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Abstract—We introduce a novel adaptive damping tech-
nique for an inertial gradient system which �nds appli-
cation as a gradient descent algorithm for unconstrained
optimisation. In an example using the non-convex Rosen-
brock’s function, we show an improvement on existing
momentum-based gradient optimisation methods. Also
using Lyapunov stability analysis, we demonstrate the per-
formance of the continuous-time version of the algorithm.
Using numerical simulations, we consider the performance
of its discrete-time counterpart obtained by using the
symplectic Euler method of discretisation.
Index Terms—Learning Systems, Time-varying Systems,
Nonlinear Systems and Control.

I. Introduction
Recent advances in the �eld of deep learning has rekindled
interest in gradient-based optimisation algorithms. Often
we �nd the training loss for machine learning models
is dependent on the nature of such algorithms. This
motivates us to study these algorithms from a control
systems perspective. While studying such algorithms, we
encounter unconstrained optimisation problems which
are of the form:

min
x∈Rd

f(x) where f : Rd −→ R . (1)

Mostly, such algorithms are dependent on learning the
gradient of the cost function. A central aspect of analysing
this problem is the Lipschitz continuity of the cost
function [1], where there exists a constant L, termed
as the Lipschitz constant, such that:

‖∇f(y)−∇f(x)‖ ≤ L‖y − x‖ (2)

∀ x, y ∈ R. A su�cient condition for learning the
gradient of such a cost function is to take a small enough
step-size s such that:

0 < s ≤ 1

L
. (3)

Thus, we consider methods which require �rst order
gradient knowledge to obtain the minima. However, the
performance of such methods is heavily dependent upon
the cost function’s spectral condition number, its overall
geometry, the presence of saddle points, and local minimas
[2].
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Fig. 1. Rosenbrock’s function with global minima at (1, 1).

One such method is the Nesterov’s accelerated gradient
descent algorithm which is given by:

θk+1 = θk + vk+1,

vk+1 = θk+1 − θk,
θk = yk − εk∇f (yk) ,
yk+1 = θk + µk (θk − θk−1) ,

(4)

with a reported convergence rate of O( 1
k2 ) [3] for a convex

cost function f . In continuous-time this algorithm takes
the form [11]:

Ẍ +
α

t
Ẋ +∇f(x) = 0 ∀ t > 0. (5)

Su et al. show in their paper [4] how the possible
values of the damping coe�cient, α a�ect the rate of
convergence of this algorithm. For convex functions,
and α ≥ 3, the rate of convergence of (5) is of the
order f − f∗ = O( 1

t2 ). Though there is a lack of
mathematical literature to explain the acceleration of
this algorithm, recent advances show a variety in the
rate of convergence by re-scaling the gradient �ow which
corresponds to a Bregman Lagrangian [5]. While this does
provide some insight, all derivations in the class of inertial
gradient systems like (5) are based on realising Lyapunov
functionals which themselves rely on the geometry of the
cost function to approximate an upper bound on the
convergence rate. These algorithms in continuous-time
can be regarded as open loop systems which show variance
in their dynamic evolution in discrete-time, depending
upon the order of discretization used. The Nesterov
scheme for example takes multiple forms depending upon
the discretisation method used [6].
Notwithstanding the di�culty in explaining the phe-
nomenon of acceleration in the Nesterov and Heavy-
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ball [7] schemes, a number of studies [8] have shown
that momentum de�nitely plays a central role in the
acceleration of such optimisation algorithms. It should
be noted that the continuous-time analysis of such
systems is achieved by using high-resolution ordinary
di�erential equation approximations with small step sizes.
The literature on �rst order momentum-based methods
shows that, in the deterministic setting, such methods
reveal a stabilising e�ect in their transient phases. Recent
results indicate that these momentum methods admit
an attractive invariant manifold on which the dynamics
reduce to a gradient �ow [9].
In this paper, we will discuss a particular method within
a relatively new class of gradient descent schemes which
are closed loop in nature and show qualitatively better
numerical performance in continuous-time compared to
an open loop approach like Nesterov’s scheme. Our study
begins with understanding the problem generalised as:

Ẍ + γ Ẋ + ∇f (x) = 0, (6)

where γ is the damping coe�cient. We will consider
the construction of γ as a feedback control problem to
optimise the dynamics for rapid convergence.
To test the performance of our method, we use Rosen-
brock’s function (a test-bench for global optima-seeking)
as the cost function (See Figure 1). The Rosenbrock’s
function is a non-convex1 function which is known for its
hard to �nd minima. This global minima exists at (1, 1)
located within a large valley making the optimisation
computationally hard. Rosenbrock’s function is given as:

f(x, y) = (1− x)2 + 100 (y − x2)2. (7)

As mentioned earlier, the performance of an optimisation
scheme is characterised by the spectral condition number
of the Hessian of the cost function calculated at its
minima. The spectral condition number of a matrix given
as κ = λmax

λmin
, where λ signi�es the eigenvalues [11].

At its minima, the spectral condition number of the
Hessian of Rosenbrock’s function is calculated to be
κ = 2508. [12] This indicates that the system is ill-
conditioned and most �rst order gradient-based methods
would require a large number of iterations to �nd its
minima. In the continuous-time method, it has been
found that it can only be solved by considering implicit
methods which can handle such sti� systems. [13] First
order gradient algorithms when applied to Rosenbrock’s
function performs quite poorly in discrete-time; i.e. they
are unable to �nd the minima within a practical run-
time. While ADAM [14] and other hybrid algorithms
are able to solve this problem, they do so at a high
computational cost; i.e. it takes them a large number of
iterations to minimise Rosenbrock’s function and often
converge slowly due to the sti�ness of the system as
shown in Figure 2 (note that ADAM takes at least 105
iterations to converge to the minima for ε = 10−8 for

1The Hessian at all points of the function are not positive semi-
de�nite [10].

Fig. 2. Some existing optimisation algorithms applied to
Rosenbrock’s function for the initial condition (5,-3).

Rosenbrock’s function [15]).
This paper is divided into two main sections to deal
with the continuous and the discrete-time analyses of the
proposed algorithm. 2

II. Continuous-Time Analysis
A. Motivation
The design of the proposed algorithm was inspired by
a physical understanding of the dynamical system (6)
which involves control using its momentum [16]. This
has also been motivated by the recent paper by Attouch
et al. [17]. In [17], closed-loop control is considered using
multiple scenarios with a damping constant of the form
γ = r |ẋ|p−2, where p and r are positive constants
(control parameters) and ẋ is the velocity. However,
the simulation results we obtained for this algorithm
were not particularly satisfactory for the minimisation
of Rosenbrock’s function. We make two particular
observations:

1) The damping function did not adequately stabilise
the system over long intervals for various values
of p and r. This inspired us to use the control
parameter r as t (time) and p = 4.3

2) The lack of stability of the system over large
intervals of time led us to look at (6) as a linear
time-variant system and to perform a corresponding
pole placement.

The linearised ODE for the method (7) applied to
Rosenbrock’s function is equivalent to the form:

Ẍ + γẊ +∇2f X = 0, (8)

where the Hessian ∇2f for Rosenbrock’s function at
the minima X = X∗, is:

∇2 f =

[
802 −400
−400 200

]
. (9)

2Please note that in this paper, all simulations and results have been
compiled in the MATLAB™ and SimuLink™ environments. All graphs
where the X-axis has not been explicitly mentioned, denotes time in
seconds.

3Note that this implies for the vector form ||Ẋ||22 becomes the inner
product of the velocity vector with itself.



Fig. 3. Whiplash control system block diagram.

Hence, we look at the eigenvalues for the linear time
variant system matrix of (8) to understand its convergence
rate [18]. For this purpose, we de�ne a new system with
state y for the underlying linearised state space system
ẋ = Ax, which is given as:

y = x e−ηt, η > 0 . (10)

This leads to the rede�ned system:

ẏ + η y = Ay , (11)

which in matrix form can be written as:

ẏ = (A − ηI) y. (12)

The minimum real part of the eigenvalues of the system
(11) can be written as:

σ =
− γ
2
− η (13)

which indicates an exponential convergence rate of at least
η. Based on this, we choose the value of η = 1. Thus
we arrive at our hybrid gradient descent optimisation
method which we shall refer to as the whiplash inertial
gradient optimisation method (14):

Ẍ + (1 + t ||Ẋ||2 )Ẋ +∇f(X) = 0. (14)

A block diagram for this algorithm is shown in Figure 3.
The motivation for this nomenclature can be found in
subsection II-C.

B. Convergence Analysis using the Lyapunov Method
For an autonomous system, of the form:

ẋ = f(x) (15)

we can guarantee global asymptotic stability if there exists
a functional, V (x), such that:

V (x) > 0 ∀x 6= 0

V (0) = 0

V̇ (x) < 0 ∀x 6= 0 .

(16)

Furthermore, we consider the La-Salle principle of in-
variance [19] and suppose there exists a continuously

di�erentiable, positive de�nite, radially unbounded func-
tion V (z) : Rn → R such that ∀ z ∈ Rn:

∂V

∂x
(z − xe) f(z) ≤W (z) ≤ 0 . (17)

Then, xe is a Lyapunov stable equilibrium point, and the
solution always exists globally. “Moreover, x(t) converges
to the largest invariant set M contained in E = {z ∈
Rn : W (z) = 0}. When W (z) = 0 only for z = xe
then E = {xe}. Since M ⊂ E therefore x(t) → xe
which implies asymptotic stability. Even when E 6= {xe},
we often have the condition M = {xe} from which we
can conclude asymptotic stability” [20]. This is used in
our analysis for the general inertial gradient dynamical
system [21] by de�ning a candidate Lyapunov function
W (t) for all damping functions γ such that:

W (t) =
1

2
||ẋ||2 + f(x)− f(x∗), (18)

where f(x∗) denotes the minima of the cost function,
which satis�es all the conditions in (11). Upon replacing
the time derivative in the equation (6) for Ẍ , we obtain:

Ẇ (t) = 〈Ẋ, Ẍ〉+ 〈∇(f), Ẋ〉
= − γ||Ẋ||2 ≤ 0 ∀ γ ≥ 0 .

(19)

This shows that the time derivative of our Lyapunov
candidate is negative semi-de�nite. This shall su�ce to
show using La-Salle’s principle of invariance that the set
of accumulation points of any trajectory is contained in
I, where I is the union of complete trajectories contained
entirely in the set {x : Ẇ (x) = 0} [19]. Thus by
Lyapunov’s Second Theorem, we have the functional W
is positive de�nite; i.e. “I contains no trajectory of the
system except the trivial trajectory x(t) ≡ 0 and as W is
radially unbounded; i.e. W (x)→∞ as ||x|| → ∞”, we
conclude that the origin is globally asymptotically stable
[20].

C. Simulation Results
We modelled the whiplash inertial gradient dynamic
system (14) using the Euler �xed step integrator (ode1)
on Rosenbrock’s function, using a step-size of 0.001. A
few examples of the state trajectories have been shown
in Figure 5 starting from di�erent initial conditions.
While all starting speeds achieve convergence (unlike the
Nesterov scheme which must be started at Ẋ(0) = 0
[21] [4] to ensure convergence) it should be noted that
we start the system at an arbitrary �xed velocity of
Ẋ(0) = −1000 which shows rapid convergence for all
initial conditions4.
If one looks at Figure 4, where we have analysed
the system’s damping coe�cient γ = 1 + t 〈Ẋ, Ẋ〉,
it shows a sharp rise followed by an abrupt fall for
high starting speeds (which ensures faster convergence).
This phenomenon replicates the physical process of the
whiplash e�ect, and hence motivated its nomenclature.

4Further research will be required to study the e�ect of various
starting speeds for this system.



Fig. 4. The Closed-Loop Damping coe�cient γ.

(a)

(b)

Fig. 5. Simulations for the continuous-time whiplash gradient
descent: (a) Initial condition (12,-3) (b) Initial condition (-4,17)

We hypothesise that (as explained by Kovachki and Stuart
in their paper [9]) this e�ect might be responsible for the
rapid stabilisation of the system in the transient phase.

III. Discrete-Time Analysis
A. Discretisation
The discretization that is used is the semi-implicit or
symplectic Euler method [22]. Using a discrete-time step
s and sampling of t ≈ k

√
s, we obtain a two-state

estimate of the acceleration and velocity as shown below:

Ẋ ≈ vk =
xk+1 − xk√

s
,

Ẍ ≈ vk+1 − vk√
s

,

1 + t ||Ẋ||2 ≈ 1 + k
√
s||vk||2.

(20)

Now, we modify (14) to add a �xed mass to the system,
which up until this point has been considered to be of
unit magnitude. The choice of mass that we shall make

is m = 1√
s

. This idea of introducing this mass in inertial
gradient �ow methods while discretising them has been
inspired from the idea of selective mass scaling in �nite
element methods [23], where the iterative process can be
scaled by choosing an e�ective mass. The rationale behind
this is since the discrete-time method depend heavily
on the step-size, they take much longer to attenuate
for smaller step-sizes. Hence, to counter this e�ect,
we may introduce such a �xed mass, which scales the
dynamics, depending on the step-size. Upon making these
substitutions and modi�cation to (14), we obtain

(
1√
s
)
vk+1 − vk√

s
+(1+k

√
s||vk||2)

vk√
s
+∇f(xk) = 0.

(21)
We can re-write (21) using (20) as:

vk+1 = (1−
√
s− ks vTk · vk)vk − s∇f(xk) . (22)

Now, we consider the symplectic approximation for the
Lyapunov stable system [24] such that ‖ẋ(t)‖ → 0
as t → ∞. This implies that ‖vk‖ → 0 as k → ∞.
Therefore, we introduce zk = xk − xk−1 =

√
svk−1.

For all asymptotic analyses, there is no practical di�erence
between the sequences zk and vk as

lim
k→∞

‖zk+1 − vk‖ = |
√
s− 1|‖vk‖ = 0. (23)

We may consider this as two transforms. First as a scaling
of the system, followed by a backward recursion:

lim
t→∞

|
√
s−1|ẋ(t) ≈ max

0<k≤ T√
s

(x(k
√
s)−x((k−1)

√
s)).

(24)
This trick simpli�es our system’s updates while keeping
intact the geometry of the dynamical system and does not
change the global nature of the system’s convergence5.
This particular choice of design for the algorithm sim-
pli�es the computation and makes discrete-time analyses
of convergence considerably easier. We �nally have the
consolidated scheme as:

x1 = x0 − s∇f(x0),
zk = xk − xk−1,
αk = 1−

√
s− ks||zk||2,

zk+1 = αk zk − s∇f(xk).

(25)

B. Algorithm
This discrete-time scheme (25) can be translated to
the following algorithm6 using a step-size s and n
iterations, with initial starting point x0 and �nal point
xn (1). Unlike prior gradient descent algorithms, which
are capable of minimising Rosenbrock’s function, this
algorithm does not use any hyper-parameters. Instead, it
uses a simple two-step assignment to update the discrete-
time damping in every iteration. The zeroth step (1) of
the iteration x1 is a gradient descent step [12] which
assigns the initial momentum for the �rst iteration as
z1 = x1 − x0.

5We have veri�ed this claim using numerical results.
6The code is available on the licensed repository: https://github.com/

SubhransuSekharBhattacharjee-01/Whiplash.git

https://github.com/SubhransuSekharBhattacharjee-01/Whiplash.git
https://github.com/SubhransuSekharBhattacharjee-01/Whiplash.git


Algorithm 1 The whiplash gradient descent algorithm
Input:∇f(x), n, s, x0

1: Initialise: x1 ← x0 − s∇f(x0)
2: k = 1
3: while k ≤ n do
4: zk ← xk − xk−1
5: αk ← 1−

√
s− ks(zTk · zk)

6: xk+1 ← xk + αkzk − s∇f(xk)
7: (xk−1, xk)← (xk, xk+1)
8: k ← k + 1
9: end while

Output: xn

Fig. 6. Momentum plot: Convergence of the momentum with
iterations.

C. Numerical Results
Numerical results for the whiplash gradient descent
algorithm applied to Rosenbrock’s function are promising.
As explained previously, for the sti�ness of the system
to be taken into account, we need a step-size of no
more than 10−5. This is because the algorithm is unable
to learn the gradient of the cost function and picks
up momentum without correcting the damping. For a
su�ciently small step-size, the whiplash gradient descent
algorithm successfully found the minima of Rosenbrock’s
function for all initial conditions.
We have shown a few examples in Figure 7. A plot of the
momentum growth Figure 6 shows a saturation e�ect.
This indicates that Rosenbrock’s function optimisation
has been achieved over the given time interval. Figure 8
shows the nature of the trajectory, as it approaches the
minima.

IV. Conclusion and FutureWork
From the above results, we can see that the proposed
whiplash gradient descent algorithm is capable of fast
optimisation of Rosenbrock’s function. We constructed
this algorithm using a non-linear controller motivated by
the nature of the momentum-control structure. However,
it must be understood that this controller might not be
optimal even for Rosenbrock’s function. This is because
unlike linear systems, where we could predict the results
from clear theoretical motivations, we do not have any
such tools for analysis for the non-linear case.
Thus, as a direction for future research, we will need to

reconsider the classical Lur’e problem, for the absolute
stability of the entire class of the inertial gradient systems,
involving a feedback path that contains a sector-bound
non-linearity [25]. We will also need to research further
to understand the theoretical and practical limitations of
closed loop control for the generalised inertial gradient
system. Furthermore, we need to study the e�ect of
variation in starting speed and the hypothesis regarding
the stabilisation e�ect. Deriving upper bounds for the
rates of convergence, using Lyapunov arguments, will be
another direction for research. For that we may consider
a Lyapunov argument of the form:

Et = P (f − f∗) + 1

2
||x− x∗ + L ||2, (26)

where f∗ denotes the optimal value of the cost function
where {x∗ : f∗ = f(x∗)}, P (t, α) is the converger
to the scheme [26], with the hyper-parameter α and
L (x, ẋ, t) is a di�erentiable non-linear function. Such
a Lyapunov candidate might be used to estimate the
convergence rate whose upper bound is O( 1

P ), for
various geometrical considerations like the nature of
convexity of the cost function, only if Ėt < 0 [27].
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