 0.797325 3745.32 −24.1162 −0.000284 0.0233628 −0.000103
Worst 0 0 5,082,420.837959 159.192594 3.986624 5065.298248 185.582813 −0.000284 0.648053 −0.000103

Std 0 0 1.195 × 106 2.201 × 101 1.627 × 10 8.431 × 102 1.154 × 102 1.659 × 10−19 1.301 × 10−1 4.149 × 10−20

SR 100 100 32 100 100 100 52 100 96 100
vio 0 0 0.0242756 0 0 1.164 × 10−5 0.0035614 0 1.0709 × 106 6.6 × 10−6

Present
Study

(MGA)

Best 0 0 101,125.9 72.90983 0 1369.466 −214.361 1.311075 0.000266 0.342705
Median 0 0 3,769,626.34 106.7165 0 1582.655 −212.331 2.173907 0.574744 0.627412

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 1, 4 0, 0, 0 2, 0, 0 0, 0, 0 2, 0, 0
v 0 0 0 0 0 0.002259 0 6.590862 0 2.124071

Mean 0 0 497,341.7 103.0124 0 1639.729 −229.997 2.013486 0.903313 0.587699
Worst 0 0 1,083,246 196.971781 0 2375.443 −52.3606 3.901132 4.706474 0.887197

Std 0 0 417,284.9 22.09312 0 459.9857 106.7847 0.979232 1.476608 0.206912
SR 100 100 100 100 100 77 100 0 100 0
vio 0 0 0 0 0 0.010403 0 3.814903 0 2.547508

Table 6. Statistical results of different approaches for mathematical problems of CEC 2017 with 50 dimensions.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Zamuda
[38]

Best 0 0 7.80 × 106 13.573 0 8775 −347.6 1.40 × 10−4 3.25 × 10−5 −347.6
Median 0 0 2.65 × 107 13.573 0 10,224 −134.7 2.87 × 10−4 8.66 × 10−5 −134.7

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0,1,5 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 1.38 × 10−2 0 0 0 0

Mean 1.49 × 10−8 0 2.65 × 107 13.988 0 8601 −154.0 2.86 × 10−4 9.12 × 10−5 −154.0
Worst 1.00 × 10−7 5.94 × 10−8 4.25 × 107 16.914 0 9202 39.3 4.85 × 10−4 2.28 × 10−4 39.3

Std 1.95 × 10−8 1.17 × 10−8 8.66 × 106 0.9868 0 1217 106.3 8.44 × 10−5 3.91 × 10−5 106.3
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Table 6. Cont.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

SR 100 100 100 100 100 0 100 100 100 100
vio 0 0 0 0 0 1.52 × 10−2 0 0 0 0

Polakova
[39]

Best 8.68 × 10−30 2.50 × 10−29 286,730 13.5728 0 6708.83 −0.00013 −0.00204 −4.83 × 10−5 −0.00013

Median 7.73 × 10−29 1.02 × 10−28 633,683 13.5728 1.30 ×
10−28 8636.68 −0.00013 −0.00204 −4.83 × 10−5 −0.00013

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0,2,4 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0.011381 0 0 0 0

Mean 7.79 × 10−29 9.79 × 10−29 894521 13.5728 1.68 ×
10−28 7514.8 −0.00013 −0.00204 −4.83 × 10−5 −0.00013

Worst 1.42 × 10−28 1.78 × 10−28 3.87 × 106 13.5728 6.40 ×
10−28 6637.22 −0.00013 −0.00204 −4.83 × 10−5 −0.00013

Std 3.08 × 10−29 4.60 × 10−29 740490 5.44 × 10−15 1.59 ×
10−28 1417.76 2.77 × 10−20 1.33 × 10−18 0 2.77 × 10−20

SR 100 100 100 100 100 0 100 100 100 100
vio 0 0 0 0 0 0.011693 0 0 0 0

Tvrdík and
Poláková

[40]

Best 0 0 460,407.836 145.263065 0 3486.644298 −340.22487 0.000601 −0.002037 −0.00004
Median 0 0 4,381,259.215675 181.081674 0 6041.018996 −85.989214 0.000965 −0.002037 −0.00004

c 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 4 0, 0, 2 0, 0, 0 0, 0, 1 0, 0, 0
v 0 0 0.000050 0 0 0 0.000075 0 0 0

Mean 0 0 6.6413 × 106 187.37 0.31893 6364.72 −68.1059 0.0009928 0.0810008 −4.284 × 10−5

Worst 0 0 27,234,258.492770 244.758532 3.986624 9005.415965 163.958553 0.001558 1.138593 −0.00001

Std 0 0 5.9790 × 106 2.5905 × 101 1.1038 ×
100 1.6322 × 103 1.3458 × 102 2.4328 × 10−4 2.3626 × 10−1 6.101 × 10−6

SR 100 100 48 100 100 100 56 100 84 100
vio 0 0 0.0694317 0 0 1.02 × 10−5 0.00180008 3.48 × 10−6 1.4708 × 107 0

Present
Study

(MGA)

Best 7.73 × 10−6 3.40 × 10−7 67,5040.5 214.0131 183.3693 2104.094 −287.24 6.111175 16.76229 11.98384
Median 6.16 × 10−6 2.87 × 10−5 1686140 231.3667 264.3097 2453.639 −121.342 10.1111743 19.39083 19.33752

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 2, 0, 0 1, 0, 0 2, 0, 0
v 0 0 0 0 0 0 0 77.75325 1.398507 2716.256

Mean 2.29 × 10−5 9.39 × 10−5 3,733,884 236.5529 295.9803 2601.021 −100.093 7.705596 18.78359 23.86641
Worst 8.70 × 10−5 0.000571 65,265,448.5 309.4055 429.773726 4601.16137 152.382091 10.65774 19.76821 54.4833554

Std 3.41 × 10−5 0.000167 4,614,030 32.99758 125.1962 591.8259 105.2148 1.261924 0.963696 11.58393
SR 100 100 100 100 100 76 100 0 0 0
vio 0 0 0 0 0 0.057435 0 75.19797 1.255203 3025.091
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Table 7. Statistical results of different approaches for mathematical problems of CEC 2017 with 100 dimensions.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Zamuda
[38]

Best 2.434 1.072 9.39 × 107 13.573 0 15,440 −530.12 1.22 × 10−3 3.51 × 10−4 −530.12
Median 6.211 2.318 2.27 × 108 13.573 0 15,595 −324.99 1.44 × 10−3 4.13 × 10−4 −324.99

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 4, 2 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 1.18 × 10−2 0 0 0 0

Mean 7 3 2.25 × 108 14.028 0 15,533 −335.49 1.48 × 10−3 4.25 × 10−4 −335.49
Worst 16.527 6.765 4.21 × 108 16.914 0 14,830 −110.18 1.78 × 10−3 5.53 × 10−4 −110.18

Std 3.190 1.397 9.21 × 107 1.083 0 1604 122.40 1.77 × 10−4 4.92 × 10−5 122.40
SR 100 100 100 100 100 0 100 100 100 100
vio 0 0 0 0 0 1.19 × 10−2 0 0 0 0

Polakova
[39]

Best 1.30 × 10−26 1.31 × 10−26 1.34 × 106 13.5728 4.34 ×
10−7 17,164.3 −4.83 × 10−5 −0.00143 −1.72 × 10−5 −4.83 × 10−5

Median 4.50 × 10−26 4.59 × 10−26 2.47 × 106 13.5728 4.90 ×
10−6 15,803.2 −4.82 × 10−5 −0.00143 −1.72 × 10−5 −4.82 × 10−5

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0,1,5 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0.009677 0 0 0 0

Mean 1.03 × 10−25 8.47 × 10−26 2.73 × 106 13.7132 3.28 ×
10−5 15,562.2 −4.81 × 10−5 −0.00143 −1.72 × 10−5 −4.81 × 10−5

Worst 6.51 × 10−25 6.38 × 10−25 4.79 × 106 15.5748 0.000416 16,718.9 −4.77 × 10−5 −0.00143 −1.71 × 10−5 −4.77 × 10−5

Std 1.68 × 10−25 1.25 × 10−25 965,593 0.462703 9.25 ×
10−5 1595.41 1.33 × 10−7 2.21 × 10−19 1.29 × 10−8 1.33 × 10−7

SR 100 100 100 100 100 0 100 100 100 100
vio 0 0 0 0 0 0.009805 0 0 0 0

Tvrdík and
Poláková

[40]

Best 0.080255 0.072938 1,684,503.31 329.329439 0 10,950.2096 −481.32898 0.013288 0 0.000365
Median 0.432564 0.184568 9,938,948.89 408.925707 0.011586 15,506.5581 −278.65043 0.027209 0.000217 0.000501

c 0, 0, 0 0, 0, 0 0, 0, 1 0, 0, 0 0, 0, 0 0, 0, 2 0, 0, 2 0, 0, 2 0, 0, 0 0, 0, 0
v 0 0 0.002547 0 0 0 0.000198 0.000832 0 0

Mean 0.977746 0.366104 1.51413 × 107 413.582 0.818836 15,222.9 −193.458 0.0415975 0.522499 0.00051308
Worst 11.315168 3.620979 60,598,481.7 469.617973 4.066555 18,535.3302 376.526002 0.087460 5.348516 0.000684

Std 2.1781 × 10 6.9971 ×
10−1 1.3449 × 107 3.6721 × 101 1.512 ×

10 1.7824 × 103 2.0127 × 102 2.4668 × 10−2 1.1223 × 10 7.3482 × 10−5

SR 100 100 16 100 100 100 40 0 96 100
vio 0 0 0.0242065 0 0 5.6 × 10−6 0.00436664 0.0012406 1.564 × 10−5 1.268 × 10−5
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Table 7. Cont.

Reference Result
Function

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

Present
Study

(MGA)

Best 79.17725 82.46377 1,939,226 1035.546 149,057.2 4524.706 −24.7894 11.02866 16.5913 47.71097
Median 226.9738 216.2455 5,229,008 1115.146 162,884.7 4982.677 68.55985 11.59449 18.9102539 53.43286

c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 4 2, 0, 0 2, 0, 0 1, 0, 0 2, 0, 0
v 0 0 0 0 0 0.002105 1162.713 1530.176 698.7951 102,643

Mean 242.9825 256.1113 7,766,430 1107.661 167,178.1 5646.481 88.40124 11.62023 18.23359 53.97361
Worst 400.539192 445.345609 21,948,580 1186.64915 221,456 7418.342 402.6898 13.20224 19.2152074 60.58393

Std 125.7168 167.4498 6,395,089 61.20722 26,483.47 1233.678 177.8638 1.155593 0.934306 4.846915
SR 100 100 100 100 100 0 0 0 0 0
vio 0 0 0 0 0 0.305535 1485.207 1221.619 773.7698 105,498
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Based on the provided results for the MGA and other state-of-the-art approaches in
the evolutionary computation field, the AGA is capable of competing with these excellent
algorithms while in some cases even MGA outperforms the others. this performance in
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dealing with CEC 2017 lead to the fact that MGA’s mathematical model is well-established
model in which the global and local search are conducted with no need to any parameters
to be tuned. In other words, this algorithm does not need any internal parameters to be de-
fined prior to the optimization process which makes this algorithm a best choice in dealing
with complex problems in which there are not any information about the complexity level
of the problem. Additionally, the MGA generates only two new solution candidates in each
iteration which makes the algorithm to require less computational efforts for optimization
purposes. Hence, these aspects can be of great importance when the MGA is compared to
the other metaheuristic algorithms in the evolutionary computation field. In other words,
MGA is a parameter free optimization approach with less computational cost, which makes
this algorithm different form the other approaches, while the inspirational concept of this
algorithm is also unique.

5. Numerical Results of Engineering Problems

The numerical results of MGA considering the previously-described engineering
design problems are presented in this section. In this regard, the results of other meta-
heuristics in dealing with these design examples were taken from the literature in order to
make fair judgments.

The comparative results of the speed reducer design engineering problem, includ-
ing the obtained design (decision) variables related to the best optimum configuration
determined by different methods, are presented in Table A1. In addition, the statistical
results, such as the best, mean, and worst fitness values alongside the standard deviation,
are presented in Table 8. The results of different metaheuristics show that the best results
of MGA are better than the best results of the other approaches in dealing with this design
example. The MGA is also capable of providing better statistical results, including mean
and standard deviation. The Friedman statistical test results are also presented in Table A2
for comparative purposes.

Table 8. Statistical results of different approaches for the speed reducer design problem.

Approaches Best Mean Worst Std-Dev

Montes et al. [54] 3025.005 3088.7778 3078.5918 NA
Akhtar et al. [55] 3008.08 3012.1200 3028.2800 NA

Gandomi et al. [46] 3000.9810 3007.1997 3.0090 4.9634
Zhang et al. [56] 2994.471066 2994.471066 2994.471066 3.58 × 10−12

Present Study (MGA) 2994.438869 2994.47065 2996.558237 4.72 × 10−16

Considering the spring design problem, the best and statistical results of different
metaheuristics, including the obtained design variables related to the best optimum design,
are presented in Tables 9 and A3, respectively. It should be mentioned that MGA is capable
of obtaining very competitive results for this constrained engineering design problem.
It also should be mentioned that MGA yields better statistical results in terms of the
mean, worst fitness values alongside the standard deviation than the results of other
metaheuristics. The Friedman statistical test results are also presented in Table A4 for
comparative purposes.

Tables 10 and A5 present the final and statistical results obtained by the different
methods for the pressure vessel engineering design problem, respectively. From these
tables, the best result of the MGA method is better than the results of the other approaches.
By comparing the statistical results, it is obvious that MGA has better performance in
statistical analysis, especially the mean, and worst fitness values alongside the standard
deviation. The Friedman statistical test results are also presented in Table A6 for compara-
tive purposes.
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Table 9. Statistical results of different approaches for the tension or compression spring
design problem.

Approaches Best Mean Worst Std-Dev

Coello [57] 0.01270478 0.01276920 0.01282208 3.9390 × 10−5

Ray and Liew [58] 0.0126692 0.0129227 0.0167172 5.1985 × 10−5

Han et al. [59] 0.01266534 0.01268592 0.01272968 2.1672 × 10−5

Gandomi et al. [45] 0.01266522 0.01350052 0.0168954 0.001420272
Present Study (MGA) 0.01266523 0.01266558 0.01266723 5.65 × 10−7

Table 10. Statistical results of different approaches for the pressure vessel design problem.

Approaches Best Mean Worst Std-Dev

He and Wang [60] 6061.0777 6147.1332 6363.8041 86.4500
Coelho [61] 6059.7208 6440.3786 7544.4925 448.4711

Mezura-Montes and
Coello [62] 6059.7456 6850.004948 7332.879883 426

Coello and Montes [63] 6059.9463 6177.2532668 6469.32201 130.9
Present Study (MGA) 6059.714350 6059.694923 6273.765974 0.028912058

The results of the welded beam design problem in Tables 11 and A7 show that MGA is
capable of converging to better results than the other approaches. Although the maximum
difference between the best results of MGA and the other approaches is only about 4%,
MGA is capable of providing better statistical results, including the mean, worst fitness
values alongside standard deviation. The Friedman statistical test results are also presented
in Table A8 for comparative purposes.

Table 11. Statistical results of different approaches for the welded beam design problem.

Approaches Best Mean Worst Std-Dev

Huang et al. [64] 1.733461 1.768158 1.824105 0.022194
Eskandar et al. [65] 1.724856 1.726427 1.744697 4.29 × 10−3

Guedria [66] 1.724852 1.724853 1.724862 2.02 × 10−6

Han et al. [59] 1.6956397 1.7160908 1.7530472 1.83 × 10−2

Present Study (MGA) 1.672966512 1.678791422 1.687172363 4.4147 × 10−3

In Table A9, the final design of different methods and MGA for the three-bar truss
design problem, including the obtained design variables, are presented. Table 12 displays
the statistical results. Considering the results reported by previous researchers, it is clear
that MGA yields very competitive results for this engineering design problem. MGA
determined the best optimum value that has been reported thus far, according to the
literature, for the considered design example. It also should be noted that the statistical
results, including the mean and standard deviation, for the MGA are much better than
the results of other approaches. The Friedman statistical test results are also presented in
Table A10 for comparative purposes.

The results of the multiple disk clutch brake design problem solved by MGA and
other approaches are summarized in Table A11 [47,50,65,68]. The statistical results are
presented in Table 13. Accordingly, MGA is capable of calculating very impressive results
compared to the other metaheuristics. The maximum and minimum differences between
the results of MGA and other metaheuristics are about 49% and 24%, which demonstrates
the capability of this algorithm in dealing with multiple disk clutch brake design problem.
In addition, the statistical results, including the mean and worst fitness values, demonstrate
that MGA can yield extremely better results than the other approaches. The Friedman
statistical test results are also presented in Table A12 for comparative purposes.
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Table 12. Statistical results of different approaches for the three-bar truss design problem.

Approaches Best Mean Worst Std-Dev

Gandomi et al. [46] 263.97156 264.0669 NA 0.00009
Ray and Liew [58] 263.8958466 263.9033 263.9033 1.26 × 10−2

Zhang et al. [56] 263.8958434 263.8958436 263.8958498 9.72 × 10−7

Grag [67] 263.8958433 263.8958437 263.8958459 5.34 × 10−7

Present Study (MGA) 263.8958433 263.8958436 263.8959632 2.05 × 10−14

Table 13. Statistical results of different approaches for the multiple disk clutch brake design problem.

Approaches Best Mean Worst Std-Dev

Eskandar et al. [65] 0.313656 0.313656 0.313656 1.69 × 10−16

Rao et al. [50] 0.313657 0.3271662 0.392071 0.67
Ferreira et al. [47] 0.313656 0.313656 0.313656 1.13 × 10−16

Present Study (MGA) 0.235242467 0.235244323 0.235252239 2.42 × 10−6

The final results of different metaheuristics in dealing with the planetary gear train
design problem, one of the most important and well-established constrained optimization
problems, are presented in Tables 14 and A13. By comparing the best results of MGA with
other approaches, it can be concluded that MGA can yield outstanding results. Although
MGA is also capable of providing better statistical results for the mean and worst fitness
values alongside standard deviation results cannot be compared since they have yet to
be reported in the literature. The Friedman statistical test results are also presented in
Table A14 for comparative purposes.

Table 14. Statistical results of different approaches for the planetary gear train design problem.

Approaches Best Mean Worst Std-Dev

Rao and Savsani [69] (PSO) 0.53 0.5361934 NA NA
Rao and Savsani [69] (ABC) 0.525769 0.5272922 NA NA

Zhang et al. [70] 0.525589 0.525589 NA NA
Savsani and Savsani [48] 0.525588 0.53063 NA NA

Present Study (MGA) 0.52325 0.5300526 0.5370588 0.0082564

For the step-cone pulley engineering design problem, the final results of different
metaheuristics are presented in Table A15, and the statistical results are provided in Table 15.
By comparing the best results, it can be concluded that MGA can yield very impressive
results for this constrained engineering problem. The maximum difference between the
mean results of MGA and other approaches is about 31%. The Friedman statistical test
results are also presented in Table A16 for comparative purposes.

Table 15. Statistical results of different approaches for the step-cone pulley design problem.

Approaches Best Mean Worst Std-Dev

TLBO [50] 16.63451 24.0113577 74.022951 0.34
WOA [44] 16.6345213 20.93829477 24.8488259 3.3498
WCA [44] 16.63450849 17.53037682 18.83302997 0.9229
MBA [44] 16.6345078 16.702535 18.3237145 0.2627

Present Study (MGA) 16.18595608 16.35528922 16.98647762 0.14824361
TLBO: Teaching-Learning-Based Optimization.

In Table 16, the comparative results of different metaheuristics in dealing with the
hydrostatic thrust bearing design problem, including the obtained design and its related
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best optimum configuration, are presented. Table 17 displays the statistical results. It can
be concluded that MGA is capable of converging to better results than the other approaches.
The maximum difference between the best results of MGA is about 29%, where MGA
yielded better statistical results for the mean, worst fitness values alongside the standard
deviation than the other approaches. The Friedman statistical test results are also presented
in Table 18 for comparative purposes.

Table 16. Comparison of the best solutions for the hydrostatic thrust bearing design problem.

Siddall [71] Deb and Goyal [72] Coello [73] Rao et al. [50] Present Study (MGA)

Best 2288.2268 2161.4215 1950.2860 1625.44276 1623.980938
R 7.155 6.778 6.271 5.9557805026 5.963241516
R0 6.689 6.234 12.901 5.3890130519 5.395907989
µ 8.321 × 10−6 6.096 × 10−6 5.605 × 10−6 0.0000053586 5.38 × 10−6

Q 9.168 3.809 2.938 2.2696559728 2.282242505
g1(x) −11,086.7430 −8329.7681 −2126.86734 −0.0001374735 −144.9586796
g2(x) −402.4493 −177.3527 −68.0396 −0.0000010103 −1.194802021
g3(x) −35.057196 −10.684543 −3.705191 −0.0000000210 −0.372450027
g4(x) −0.001542 −0.000652 −0.000559 −0.0003243625 −0.00032915
g5(x) −0.466000 −0.544000 −0.666000 −0.5667674507 −0.567333527
g6(x) −0.000144 −0.000717 −0.000805 −0.0009963614 −0.000996355
g7(x) −563.644401 −83.618221 −849.718683 −0.0000090762 −4.144258876

Table 17. Statistical results of different approaches for the hydrostatic thrust bearing design problem.

Approaches Best Mean Worst Std-Dev

Şahin et al. [74] 1625.46467 1627.744198 1650.698747 3.815546973
Rao and Waghmare [75] 1625.44271 1796.89367 2104.3776 0.21

Rao et al. [50] 1625.44276 1797.70798 2096.8012 0.19
Present Study (MGA) 1621.246175 1739.156729 1992.961305 0.11

Table 18. Friedman statistical test results for the hydrostatic thrust bearing design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.5
2 Şahin et al. [74] 2.5
3 Rao and Waghmare [75] 3
4 Rao et al. [50] 3

Chi-sq. 3.6000
Prob > Chi-sq. 0.3080

The optimum results of different metaheuristics in dealing with the ten-bar truss
design problem are presented in Tables 19 and 20. By comparing the best results, it can be
concluded that MGA is capable of outperforming other metaheuristics approaches. Until
now, the best value obtained for this example was 529.25, which has been overcome by
MGA with 529.12. This indicates the capability of MGA to provide remarkable results for
some complex constrained design problems.
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Table 19. Comparison of the best solutions for the ten-bar truss design problem.

Yu et al. [51] Lamberti and
Pappalettere [76]

Baghlani and
Makiabadi [77]

Kaveh and
Zolghadr [78]

Present Study
(MGA)

Best 544.7 534.57 530.76 529.25 529.1204229
A1 36.380 35.148 35.494 39.569 36.76416
A2 12.941 13.169 14.777 16.740 16.29897
A3 35.764 37.69 36.203 34.361 37.94378
A4 18.314 19.556 15.387 12.994 16.51087
A5 3.002 1.087 0.6451 0.645 0.659
A6 5.433 4.844 4.5896 4.802 4.57489
A7 20.989 18.314 23.211 26.182 22.94023
A8 24.14 27.415 24.561 21.260 22.63185
A9 9.753 12.562 12.482 11.766 10.87892
A10 18.102 12.106 12.324 11.392 11.53643

Table 20. Statistical results of the different method for the ten-bar truss bearing design problem.

Approaches Best Mean Worst Std-Dev

Present Study (MGA) 529.1204229 534.6843574 548.0179132 26.33651675

The results of different methods for the rolling element bearing design problem are
presented in Tables 21 and 22. It is clear that the best result of the MGA in this case is
better than those of other approaches in the literature. Regarding the fact that this problem
is a maximization optimization problem, MGA is also capable of providing remarkable
statistical results.

Table 21. Comparison of the best solutions for the rolling element bearing design problem.

TLBO [50] Present Study (MGA) *

Best 81,859.74 83,912.87983
Dm 21.42559 125.0002787
Db 125.7191 21.87451192
Z 11 10.77706583
fi 0.515 0.515000822
f0 0.515 0.515002993

KDmin 0.424266 0.405908353
KDmax 0.633948 0.65558802
ε 0.3 0.300004155
e 0.068858 0.077544926
ζ 0.799498 0.6

* This problem is a maximization problem.

Table 22. Statistical results of different approaches for the rolling element bearing design problem.

Approaches Best Mean Worst Std-Dev

TLBO [50] 81,859.74 81,438.987 80,807.8551 0.66
Present Study (MGA) 83,912.87983 83,892.25647 83,711.21317 23.65841

Table A17 [46,79–81] and Table 23 display the comparative and statistical optimization
results of multiple optimization algorithms and MGA in dealing with the gear train design
problem. It is obvious that MGA outranks the other optimization algorithms, Specifically,
MGA obtained a perfect best of zero, which has not been obtained by other metaheuristics,
confirming the capability of MGA to yield the lowest possible value in this case. The
Friedman statistical test results are also presented in Table A18 for comparative purposes.
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Table 23. Statistical results of different approaches for the gear train design problem.

Approaches Best Mean Worst Std-Dev

Gandomi et al. [46] 2.7009 × 10−12 1.9841 × 10−9 2.3576 × 10−9 3.5546 × 10−9

Loh and Papalambros [79] 2.7 × 10−12 2.7 × 10−12 2.7 × 10−12 2.2122 × 10−28

Wang et al. [82] (CPKH) 2.22 × 10−16 2.22× 10−16 8.5 × 10−9 7.96 × 10−22

Wang et al. [82] (ABC) 2.92 × 10−15 3.18 × 10−15 8.5 × 10−9 9.81 × 10−10

Present Study (MGA) 1.06 × 10−19 7.69 × 10−14 7.62 × 10−13 1.78 × 10−13

CPKH: Chaotic Particle Swarm Krill Herd.

Considering the steel I-shaped beam as one of the most well-formulated design
problems, the final and statistical optimization results of multiple metaheuristics are
presented in Tables 24 and 25, respectively. By comparing these optimum results, MGA
outranked all other well-known algorithms that have been reported recently.

Table 24. Comparison of the best solutions for the steel I-shaped beam design problem.

ARSM [83] I-ARSM [83] MATLAB [83] CS [46] Present Study
(MGA)

Best 0.0157 0.131 0.0131 0.0130747 0.013074119
h 80 79.99 80 80 79.9999992
b 37.05 48.42 50 50 49.9999985
tw 1.71 0.9 0.9 0.9 0.9
tf 2.31 2.4 2.32 2.3216715 2.321792333

ARSM: Adaptive Response Surface Method; I-ARMS: Improved Adaptive Response Surface Method; MATLAB:
Matrix Laboratory Optimization Approach.

Table 25. Statistical results of different approaches for the steel I-shaped beam design problem.

Approaches Best Mean Worst Std-Dev

CS [46] 0.0130747 0.0132165 0.01353646 0.0001345
Present Study (MGA) 0.013074119 0.013074141 0.013074291 3.86 × 10−8

The final results of different metaheuristics for the piston lever design problem, a fre-
quently occurring optimization problem, are presented in Table A19. The statistical results,
including the best, mean, and worst fitness values alongside standard deviation, are pre-
sented in Table 26 for comparative purposes. Based on the results, MGA is capable of
providing better statistical (mean, worst, and standard deviation of the results) and greatly
outranked the other algorithms in terms of the best results. The Friedman statistical test
results are also presented in Table A20 for comparative purposes.

Table 26. Statistical results of different approaches for the piston lever design problem.

Approaches Best Mean Worst Std-Dev

HPSO [46] 162 187 197 13.4
GA [46] 161 185 216 18.2
DE [46] 159 187 199 14.2

CSA [46] 8.4271 40.2319 168.5920 59.0552
Present Study (MGA) 8.413406652 32.4688925 167.4732134 29.96370439

HPSO: Hybrid Particle Swarm Optimization.

Considering the cantilever beam engineering design problem, the optimization results
of the different optimization algorithms are all presented in Tables 27 and 28. By comparing
the best results of these methods, it can be concluded that MGA is capable of achieving
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better results. According to the literature, recently-developed algorithms can yield 1.34,
at best, for this example. Herein, we found that MGA is capable of providing even better
result (1.33997) by conducting a better searching procedure. The statistical results of other
optimization algorithms are not reported in the literature; thus, the remarkable results of
MGA are beneficial for future works.

Table 27. Comparison of the best solutions for the cantilever beam design problem.

MMA [46] GCA-I [46] GCA-II [46] CSA [46] Present Study
(MGA)

Best 1.34 1.34 1.34 1.33999 1.339975661
x1 6.01 6.01 6.01 6.0089 6.011660964
x2 5.3 5.3 5.3 5.3049 5.315676194
x3 4.49 4.49 4.49 4.5023 4.510681877
x4 3.49 3.49 3.49 3.5077 3.485698713
x5 2.15 2.15 2.15 2.1504 2.150251174

MMA: Method of Moving Asymptotes; GCA: Generalized Convex Approximation.

Table 28. Statistical results of the MGA method for the cantilever beam design problem.

Approaches Best Mean Worst Std-Dev

Present Study (MGA) 1.339975661 1.340052681 1.340201166 6.99 × 10−5

By comparing the p-values of the Friedman statistical test which are presented in the
table of results by Chi-sq., it is concluded that for the piston lever design example, the
lowest p-values is determined which demonstrates the fact that for this example, there are
noticeable difference between the results of different approaches. However, the p-values of
other examples are also near a mean of 9 which represents the stability of the conducted
optimization runs and the statistical tests (Figure 11).
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6. Conclusions

In this paper, the Material Generation Algorithm (MGA) is presented as a new
metaheuristic for different applications and various optimization problems. In this re-
gard, 25 constrained design problems were considered to evaluate MGA, including 10
mathematically-constrained problems presented by the Competitions on Evolutionary
Computation (CEC 2017) and 15 well-known engineering design problems. For compara-
tive purposes, the best results of different metaheuristic algorithms, such as state-of-the-art
metaheuristics from CEC 2017, were selected for comparative purposes. Considering
the results of MGA in dealing with the mathematical problems, it should be noted that
this algorithm is capable of providing very competitive results in different dimensions.
In addition, MGA yielded very impressive results in all of constrained engineering design
problems compared to the previously reported algorithms. Specifically, the highest differ-
ence of about 24% between the best results of MGA and the best results reported thus far
in the literature was found for the multiple disk clutch brake engineering design problem.
For the three-bar truss design problem, MGA can provide very competitive results and,
importantly, nearly the best results reported thus far. For the tension or compression spring,
pressure vessel and rolling element bearing problems, the best results were higher for MGA
than the best reported results.

While the proposed MGA has been proven to be a powerful method, different ap-
plications of this method are suggested for future research. It should be mentioned that
the capability of this optimization approach can be controlled in dealing with some com-
plex real-world and even computationally-expensive optimization problems. In addition,
some other challenges, such as improving the general formulation of this method and
hybridizing with other approaches, should be investigated properly.
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Appendix A

Table A1. Comparison of the best solutions for the speed reducer design problem.

Montes et al.
[54]

Akhtar et al.
[55]

Gandomi et al.
[46]

Zhang et al.
[56]

Present Study
(MGA)

Best 3025.005 3008.08 3000.9810 2994.471066 2994.438869
b 3.506163 3.506122 3.5015 3.5 3.500007956
m 0.700831 0.700006 0.7000 0.7 0.700000656
z 17 17 17.0000 17 17.00000081
l1 7.460181 7.549126 7.6050 7.3 7.300541927

www.mathworks.com/matlabcentral/fileexchange/92065-material-generation-algorithm-mga
www.mathworks.com/matlabcentral/fileexchange/92065-material-generation-algorithm-mga
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Table A1. Cont.

Montes et al.
[54]

Akhtar et al.
[55]

Gandomi et al.
[46]

Zhang et al.
[56]

Present Study
(MGA)

l2 7.962143 7.85933 7.8181 7.7153199115 7.715357693
d1 3.3629 3.365576 3.3520 3.3502146661 3.350542391
d2 5.3090 5.289773 5.2875 5.2866544650 5.28665793
g1(x) −0.0777 −0.0755 −0.0743 −0.0739152 −2.155122277
g2(x) −0.2013 −0.1994 −0.1983 −0.1979985 −98.13710222
g3(x) −0.4741 −0.4562 −0.4349 −0.9999967 −1.924273761
g4(x) −0.8971 −0.8994 −0.9008 −0.9999995 −18.30969834
g5(x) −0.0110 −0.0132 −0.0011 −0.6668526 −0.000437152
g6(x) −0.0125 −0.0017 −0.0004 −0.0000000 −0.001666474
g7(x) −0.7022 −0.7025 −0.7025 −0.7025000 −28.09998829
g8(x) −0.0006 −0.0017 −0.0004 −0.0000000 −6.68 × 10−6

g9(x) −0.5831 −0.5826 −0.5832 −0.5833333 −6.999993318
g10(x) −0.0691 −0.0796 −0.0890 −0.0513257 −0.374728341
g11(x) −0.0279 −0.0179 −0.0130 −0.0000000 −3.40 × 10−05

Table A2. Friedman statistical test results for the speed reducer design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.50
2 Zhang et al. [56] 2.00
3 Gandomi et al. [46] 3.00
4 Akhtar et al. [55] 3.87
5 Montes et al. [54] 4.62

Chi-sq. 10.7848
Prob > Chi-sq. 0.0291

Table A3. Comparison of the best solutions for the tension or compression spring design problem.

Coello
[57]

Ray and
Liew [58] Han et al. [59] Gandomi et al.

[45]
Present Study

(MGA)

Best 0.01270478 0.0126692 0.01266534 0.01266522 0.01266523
d 0.051480 0.052160 0.0516800 0.05169 0.051689061
D 0.351661 0.368159 0.3565001 0.35673 0.35671774
N 11.632201 10.648442 11.3018335 11.2885 11.28896576

g1(x) −0.003337 −7.45 × 10−9 −6.218 × 10−6 0 0
g2(x) −0.000110 −3.68 × 10−9 −1.691 × 10−6 0 0
g3(x) −4.026318 −4.075805 −4.0533150 −4.0538 −4.05378563
g4(x) −0.731239 −0.719787 −0.7278799 −0.7277 −0.7277288

Table A4. Friedman statistical test results for the tension or compression spring design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.25
2 Han et al. [59] 2.25
3 Coello [57] 3.50
4 Ray and Liew [58] 4.00
5 Gandomi et al. [45] 4.00

Chi-sq. 9.4000
Prob > Chi-sq. 0.0518
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Table A5. Comparison of the best solutions for the pressure vessel design problem.

He and
Wang [60] Coelho [61]

Mezura-
Montes and
Coello [62]

Coello and
Montes [63]

Present
Study

(MGA)

Best 6061.0777 6059.7208 6059.7456 6059.9463 6059.714350
Ts 0.8125 0.8125 0.8125 0.8125 0.8125
Th 0.4375 0.4375 0.4375 0.4375 0.4375
R 42.0913 42.0984 42.098087 42.097398 42.0984
L 176.7465 176.6372 176.640518 176.654050 176.6366

g1(x) −1.37 × 10−6 −8.79 × 10−7 −6.92 × 10−6 −2.02 × 10−5 0
g2(x) −3.59 × 10−4 −3.58 × 10−2 −0.03588 −0.03589 −0.0359
g3(x) −118.7687 −0.2179 2.903372 −24.8998 0
g4(x) −63.2535 −63.3628 −63.3595 −63.346 −63.3634

Table A6. Friedman statistical test results for the pressure vessel design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1
2 He and Wang [60] 2.75
3 Coello and Montes [63] 3.25
4 Coelho [61] 4.00

5 Mezura-Montes and Coello
[62] 4.00

Chi-sq. 9.8000
Prob > Chi-sq. 0.0439

Table A7. Comparison of the best solutions for the welded beam design problem.

Huang et al.
[64]

Eskandar et al.
[65] Guedria [66] Han et al.

[59]

Present
Study

(MGA)

Best 1.733461 1.724856 1.724852 1.6956397 1.672966512
h 0.203137 0.205728 0.205730 0.20532536 0.198957505
l 3.542998 3.470522 3.470489 3.26035648 3.341955765
t 9.033498 9.036620 9.036624 9.03664424 9.187291977
b 0.206179 0.205729 0.205730 0.20572991 0.199190532

g1(x) −44.57856 −0.034128 −1.05 × 10−10 −0.10520197 −20.76244473
g2(x) −44.66353 −3.49 × 10−5 −6.91 × 10−10 −0.17417862 −23.09392302
g3(x) −0.003042 −1.19 × 10−6 −7.66 × 10−15 −4.04330102 −0.000233027
g4(x) −3.423726 −3.432980 −3.432984 −3.45179021 −3.469028817
g5(x) −0.078137 −0.080728 −0.080730 −0.08032536 −0.073957505
g6(x) −0.235557 −0.235540 −0.235540 −0.22831066 −0.05415088
g7(x) −38.02826 −0.013503 −5.80 × 10−10 −0.03397937 −30.47032014

Table A8. Friedman statistical test results for the welded beam design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.50
2 Guedria [66] 2.25
3 Han et al. [59] 3.25
4 Eskandar et al. [65] 3
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Table A8. Cont.

Rankings Algorithms Mean of Ranks

5 Huang et al. [64] 5

Chi-sq. 11.0000
Prob > Chi-sq. 0.0266

Table A9. Comparison of the best solutions for the three-bar truss design problem.

Gandomi et al.
[46]

Ray and Liew
[58] Zhang et al. [56] Grag [67]

Present
Study

(MGA)

Best 263.97156 263.8958466 263.8958434 263.8958433 263.8958433
A1 0.78867 0.7886210370 0.7886751359 0.788676171219 0.788675136
A2 0.40902 0.4084013340 0.4082482868 0.408245358456 0.408248288
g1(x) −0.00029 −8.275 × 10−9 −2.104 × 10−11 −1.587 × 10−13 0
g2(x) −0.00029 −1.46392765 −1.46410161 −1.4641049 −1.464101618
g3(x) −0.73176 −0.536072358 −0.5358983 −0.535895 −0.535898382

Table A10. Friedman statistical test results for the three-bar truss design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.75
2 Grag [67] 1.87
3 Zhang et al. [56] 2.37
4 Ray and Liew [58] 4.25
5 Gandomi et al. [46] 4.75

Chi-sq. 12.8700
Prob > Chi-sq. 0.0119

Table A11. Comparison of the best solutions for the multiple disk clutch brake design problem.

Deb and
Srinivasan

[68]

Eskandar et al.
[65]

Rao et al.
[50]

Ferreira et al.
[47]

Present
Study

(MGA)

Best 0.4704 0.313656 0.313656611 0.313656 0.235242467
r1 70 70 70 70 70.00000008
r0 90 90 90 90 90.0000003
t 1.5 1 1 1 1.000000013
F 1000 910 810 830 865.6907633
Z 3 3 3 3 2.00000004

g1(x) 0 0 0 0 −2.18 × 10−7

g2(x) −22 −24 −24 −24 −25.4999999
g3(x) −0.9005 −0.909480 −0.91942781 −0.917438 −0.913888149
g4(x) −9.7906 −9.809429 −9830.371094 −9.826183 −9.985383395
g5(x) −7.8947 −7.894696 −7894.69659 −7.894697 −9.830260243
g6(x) −3.3527 −2.231421 −0.702013203 −0.173855 −14.98276443
g7(x) −60.6250 −49.768749 −37706.25 −40.118750 −83479.16052
g8(x) −11.6473 −12.768578 −14.2979868 −14.826145 −0.017235569
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Table A12. Friedman statistical test results for the multiple disk clutch brake design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.5
2 Ferreira et al. [47] 2.12
3 Eskandar et al. [65] 2.37
4 Rao et al. [50] 4.00

Chi-sq. 8.8378
Prob > Chi-sq. 0.0315

Table A13. Comparison of the best solutions for the planetary gear train design problem.

Savsani and Savsani [48] Present Study (MGA)

Best 0.525588 0.52325
N1 34 40
N2 25 21
N3 33 14
N4 32 19
N5 23 17
N6 116 69
P 4 3

m1 2.5 2
m2 1.75 3

Table A14. Friedman statistical test results for the planetary gear train design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 2.50
2 Zhang et al. [70] 2.50
3 Savsani and Savsani [48] 3.00
4 Rao and Savsani [69] (ABC) 3.00
5 Rao and Savsani [69] (PSO) 4.00

Chi-sq. 12.8700
Prob > Chi-sq. 0.0119

Table A15. Comparison of the best solutions for the step-cone pulley design problem.

TLBO [50] WOA [44] WCA [44] MBA [44] Present Study
(MGA)

Best 16.63451 16.6345213 16.63450849 16.6345078 16.18595608
d1 40 40 40 40 38.53034981
d2 54.7643 54.764326 54.764300 54.764300 53.04151483
d3 73.01318 54.764326 54.764300 54.764300 70.67294075
d4 73.01318 54.764326 54.764300 88.428419 84.71470998
w 73.01318 85.986297 54.764300 85.986242 90

WOA: Whale Optimization Algorithm; WCA: Water Cycle Algorithm; MBA: Mine Blast Algorithm.
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Table A16. Friedman statistical test results for the step-cone pulley design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.00
2 MBA [44] 2.00
3 WCA [44] 3.25
4 TLBO [50] 4.25
5 WOA [44] 4.50

Chi-sq. 14.2000
Prob > Chi-sq. 0.0067

Table A17. Comparison of the best solutions for the gear train design problem.

Gandomi et al.
[46]

Loh and Pa-
palambros

[79]

Kannan and
Kramer [80]

Sandgren
[81]

Present
Study

(MGA)

Best 2.701 × 10−12 2.7× 10−12 2.146 × 10−8 5.712 × 10−6 1.06 × 10−19

zd 19 19 13 18 27.32076302
zb 16 16 15 22 13.75530503
za 43 43 33 45 48.25305913
zf 49 49 41 60 53.98015133

Table A18. Friedman statistical test results for the gear train design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 2.00
2 Wang et al. [82] (CPKH) 2.37
3 Loh and Papalambros [79] 2.75
4 Wang et al. [82] (ABC) 3.37
5 Gandomi et al. [46] 4.50

Chi-sq. 6.2278
Prob > Chi-sq. 0.1828

Table A19. Comparison of the best solutions for the piston lever design problem.

CSA [46] Present Study (MGA)

Best 8.4271 8.413406652
H 0.05 0.05
B 2.043 2.041637535
X 120 120
D 4.0851 4.083080224

Table A20. Friedman statistical test results for the piston lever design problem.

Rankings Algorithms Mean of Ranks

1 Present Study (MGA) 1.75
2 CSA [46] 2.75
3 HPSO [46] 3.75
4 GA [46] 3.75
5 DE [46] 3.75

Chi-sq. 4.0000
Prob > Chi-sq. 0.4060
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31. Akış, T.; Azad, S.K. Structural Design Optimization of Multi-layer Spherical Pressure Vessels: A Metaheuristic Approach. Iran. J.

Sci. Technol. Trans. Mech. Eng. 2019, 43, 75–90. [CrossRef]
32. Tubishat, M.; Idris, N.; Shuib, L.; Abushariah, M.A.; Mirjalili, S. Improved Salp Swarm Algorithm based on opposition based

learning and novel local search algorithm for feature selection. Expert Syst. Appl. 2020, 145, 113–122. [CrossRef]
33. Mokeddem, D.; Mirjalili, S. Improved Whale Optimization Algorithm applied to design PID plus second-order derivative

controller for automatic voltage regulator system. J. Chin. Inst. Eng. 2020, 43, 541–552. [CrossRef]
34. Kaveh, A.; Hosseini, S.M.; Zaerreza, A. Improved Shuffled Jaya algorithm for sizing optimization of skeletal structures with

discrete variables. In Structures; Elsevier: Amsterdam, The Netherlands, 2021; pp. 107–128.

http://doi.org/10.1016/0305-0548(86)90048-1
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1023/A:1015059928466
http://doi.org/10.1109/TEVC.2008.919004
http://doi.org/10.1109/3477.484436
http://www.ncbi.nlm.nih.gov/pubmed/18263004
http://doi.org/10.1016/j.cnsns.2012.05.010
http://doi.org/10.1126/science.220.4598.671
http://doi.org/10.1177/003754970107600201
http://doi.org/10.1016/j.advengsoft.2005.04.005
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1007/s00707-009-0270-4
http://doi.org/10.1016/j.eswa.2011.04.126
http://doi.org/10.1016/j.compstruc.2014.04.005
http://doi.org/10.1007/s10462-020-09867-w
http://doi.org/10.1016/j.cie.2020.106560
http://doi.org/10.1016/j.apm.2020.12.021
http://doi.org/10.1016/j.apm.2020.12.007
http://doi.org/10.1080/0305215X.2016.1145217
http://doi.org/10.1007/s00158-009-0418-9
http://doi.org/10.1007/s00158-020-02692-3
http://doi.org/10.1007/s40997-017-0141-x
http://doi.org/10.1016/j.eswa.2019.113122
http://doi.org/10.1080/02533839.2020.1771205


Processes 2021, 9, 859 34 of 35

35. Ebrahimi, B.; Tavana, M.; Toloo, M.; Charles, V. A novel mixed binary linear DEA model for ranking decision-making units with
preference information. Comput. Ind. Eng. 2020, 149, 106720. [CrossRef]

36. Azizi, M.; Ghasemi, S.A.; Ejlali, R.E.; Talatahari, S. Optimization of Fuzzy Controller for Nonlinear Buildings with Improved
Charged System Search. Struct. Eng. Mech. 2020, 76, 781.

37. Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition on Constrained
Real-Parameter Optimization; Technical Report; National University of Defense Technology: Changsha, China; Kyungpook National
University: Daegu, Korea; Nanyang Technological University: Singapore, 2017.

38. Tvrdík, J.; Poláková, R. Simple framework for constrained problems with application of L-SHADE44 and IDE. In Proceedings of
the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1436–1443.

39. Polakova, R. L-SHADE with competing strategies applied to constrained optimization. In Proceedings of the 2017 IEEE Congress
on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp. 1683–1689.

40. Zamuda, A. Adaptive constraint handling and success history differential evolution for CEC 2017 constrained real-parameter
optimization. In Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC), Donostia, Spain, 5 June 2017; pp.
2443–2450.

41. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests as a methodology for
comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 2011, 1, 3–18. [CrossRef]

42. Sörensen, K. Metaheuristics—The metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18. [CrossRef]
43. Kumar, A.; Wu, G.; Ali, M.Z.; Mallipeddi, R.; Suganthan, P.N.; Das, S. A test-suite of non-convex constrained optimization

problems from the real-world and some baseline results. Swarm Evol. Comput. 2020, 56, 100693. [CrossRef]
44. Yildiz, A.R.; Abderazek, H.; Mirjalili, S. A Comparative Study of Recent Non-traditional Methods for Mechanical Design

Optimization. Arch. Comput. Methods Eng. 2020, 27, 1031–1048. [CrossRef]
45. Gandomi, A.H.; Yang, X.S.; Alavi, A.H.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl.

2013, 22, 1239–1255. [CrossRef]
46. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization

problems. Eng. Comput. 2013, 29, 17–35. [CrossRef]
47. Ferreira, M.P.; Rocha, M.L.; Neto, A.J.; Sacco, W.F. A constrained ITGO heuristic applied to engineering optimization. Expert Syst.

Appl. 2018, 110, 106–124. [CrossRef]
48. Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model. 2016, 40, 3951–3978.

[CrossRef]
49. Rao, S.S. Engineering Optimization: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 2019.
50. Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching–learning-based optimization: A novel method for constrained mechanical design

optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]
51. Yu, Z.; Xu, T.; Cheng, P.; Zuo, W.; Liu, X.; Yoshino, T. Optimal Design of Truss Structures with Frequency Constraints Using

Interior Point Trust Region Method. Proc. Rom. Acad. Ser. 2014, 15, 165–173.
52. Gupta, S.; Tiwari, R.; Nair, S.B. Multi-objective design optimisation of rolling bearings using genetic algorithms. Mech. Mach.

Theory 2007, 42, 1418–1443. [CrossRef]
53. Zelinka, I.; Lampinen, J. Mechanical Engineering Problem Optimization by SOMA. In New Optimization Techniques in Engineering;

Springer: Berlin/Heidelberg, Germany, 2004; pp. 633–653.
54. Mezura-Montes, E.; Coello, C.C.; Landa-Becerra, R. Engineering Optimization Using Simple Evolutionary Algorithm. In

Proceedings of the 15th IEEE International Conference on Tools with Artificial Intelligence, Sacramento, CA, USA, 5 November
2003; pp. 149–156.

55. Akhtar, S.; Tai, K.; Ray, T. A socio-behavioural simulation model for engineering design optimization. Eng. Optim. 2002, 34,
341–354. [CrossRef]

56. Zhang, M.; Luo, W.; Wang, X. Differential evolution with dynamic stochastic selection for constrained optimization. Inf. Sci. 2008,
178, 3043–3074. [CrossRef]

57. Coello, C.A. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41, 113–127.
[CrossRef]

58. Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social behavior. IEEE Trans.
Evol. Comput. 2003, 7, 386–396. [CrossRef]

59. Han, J.; Yang, C.; Zhou, X.; Gui, W. A two-stage state transition algorithm for constrained engineering optimization problems. Int.
J. Control Autom. Syst. 2018, 16, 522–534. [CrossRef]

60. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.
Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]

61. Dos Santos Coelho, L. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design
problems. Expert Syst. Appl. 2010, 37, 1676–1683. [CrossRef]

62. Zahara, E.; Kao, Y.T. Hybrid Nelder–Mead simplex search and particle swarm optimization for constrained engineering design
problems. Expert Syst. Appl. 2009, 36, 3880–3886. [CrossRef]

63. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based algorithm for solving
constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612. [CrossRef]

http://doi.org/10.1016/j.cie.2020.106720
http://doi.org/10.1016/j.swevo.2011.02.002
http://doi.org/10.1111/itor.12001
http://doi.org/10.1016/j.swevo.2020.100693
http://doi.org/10.1007/s11831-019-09343-x
http://doi.org/10.1007/s00521-012-1028-9
http://doi.org/10.1007/s00366-011-0241-y
http://doi.org/10.1016/j.eswa.2018.05.027
http://doi.org/10.1016/j.apm.2015.10.040
http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1016/j.mechmachtheory.2006.10.002
http://doi.org/10.1080/03052150212723
http://doi.org/10.1016/j.ins.2008.02.014
http://doi.org/10.1016/S0166-3615(99)00046-9
http://doi.org/10.1109/TEVC.2003.814902
http://doi.org/10.1007/s12555-016-0338-6
http://doi.org/10.1016/j.engappai.2006.03.003
http://doi.org/10.1016/j.eswa.2009.06.044
http://doi.org/10.1016/j.eswa.2008.02.039
http://doi.org/10.1016/j.asoc.2012.11.026


Processes 2021, 9, 859 35 of 35

64. Huang, F.Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math.
Comput. 2007, 186, 340–356. [CrossRef]

65. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for
solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]

66. Guedria, N.B. Improved accelerated PSO algorithm for mechanical engineering optimization problems. Appl. Soft Comput. 2016,
40, 455–467. [CrossRef]

67. Garg, H. A hybrid GSA-GA algorithm for constrained optimization problems. Inf. Sci. 2019, 478, 499–523. [CrossRef]
68. Deb, K.; Srinivasan, A. Innovization: Innovating Design Principles through Optimization. In Proceedings of the 8th Annual

Conference on Genetic and Evolutionary Computation, Seattle, WA, USA, 8 July 2006; pp. 1629–1636.
69. Rao, R.V.; Savsani, V.J. Mechanical Design Optimization Using Advanced Optimization Techniques; Springer Science & Business Media:

London, UK, 2012.
70. Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing search algorithm: A novel metaheuristic algorithm for solving engineering

optimization problems. Appl. Math. Model. 2018, 63, 464–490. [CrossRef]
71. Siddall, J.N. Optimal Engineering Design: Principles and Applications; CRC Press: London, UK, 1982.
72. Deb, K.; Goyal, M. Optimizing Engineering Designs Using a Combined Genetic Search. InICGA 1997, 521–528.
73. Coello, C.A. The Use of a Multiobjective Optimization Technique to Handle Constraints. In Proceedings of the Second International

Symposium on Artificial Intelligence (Adaptive Systems); Institute of Cybernetics, Mathematics and Physics, Ministry of Science
Technology and Environment: La Habana, Cuba, 1999; pp. 251–256.
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