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Abstract

Purpose – In this paper, a newly proposed hybridization algorithm namely constriction coefficient-based
particle swarm optimization and gravitational search algorithm (CPSOGSA) has been employed for training
MLP to overcome sensitivity to initialization, premature convergence, and stagnation in local optima problems
of MLP.
Design/methodology/approach – In this study, the exploration of the search space is carried out by
gravitational search algorithm (GSA) and optimization of candidate solutions, i.e. exploitation is performed by
particle swarm optimization (PSO). For training the multi-layer perceptron (MLP), CPSOGSA uses sigmoid
fitness function for finding the proper combination of connection weights and neural biases to minimize the
error. Secondly, a matrix encoding strategy is utilized for providing one to one correspondence between
weights and biases of MLP and agents of CPSOGSA.
Findings – The experimental findings convey that CPSOGSA is a better MLP trainer as compared to other
stochastic algorithms because it provides superior results in terms of resolving stagnation in local optima and
convergence speed problems. Besides, it gives the best results for breast cancer, heart, sine function and
sigmoid function datasets as compared to other participating algorithms. Moreover, CPSOGSA also provides
very competitive results for other datasets.
Originality/value – The CPSOGSA performed effectively in overcoming stagnation in local optima problem
and increasing the overall convergence speed of MLP. Basically, CPSOGSA is a hybrid optimization algorithm
which has powerful characteristics of global exploration capability and high local exploitation power. In the
research literature, a little work is available where CPSO and GSA have been utilized for training MLP. The
only related research paper was given by Mirjalili et al., in 2012. They have used standard PSO and GSA for
training simple FNNs. However, the work employed only three datasets and used the MSE performance metric
for evaluating the efficiency of the algorithms. In this paper, eight different standard datasets and five
performance metrics have been utilized for investigating the efficiency of CPSOGSA in training MLPs. In
addition, a non-parametric pair-wise statistical test namely theWilcoxon rank-sum test has been carried out at
a 5% significance level to statistically validate the simulation results. Besides, eight state-of-the-art meta-
heuristic algorithms were employed for comparative analysis of the experimental results to further raise the
authenticity of the experimental setup.
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1. Introduction
The neural network (NN) is one of the best computational tools used in the field of soft
computing. McCulloch and Pitts (1943) were the first who introduced a computational model
for neural networks. Currently, neural networks are quite popular among researchers.
Besides, NNs have the properties of mathematical simplicity, high efficiency and low
computational cost. There are different types of neural networks including recurrent neural
network (RNN) (Dorffuer, 1996), Kohonen self-organizing network (KSON) (Kohonen, 1990),
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feedforward neural network (FNN) (Bebis andGeorgiopoulos, 1994), and radial basis function
(RBF) (Park and Sandberg, 1993). FNN is the simplest neural network in which information
moves in a unidirectional manner from input to output nodes.

FNN is commonly classified into single-layer perceptron (SLP) and multi-layer perceptron
(MLP). In SLP, there is an input layer, only one hidden layer (if any), and output layer. At each
node, the product of input and weights is calculated. If the value is greater than the threshold,
then some action is taken. Moreover, SLP is preferred for finding linearly separable patterns
in data. On the other hand, MLP consists of an input layer, one or more hidden layer(s) and an
output layer. In fact, the sigmoid function is generally used as a fitness function in MLP
because of its continuous nature. Besides, MLP is utilized for the classification of data in
nonlinear systems.

There may be structural and modeling differences among different neural networks but
all of them have the common feature of learning. It is defined as the property of NNs to
perform a particular task by considering sample observations. The accuracy of results in NNs
is directly related to its learning capability. The learning is categorized into supervised and
unsupervised. In supervised learning, there is a one to one correspondence between inputs
and outputs. In fact, NN gets feedback from the fitness function regarding the quality of the
solutions. In contrast, unsupervised learning consists of input data, fitness function, and
output. Besides, NN adapts itself without a need for any supervisory feedback.

Previously, backpropagation (BP) and gradient descent methods have been readily
employed for training MLPs. It has been observed that BP has the advantages of
mathematical simplicity and high speed. But it suffers from the shortcomings of stagnation in
local minima (Gori and Tesi, 1992; Lee et al., 1993; Mangasarian and Wolberg, 1990) and
premature convergence (Fahlman, 1988; Ng et al., 2003; Vogal et al., 1988). Due to the above
drawbacks, BP has some issues in solving practical problems.

During the learning process, the weights and biases ofMLP aremodified to reduce the error
in training and testing samples. But it has been reported that MLP spends a large time in sub-
optimal regions of search space. In simpler terms, the training algorithm takes MLP towards
the local minimum rather than the global minimum. BP and other gradient descent algorithms
suffer from this problem. Researchers (Jacobs, 1988; Ooyen et al., 1992;Weir, 1991) have tried to
overcome stagnation in local minima, but the only small improvement has been carried out. In
contrast, heuristic algorithms have efficient local minima avoidance capability (Mirjalili et al.,
2013) and high convergence speed (Gudise and Venayagamoorthy, 2003) as compared to most
of the gradient descent algorithms including BP. Hence, heuristic techniques are a suitable
alternative for gradient descent algorithms in training MLPs (Branke, 1995; Yao, 1993).

In literature, there are many heuristic algorithms utilized for training MLPs such as
differential evolution (DE) (Llonen et al., 2003; Slowik and Bialko, 2008), ant colony
optimization (ACO) (Blum and Socha, 2005; Socha and Blum, 2007), genetic algorithm (GA)
(Whitney et al., 1990; Mirjalili et al., 2012), artificial bee colony (ABC) (Karaboga et al., 2007;
Ozturk and Karaboga, 2011) and particle swarm optimization (PSO) (Mendes et al., 2002;
Gudise and Venayagamoorthy, 2003). The recent additions in the list of stochastic training
algorithms include social spider optimization algorithm (SSO) (Pereira, 2014), teaching-
learning based optimization (TLBO) (Uzlu et al., 2014), biogeography based optimization
(BBO) (Mirjalili et al., 2014), symbiotic organisms search algorithm (SOS) (Wu et al., 2016),
glowworm swarm optimization (GSO) (Alboaneen et al., 2017) and improved PSO (Li, 2018).

In this paper, constriction coefficient based particle swarm optimization and gravitational
search algorithm (CPSOGSA) has been used for training MLP. It gets diversification power
from GSA and high exploitation capability from PSO. The CPSOGSA will be tested for
efficiency in avoiding stagnation in local minima and convergence speed. In this work, 9
standard datasets will be employed to benchmark the efficiency of CPSOGSA in
training MLP.
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The rest of the paper is structured as follows: Motivation regarding utilization of
CPSOGSA for FNN training is described in Section 2 while Section 3 provides a literature
survey of previous works in connection with MLP training using gradient descent and
heuristic algorithms. Moreover, Section 4 gives brief description of the FNN and Multi-layer
Perceptron (MLP). The CPSO, GSA, and CPSOGSA are explained in Sections 5, 6, and 7,
respectively. Section 8 introduces the CPSOGSA algorithm for MLP training. The
experimental analysis is covered in Section 9. Finally, Section 10 provides a conclusion
and future direction.

2. Motivation
Hybridization is the process of combining two or more techniques to resolve the issues of
participating algorithms and solve complex problems. The hybridization results in the increase
of performance and accuracy of the algorithms. The limitation of an algorithm is overcome by
the ability of others. The CPSOGSA is a hybrid optimization algorithm which has powerful
characteristics of global exploration capability and high local exploitation power. The
CPSOGSA gets diversification power from GSA which helps to search the whole problem
space. In simpler terms, more exploration power means minimum chances of getting stuck in
local minima. So, CPSOGSA has the intrinsic property of getting away from local minima.

In addition, CPSOGSA gets local exploitation power from the gbest operator of PSOwhich
helps to attract the optimal solutions towards the global minima. In other words, more
exploitation power means a high convergence rate. So, CPSOGSA has the capability of
finding the global minimum in fewer iterations and hence, providing high accuracy of results.

It has been reported that if an optimization algorithm has good exploration capability, then
itwill be lacking in good exploitation power andvice versa (Eiben and Schippers, 1998). In fact,
they are inversely proportional to each other. Every optimization algorithm faces this problem,
i.e. a particular technique may be having good randomization power but performs poorly in
finding the globalminimum. This issuemay be termed as “optimization balance glitch (OBG).”
However, CPSOGSA does not have an OBG problem because of its hybrid nature.

Furthermore, a little work is available in research literature where CPSO and GSA have
been utilized for training MLP. The only related research paper was given by Mijalili et al. in
2012. They have used standard PSO and GSA for training simple FNNs. However, the work
employed only three datasets and usedMSE performance metric for evaluating the efficiency
of the algorithms. In this paper, eight different standard datasets and five performance
metrics including a statistical test have been utilized for investigating the efficiency of
CPSOGSA in training MLPs.

3. Literature survey
The backpropagation (BP) algorithm is one of the first gradient descent techniques utilized
for training ANN. BP is a mathematical optimization technique that modifies the connection
weights of NN by calculating the differential coefficient of the activation function. Adaptive
CGA is one of the techniques in the BP family of algorithms. It has been used for resolving the
learning rate and momentum ratio problem of BP by introducing step length search during
the learning process. The efficiency of adaptive CGA has been tested by applying it to the
engineering domain and image classification problem (Adeli and Hung, 1994).

Marquardt algorithm (MA) is a least-square optimization technique that has been
employed for increasing the convergence speed of BP. The MA is benchmarked by using a
4-D function, 3-D function, 3-D Sinc function, square and sine wave datasets. The results of
MA are compared with the variable learning rate method and conjugate gradient algorithm
(Hugan and Menhaj, 1994).
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It has been seen that BP has the advantages of simplicity and high speed. However, it has
the shortcomings of stagnation in local minima and slow exploitation rate. To resolve the
aforementioned problems, researchers have introduced modified versions of BP. Magnified
gradient function (MGF) algorithm, basically amodified BP technique, has been employed for
overcoming the convergence speed issue of BP. The MGFmakes adjustments in the gradient
of a cost function which in turn enhances the global exploration of the NN. The proposed
algorithm was tested for efficiency on four nonlinear benchmarks including XOR problem,
5-bit counting problem, 3-bit parity and regression problems (Ng et al., 2003).

There have been attempts made by prominent researchers to modify the mathematical
formulation of BP to observe its effects on the performance of the algorithm. The experiments
have demonstrated that small modifications in the total error function of BP resulted in the
accelerated convergence speed of the NN (Ooyen et al., 1992).

The performance of BP is directly related to the architecture of the NN. Gori and Tesi
(1992) have proposed two mathematical theorems that have a direct impact on the network
structure and learning environment of BP. The simulation results have confirmed that
modified BP works comfortably with linear and non-linear separable problems. However, the
performance enhancement achieved is small as compared to standard BP.

Heuristic algorithms (HA) as compared to gradient descent techniques have the property
of randomness meaning they can initialize the search space with random candidate solutions.
Moreover, the fitness function is used to train the NN iteratively until a stopping condition is
met. The randomized iterative process makes HA less prone to entrapment in local minima
and convergence speed issues. Genetic Algorithm (GA) is the first evolutionary technique to
be used to train the NN. The various steps in GA include selection, reproduction,
recombination, and crossover. It has been reported that GA is less prone to stagnation in local
optima. This property of GA was employed to adjust the connection weights and biases of
NNs to find the new patterns in data (Whitley et al., 1990). Besides, Researchers like Itano et al.
(2018) have applied GA based MLP for the optimization of topology, bias, and weights
of ANN.

Most of the HAs are inspired by nature like PSO which is based on the group dynamics
of fishes and birds. It has three important variables including inertia factor (for
exploration), pbest (personal component) and gbest (global component) for exploitation.
The PSO was always popular among researchers due to its mathematical simplicity, easy
implementation, and usage. NNs were trained using PSO inwhich logistic cost functionwas
used to adjust the weights and biases for minimizing the threshold error. Classification and
regression datasets were employed to investigate the efficiency of PSO as compared to BP
(Mendes et al., 2002).

It has been verified by a number of studies that NNs have local minima and convergence
speed issues. However, HAs, on the other hand, have simple implementation and can easily
resolve the aforementioned issues of NNs. To support the above argument, levy flight
distribution based PSO combined with neighborhood search has been successfully employed
for MLP training to overcome exploitation and diversification shortcomings of FNNs. The
hybridmodel was benchmarked usingUCI classification datasets. However, the study lacks a
proper statistical analysis of the proposed hybrid model (Tarkhaneh et al., 2019).

Moreover, PSO is employed for training FNN to approximate the nonlinear function. The
results are compared with BP. The experimental results convey that PSO takes six times a
lesser number of iterations to find the global minimum (Gudise and Venayagamoorthy, 2003).

The researchers have also employed hybrid approaches for trainingNNs. Chen et al. (2015)
have embedded PSO and CS (Cuckoo Search) algorithms as a learning mechanism for MLP
training. In the hybrid algorithm, PSO is used for exploitation whereas CS performs global
search of the solution space. Moreover, function approximation and classification datasets
were considered for benchmarking the hybrid algorithm.
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The randomization and intensification capabilities of GSA and PSO respectively were
applied for training FNN. In fact, GSA is efficient in searching for the problem space globally
and is less prone to local minima issues. Furthermore, PSO is known for its high convergence
power due to its gbest and pbest operators. Hybrid GSA and PSO have been employed for
training FNN by employing the multiple number of hidden layers. The performance of the
hybrid algorithm was investigated using classification and function approximation datasets
(Mirjalili et al., 2012).

Similarly, Zhang et al. (2007) have framed a hybrid model consisting of PSO and BP
algorithms to train FNN. The PSO carries out a global search while BP helps in the
convergence of agents towards the global optimum. The hybrid PSOBP approach was
applied to three bits parity, classification and function approximation benchmarks. The
simulation results indicate the efficient performance of the PSOBP algorithm as compared to
adaptive PSO and BP classifiers. However, the limitation of the study is that they have used
only two algorithms for comparative analysis and no statistical test was carried out to
statistically validate the results.

ACO is another specialized HA inspired from the group behavior of real ant colonies. It
was invented to solve discrete and combinatorial optimization problems. In addition, ACO is
also efficient in working out solutions for continuous computational problems. ACO is
efficiently employed to train FNN for solving pattern recognition problems. Different
classification datasets including heart, diabetes and cancer from UCI repository were used as
benchmarks to test the efficiency of ACO against GA, BP and LM (Socha and Blum, 2007).

From the perspective of stochastic algorithms, ABC is an intelligent technique inspired by
the swarm behavior of honey bee colonies. It was proposed by Karaboga (2005) to solve
numerical optimization problems. It has the properties of simplicity, robustness and
stochasticity. Moreover, FNN has been trained using ABC in which different nonlinear
datasets including XOR, 3-bit parity and encoder-decoder problems were utilized to test the
performance of ABC. The experimental results were compared with GA, BP and LM
algorithms (Karaboga et al., 2007).

DE is another evolutionary technique that finds the global minimum of the problem by
iteratively improving the solution quality of searching agents. It was proposed by Storn and
Price (Llonen et al., 2003) for solving real-valued numerical optimization problems. In the case
of training FNN, DE has been utilized for searching the problem space to find the optimal
candidate solutions. It has been reported that DE has not any appreciable edge in terms of
performance over gradient descent algorithms. The experimental results on various
classification datasets supported the above statement (Llonen et al., 2003).

Furthermore, an adaptive selection strategy has been introduced in DE to resolve the issue
of stagnation in local minima of error BP. In the modified DE, the focus was on the proper
utilization of searching agents to adjust the FNN weights. The results were compared with
LM, error BP and evolutionary algorithm ANN (Slowik and Bialko, 2008).

Recently, CFO has been introduced into the family of HAs. It is a physics-based intelligent
technique that supports deterministic behavior. It uses probes as agents to explore the search
space. In the case of training NN, CFO shows promising results by solving the XOR problem
and Iris classification dataset with high performance. The simulation results indicate CFO
provides competitive values for fitness function in reducing threshold error as that of PSO
(Green et al., 2011).

From the perspective of HAs, the SSO algorithm is an intelligent technique inspired by the
swarm behavior of spiders. The search space consists of candidate solutions in the form of
spiders moving in the communal web. The interesting feature of SSO is that the female
population (70–90%) is more than the male population (20–30%). The global minimum of the
agent system is the position of the spider in the problem space. Pereira et al. (2014) have
recently employed SSO for training MLP and solved Parkinson’s disease identification
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dataset with high performance. Moreover, Mirjalili et al. (2015) have also used the SSO
algorithm to train FNN for pattern recognition. They utilized five classification datasets such
as breast cancer, iris, balloon, XOR and heart for testing the efficiency of the SSO algorithm.
Besides, the statistical results of SSO were compared with PSO, GA, ACO, PBIL and ACO
algorithms.

It has been observed that classification datasets specifically heart, breast cancer, Iris and
function approximation benchmarks such as sine, cosine, and sphere functions were utilized
for investigating the performance of deterministic gradient descent algorithms like BP and
stochastic intelligent techniques such as GA and PSO. In a similar pattern, CRO – a newmeta-
heuristic method based on the interaction and transition of molecules in a reaction – has been
benchmarked for training MLP using classification datasets. The simulation results show
that CSO gives efficient results for iris andWisconsin breast cancer datasets while providing
competitive values for Pima Indian diabetes dataset (Yu et al., 2011).

In the field of meta-heuristics, it can be seen that the majority of the algorithms are nature
or evolution inspired and only a few aremotivated from the physical and chemical sciences. In
the former category, CSS is a physics-based optimization techniquemimicking the interaction
model of the charged particles in the electrical field. The searcher agents are electrostatic
charges obeying coulombs, gauss and Newton’s laws. Recently, CSS was applied to non-
technical losses problem in power systems by training MLP. The accuracy rates of CSS were
more as compared to BP (Perira et al., 2013). Likewise, GSA is another physics-based
stochastic algorithm inspired by Newton’s law of universal gravitation. Adaptive best mass
GSA has been combined with BP to classify iris, lenses, and sonar datasets. The hybrid
approach uses convergence speed, fail probability, and recognition rate as performance
measures. The simulation results are compared with traditional GSA, BP, GA and PSOGSA
(Mosavi et al., 2019).

The stochastic techniques have been applied to almost all areas of computer science.
However, computer vision and data mining were attractive areas for meta-heuristics. In the
field of computer vision, image segmentation is an active area of research. IWO, is a HAbased
on the colonizing aspect of agricultural weeds have been applied to find defects in potato color
images by training MLP. In fact, in the hybrid approach, IWO is used for global search and
MLP is employed for handling constraints of the problem. The experimental results indicate
the efficient performance of IWO as compared to traditional BP (Moallem and
Razmjooy, 2012).

Researchers namely Uzlu et al. (2014) applied the TLBO (Teaching Learning-based
optimization) algorithm, a global searching method based on the teacher-student model of
instruction; to forecast the energy consumption in Turkey. They used an import, export and
population data as input for the study. The MLP trained by TLBO gave energy predictions
that were close to the projections given by the Turkish ministry of development.

Magnetic optimization algorithm (MOA), a stochastic method based on the law of
magnetic field has been applied to train MLP for calculation of XOR bit values and
approximation of sine wave curve (Mirjalili and Sadiq, 2011). Likewise, moth-flame
optimization (MFO) algorithm is another HA inspired by the traversal and spiral path
orientation of moths. RBF neural networks were trained usingMFO for pattern recognition
in binary classification datasets (Faris et al., 2017a). Recently, Faris et al. (2016a) trained NN
by using lightning search algorithm (LSA). It has been seen that LSA has good exploration
and exploitation capabilities. These merits of LSA were utilized to overcome entrapment in
local minima and convergence issues of NNs. Moreover, 16 classification datasets were
used for performance analysis and the Wilcoxon rank-sum test was employed to
statistically validate the experimental results. In the line of stochastic algorithms, monarch
butterfly optimization (MBO) algorithm is based on the population behavior of monarch
butterflies while migrating from Canada to the USA and Mexico. The researchers have
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applied Improved MBO trained MLP to 12 UCI datasets and compared simulation results
with other HAs. The statistical results depict the optimal performance of IMBO (Faris et
al., 2017b).

Similarly, Krill Herd (KH) algorithm has also been effectively exploited for MLP training
for finding useful patterns from the classification datasets. Different performance metrics
were used for checking the efficiency of the algorithms like classification error, the sum of
square errors, and computational time. The simulation results of KH were compared with
Heuristic Search, BP and GA (Kowalski et al., 2016).

BBO is inspired by the biological distribution of organisms in a particular habitat. It
consists of emigration, immigration, and mutation operators for exploration and
exploitation, respectively. Mijalili et al. (2014) have employed it to train MLP to overcome
the shortcoming of local minima entrapment and slow convergence speed of MLPs. The
various classification and function approximation datasets were utilized for performance
evaluation. It is a fact that radial basis function (RBF) networks are readily used NNs
having simple structure, high learning speed, significant noise tolerance level and very
good approximation power. RBFmainly uses the Gaussian activation function for training.
Alijarah et al. (2018) for the first time used one of the highly regarded HA, that is, BBO for
training RBF neural network. They utilized 12 datasets for performance evaluation while
11 different optimization algorithms were employed for comparative analysis. In another
study, a chaotic version of BBO has also been used as a learning method to train MLP to
optimize NN weights and neural biases. Classification datasets like balloon, iris, heart, and
vehicle were utilized for performance evaluation. The comparative analysis of the
experimental results of Chaotic BBO was done with standard BBO, GSA, and PSO (Pu
et al., 2018).

GWO is a new addition in the list of stochastic algorithmsmotivated by the group conduct
and hunting skills of forest wolves. MLP was trained using GWO for solving pattern
recognition and function approximation problems. The results were compared with PSO and
GA for efficiency and classification accuracy (Mijalili, 2015). Besides, Amirsadri et al. (2017)
have embedded GWO with levy flight distribution and BP for training MLP in order to
resolve entrapment in local minima issue of NNs. In the hybrid GWOBP approach, GWO
carries out a global search while BP provides local searching support. The performance
evaluation includes comparative analysis with other stochastic algorithms, benchmarking
with classification and function approximation datasets. In another work, researchers have
hybridized GSA, GWO and BBO for MLP training. The embedded approach was used to
predict forest fires in Vietnam (Bui et al., 2018).

In related work, the SOS algorithm was applied to pattern recognition task by training
MLP. Different UCI repository classification datasets were consulted to benchmark the
efficiency of SOS (Wu et al., 2016). Similarly, Whale Optimization Algorithm (WOA) is a
recent HA inspired by the hunting tactics and feeding behavior of humpback whales. WOA
has been utilized for FNN training due to its advantages of high convergence speed and local
minima avoidance capability. Moreover, 20 different datasets were used to benchmark the
efficiency of WOA. Also, six optimization algorithms like BP, GA, PSO, DE, ACO and PBIL
(population based incremental learning) were considered for comparative analysis (Alijarah
et al., 2016).

Multi-verse optimizer (MVO) is a Cosmology inspired algorithm. It utilizes three concepts
such as wormhole, whitehole and blackhole for local search, diversification, and
intensification of the solution space. It has been quite successfully employed for training
FNNs in order to accurately classify 9 UCI medical datasets. Moreover, the experimental
results of MVO were classified with DE, GA, PSO, CS and FF (FireFly) algorithms. Also, the
simulation results convey the optimal performance of MVO as compared to other HAs (Faris
et al., 2016b).
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Also, glowworm swarm optimization (GSO) algorithm is an HA inspired by the swarm
behavior of glowworms. The glowworms act as agents in the solution spacemoving from one
place to another to find the best solution. GSO acts as a learning algorithm to train the MLP
for the classification of feature vectors of datasets including XOR, breast cancer, liver
disorder and vertebral column. Moreover, GSO has been compared with BBO, GA, and MVO
algorithms for classification accuracy (Alboaneen et al., 2017). Furthermore, Li (2018) has
applied an improved version of PSO on the CEC 2014 test benchmarks to find the global
optimum. Besides, MLPwas trained to investigate the efficiency of the proposed algorithm in
handling complex search spaces.

In very recent work, Li et al. (2018) have used spotted hyena optimization algorithm
(SHOA) to train FNN. Basically, they have used it to overcome the local minima problem of
FNNs. Moreover, SHOA has been applied to the heart classification dataset consisting of
SPECT images. The statistical results depict SHOA is efficient as compared to GWO, HS
GGSA, and DE. Likewise, grasshopper optimization algorithm (GOA) is another HA inspired
from the group behavior of the nature grasshoppers. The GOA is known for its high global
searching capability. Heidari et al. (2018) have applied GOAMLP for pattern recognition. The
experimental results depict the efficient performance of the proposed method.

Similarly, bird swarm optimization (BSO) is a new stochastic algorithm inspired by the
foraging and vigilance behavior of birds. The BSOMLP training model was benchmarked
using 3 function approximation and 13 pattern recognition datasets. Besides, the reactor
dataset was employed to test the practical applicability of the hybrid framework (Alijarah
et al., 2019). Also, Zhao et al. (2019) trained MLP using Modified Selfish Herd Optimization
(MSHO) algorithm. It has been seen that MSHO has good exploration and convergence
properties. MSHOMLP was applied to UCI classification datasets and compared with six
swarm optimization algorithms.

Table 1 depicts the summary of the literature survey regarding the utilization of gradient
descent (GD) and evolutionary algorithms in training MLP. From the literature survey, it is
clear that HAs are efficient learning algorithms in training MLPs while gradient descent
algorithms such as BP and LM also have appreciable convergence speed in finding the global
optimum. However, gradient descent algorithms (GD) face the entrapment in local minima
issue which makes them unsuitable for training FNNs. However, it is recommended to use
GD algorithms with HA in which exploitation will be done by GD and exploration by HA.
Also, HAs have the properties of avoiding entrapment in local minima, fast convergence
speed, and less sensitivity to initialization which makes them ideal and preferred for MLP
training. Besides, when applied to classification datasets such as breast cancer, heart, iris and
XOR problem and function approximation datasets such as sine wave, square function and
cosine function provide high recognition rate and accuracy of results. In this work, we have
used a hybrid CPSOGSA stochastic algorithm as a learning mechanism to train MLP. The
CPSOGSA has powerful global exploration capability due to GSA which helps to search the
whole solution space in less computational time and hence, minimum chances of getting stuck
in the local minima. Also, it has appreciable exploitation power due to CPSO which enhances
its convergence speed and hence, high probability of finding the global optimum. The
aforementioned properties of CPSOGSAmakes it capable to handle easily entrapment in local
minima and resolve convergence issues of the MLPs. Moreover, CPSOGSA will be tested for
its efficiency in optimizing connection weights and neural biases of MLP and also
minimization of the threshold error of MLP activation function.

4. FNN and multi-layer perceptron (MLP)
FNN are those NNs in which computational information is unidirectional, i.e. from input to
output. There are three layers present in a basic model of FNN which are the input layer,
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Literature Year Training Algorithm Nature of Proposed Dataset Employed
Reference Method

Whitley et al. 1990 GA Stochastic Weight and Bias Adjustment
Ooyen et al. 1992 Error BP Gradient descent Convergence Speed Analysis
Gori and Tesi 1992 Modified BP Gradient Descent Linear and Non-Linear Dataset
Adeli and Hung 1994 Conjugate gradient Gradient Descent Engineering and Image

Algorithm Classification Benchmarks
Hugan and Menhaj 1994 MA Gradient Descent Function Approximation
Mendes et al. 2002 PSO Stochastic Regression problem
Llonen et al. 2003 DE Stochastic Classification problem
Gudise et al. 2003 PSO Stochastic Convergence Analysis
Ng et al. 2003 BP with modified Gradient descent XOR, 3- bit counting

gradient function Parity bit and Regression
Blum et al. 2005 ACO Stochastic UCI ML Datasets
Zhang et al. 2007 PSOBP Gradient Descent and

Stochastic
Function Approximation and
Classification Benchmarks

Karaboga et al. 2007 ABC Stochastic XOR, parity and Enc-Dec
Slowik et al. 2008 DE Stochastic Weight and Bias Adjustment
Ozturk et al. 2011 ABC-LM Stochastic and XOR, 3-parity and 4-Enc-Dec

Gradient Descent
Green et al. 2011 CFO Stochastic XOR, Iris
Yu et al. 2011 CRO Stochastic Iris, Breast Cancer, Diabetes
Mirjalili et al. 2011 MOA Stochastic XOR, Sine function
Moallem et al. 2012 IWO Stochastic Image Segmentation Problem
Mirjalili et al. 2012 PSOGSA Stochastic Classification and Function

Approximation
Pereira et al. 2013 CSS Stochastic Non-Technical Loss Problem
Pereira et al. 2014 SSO Stochastic Parkinson Disease Identification
Uzlu et al. 2014 TLBO Stochastic Import, Export, and Population
Mirjalili et al. 2014 BBO Stochastic Classification and Function

Approximation
Mirjalili et al. 2015 SSO Stochastic 5 Classification Datasets
Chen et al. 2015 PSOCS Stochastic Function Approximation and

Classification Datasets
Mirjalili 2015 GWO Stochastic Classification and Function

Approximation
Faris et al. 2016 LSA Stochastic 16 Classification Datasets
Wu et al. 2016 SOS Stochastic Pattern Recognition Problem
Faris et al. 2016 MVO Stochastic 9 UCI Medical Datasets
Alijarah et al. 2016 WOA Stochastic 20 Classification Datasets
Kowalski et al. 2016 KH Stochastic Classification Datasets
Faris et al. 2017 MFO Stochastic Pattern Recognition
Alboaneen et al. 2017 GSO Stochastic XOR, Breast Cancer, Liver

Disorder, Vertebral Column
Faris et al. 2017 MBO Stochastic 12 UCI Datasets
Amirsadri et al. 2017 GWOBP Gradient Descent and Classification and Function

Stochastic Approximation Datasets
Li 2018 Improved PSO Stochastic Classification Datasets
Li et al. 2018 SHOA Stochastic SPECT Heart Dataset
Alijarah et al. 2018 BBO Stochastic 12 Classification Datasets
Bui et al. 2018 GSA, GWO, and BBO Stochastic Forest Fire prediction Problem
Pu et al. 2018 CBBO Stochastic 4 Pattern Recognition Datasets
Heidari et al. 2018 GOA Stochastic Pattern Recognition
Itano et al. 2018 GA Stochastic Classification Datasets
Mosavi et al. 2019 GSABP Gradient Descent and Function Approximation and

Stochastic Classification Benchmarks
Tarkhaneh et al. 2019 PSO Stochastic Pattern Recognition Datasets
Alijarah et al. 2019 BSO Stochastic 3 Function Approximation and

13 Classification Datasets
Zhao et al. 2019 MSHO Stochastic Classification Problem

Table I.
Summary of the

Literature related to the
training of MLP by

gradient descent
and HAs
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hidden layer, and an output layer. In fact,MLP is themost commonly used and famous type of
MLP. It consists of at least one input layer, one or more hidden layer(s) and an output layer. A
simple model of MLP is shown in Figure 1.

In Figure 1, it can be noted that “n” is the number of input vertices, “h” denotes hidden
vertices, and “m” represents the number of output vertices. Generally, the fitness function is
used to calculate the error in the actual and desired output ofMLP. Here, the fitness function is
mathematically calculated as follows:

The first two layers of MLP consist of weights and biases. The weighted (w) sum of inputs
(x) is mathematically represented in Equation (1).

sp ¼
Xn

i¼1

wip:xi � fp; p ¼ 1; 2; . . . h (1)

In Equation (1), fp is the bias of the hidden vertex of the MLP.
It has been reported that hidden vertices are important for increasing the result accuracy

in MLP. Normally, sigmoid function acts as activation function in MLP and is calculated as:

Sp ¼ sigmoidðspÞ ¼ 1

1þ expð−spÞ; p ¼ 1; 2; . . . ; h (2)

Now, the actual output of MLP is mathematically shown in Equation (4).

ol ¼
Xh

i¼1

wpl$sp � fl ; l ¼ 1; 2; . . . ;m (3)

Ol ¼ 1

1þ expð−olÞ; l ¼ 1; 2; . . . ;m (4)

In Equation (4), fl is the threshold of the output layer.
It is obvious fromEquations (1) and (3) that theweights and biases are pivotal components

of MLP. In fact, the sole goal of MLP training is to find the best results for connection weights
and biases. In this paper, CPSOGSA has been utilized to achieve the optimal values for
weights, biases and activation function by training MLP.

5. Constriction coefficient based PSO
In PSO, the candidate solutions are in the form of particles. It consists of three important
operators which are inertiaweight (w), pbest (personal particle best) and gbest (global particle
best). The inertia weight provides diversification (exploration) and (pbest and gbest) gives
intensification (exploitation) power to PSO, respectively. The mathematical equations of
position and velocity of the swarm particles are given in Equations (5) and (6).

s1

o1

om

sh

x1

xnFigure 1.
Basic 2 layer model
of MLP
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xdi ðt þ 1Þ ¼ xdi ðtÞ þ vdi ðt þ 1Þ (5)

vdi ðt þ 1Þ ¼ wðtÞ$vdi ðtÞ þ c1ri1
�
pbesti � xdi ðtÞ

�þ c2ri2
�
gbest� xdi ðtÞ

�
(6)

where (c1; c2) are cognitive and social constants and (ri1, ri2) are the probabilistic numbers in
closed interval [0,1].

The constriction coefficient based PSO was mathematically formulated by Clerc
and Kennedy (2002) after doing rigorous algebraic and Eigenvalue (search procedure)
analysis of the classical PSO. The main goal of CPSO is to control the
particles from going outside the search space and thus, increasing the convergence of
the particles towards pbest and gbest. The various CPSO parameters and their values
are given as:

w1 ¼ 2:05; w2 ¼ 2:05; w ¼ w1 þ w2

K ¼ 2
��

w � 2þ sqrt
�
w2 � 4

��
(7)

where (w;w1;w2) are control parameters and their values are important for controlling the
particle trajectory. Moreover, “K” is the constriction coefficient which is pivotal for particle
convergence towards the global optimum.

Also, when w(t) 5 K, c1 5 K w1 (personal learning coefficient) and c2 5 K w2 (global
learning coefficient); the velocity Equation (6) in modified form is given in equation (8).

vdi ðt þ 1Þ ¼ �
2
��

w � 2þ sqrtðw2 � 4w
�Þvdi ðtÞ þ Kw1ri1

�
pbesti � xdi ðtÞ

�þ Kw2ri2
�
gbest

� xdi ðtÞ
��

(8)

Equation (8) shows the velocity of the particles is inversely proportional to the control
parameter, w. Also, the value of wmust be greater than 4 (w > 4Þ for maintaining the stability
in the particle system.

6. Gravitational search algorithm (GSA)
According to modern physics, nature is composed of four forces such as the gravitational
force, the strong nuclear force, the electromagnetic force and the weak nuclear force. As per
classical Newtonian mechanics, gravitational law is stated as “the gravitational force
between two masses is directly proportional to the product of their masses and inversely
proportional to the square of the distance between them” (Halliday et al., 2000; Rashedi et al.,
2009; Rather et al., 2019a, 2019b).

Let X 5 fx1; x2; x3 . . . ; xng be a system with “n” agents, such that xi ∈Rn. The force
between mass i and j is shown in Equation (9).

Fij ¼ GðtÞmpiðtÞmajðtÞ
RijðtÞ þ ∈

�
xdj ðtÞ þ xdi ðtÞ

�
(9)

Here,mpiðtÞ is passive gravitational mass andmajðtÞ is active gravitational mass. Moreover,
RijðtÞis the Euclidian distance and ∈ is a positive constant in dth dimensional space.

The gravitational constant “G” is important for adjusting the accuracy of the search and is
given by Equation (10).
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GðtÞ ¼ Gðt0Þ eð−α CI
MIÞ (10)

whereG (t) is the gravitational constant with respect to time interval t, α is a coefficient which
decreases with time, CI is the current iteration, MI is the maximum number of iterations, and
G (t0) indicates the initial value of the gravitational constant.

Moreover, the calculation of total force exerted on the system due to masses can be
calculated using Equation (11).

Fd
i ðtÞ ¼

Xm
j¼1;j≠ i

γjFij (11)

where γjbelongstto [0 1].
According to the second law of motion, “The acceleration (adi ðtÞ) of the agent is directly

proportional to the force (Fd
i ðtÞ) applied by the agent and inversely proportional to the mass

(miðtÞ) of the agent.” It is calculated using Equation (12).

adi ðtÞ ¼
Fd
i ðtÞ

miðtÞ (12)

To find the global optimum, it is important to calculate the position and velocity of the heavy
mass. These can be represented mathematically as in Equations (13) and (14), respectively.

vdi ðt þ 1Þ ¼ γjv
d
i ðtÞ þ adi ðtÞ (13)

xdi ðt þ 1Þ ¼ xdi ðtÞ þ vdi ðt þ 1Þ (14)

7. CPSOGSA: hybrid heuristic algorithm
The main purpose of hybrid CPSOGSA is to use the exploration capabilities of the
gravitational search algorithm (GSA) and convergence power of constriction coefficient
based particle swarm optimization (CPSO) (Rather et al., 2019c). Moreover, randomization is
necessary for preventing CPSOGSA from getting stuck in local optima and intensification
increases possibilities in attracting optimal candidate particles towards the global minimum.
Hence, CPSOGSA supports both randomization and intensification which are necessary to
solve an optimization problem. The merging equation that combines both the algorithms is
given in Equation (15).

Vd
i ðt þ 1Þ ¼

�
2
.�

w � 2þ sqrtðw2 � 4
�ÞVd

i ðtÞ þ Kw1ri1
�
adi ðtÞ � xdi ðtÞ

�
þ Kw2ri2

�
gbest� xdi ðtÞ

�� (15)

where Vd
i is the velocity of the swarm particles, <w;w1;w2> are control parameters, K is the

constriction coefficient, adi is the acceleration of the particles and gbest represents the social
capability component of the particle system.

The position of the particles is given by Equation (16).

Xd
i ðt þ 1Þ ¼ Xd

i ðtÞ þ Vd
i ðt þ 1Þ (16)

The pseudo-code of CPSOGSA is as follows:
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Algorithm 1. CPSOGSA Algorithm

The flowchart of CPSOGSA hybrid algorithm is shown in Figure 2.

8. CPSOGSA for training MLP
In MLP, weights and biases are pivotal variables. A learning algorithm should provide
optimal values for these variables because their values are directly related to the accuracy of
the MLP. During the training process of MLP, weights and biases are depicted in the form of
candidate solutions (searcher agents), that is, encoding. In literature, there are three encoding
strategies mentioned which are vector, binary, and matrix. When agents are encoded as
vectors it is called vector encoding. Moreover, bit encoding deals with representing agents
with 0 and 1-bit values. Furthermore, matrix encoding depicts agents in the form of rows and
columns of a linear matrix.

There are three methods of using stochastic algorithms as trainers for MLP. The first
method involves finding proper values for weights and biases to reduce threshold error. Here,
the structure of theMLP is fixed.Moreover, HAs are also used to find the optimal structure for
MLP. In addition, stochastic algorithms are utilized for parameter tuning such as momentum
and training speed of MLPs.

Randomized Initialization of Search Space

Fitness Function Evaluation

Update Gravitational Constant, G (t)

Calculate Mass and Acceleration for each Agent

Update Velocity (V  (t + 1)) and Position (X   (t + 1))

Reached Maximum
Number of
Iterations

Return Best Solution
Yes

No

d
i

d
i

Begin
Initialize the search space randomly in an ‘n’ particle system as:

X = { 1, 2, 3 … , }

V = { 1, 2, 3 … , }

While (all particles update position) do
Update the Gravitational Constant, (t) using Equation (10).

Find the Gravitational force, ( ) by utilizing Equation (11).                 

Calculate the Acceleration, ( ) with the help of Equation (12).

Update the Velocity: ( + 1) by making use of Equation (15).

Update agent Positions: ( + 1) using Equation (16).

Until the completion of the maximum number of iterations

End While
Return the best candidate solution

End

Figure 2.
Hybrid CPSOGSA

algorithm

A hybrid
CPSOGSA for
training MLP

141



In this paper, matrix encoding has been employed to encapsulate weights and biases of MLP
to CSPOGSA agents. The matrix encoding scheme can be explained by considering the MLP
as shown in Figure 3.

Particle ð:; :; iÞ ¼ �
w1; b1;w

0
2; b2

�
(17)

w1 ¼
2
4w13 w23

w14 w24

w15 w25

3
5; b1 ¼

2
4 θ1
θ2
θ3

3
5 ; w

0
2 ¼

2
4w36

w46

w56

3
5 ; b2 ¼ ½θ4� (18)

where w1 and w2 are weight matrices of hidden and output layers, respectively. Moreover, w’
2

is the transpose of w2:Also, b1 and b2 are bias matrices of hidden and output layers.
The chief aim of MLP is to find the highest prediction accuracy. The standard

performance metric for evaluating the efficiency of MLP is Mean Square Error (MSE). The
MSE calculates the difference between the actual and desired output of MLP as shown in
Equation (19).

MSE ¼
Xm
i¼1

�
oli � Dl

i

�2

(19)

where o is the actual output and D the desired output of the MLP for input i and lth training
sample.

Besides, the efficiency of the MLP is related to its modeling of the entire set of training
specimens. Therefore, the mean of MSE is calculated to cover all training feature vectors. It is
mathematically represented as shown in Equation (20).

AverageðMSEÞ ¼
XR
l¼1

Pm

i¼1

�
oli � Dl

i

�2

R
(20)

Here, “R” is the number of training feature vectors.
Hence, the problem of training MLP by CPSOGSA can be mathematically modeled as

shown in Equation (21).

Minimize : FðParticleÞ ¼ AverageðMSEÞ (21)

The whole process of MLP training using CPSOGSA is diagrammatically depicted in
Figure 4.
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Figure 3.
MLP with 2 Inputs, 3
Hidden Layers, and 1
output Layer (2-3-1)
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The CPSOGSA has been applied to different classification and function benchmarks. The
next section will present the experimental results of CPSOGSA and other HAs.

9. Results and discussion
The efficiency of the CPSOGSA algorithm has been investigated by utilizing classification
and function approximation datasets. The UCI classification datasets (Blake et al., 1998)
including XOR, Iris, Heart, Balloon and Breast Cancer were used to test the recognition
capability of CPSOGSA. Moreover, Sine, Sigmoid and Cosine function datasets will test the
approximation power of CPSOGSA.

9.1 Experimental setup and data sets used
The CPSOGSA has been compared with eight state-of-the-art heuristic algorithms including
Standard GSA (Rashedi et al., 2009), PSO (Clerc and Kennedy, 2002), BBO (Mirjalili et al.,
2014), DE Llonen et al., 2003, ACO (Socha and Blum, 2007), DA (Mirjalili, 2015), SCA (Mijalili,
2016) and SSA (Mijalili et al., 2017) for overcoming stagnation in local minima problem,
classification accuracy and error rate analysis. For a fair comparison, all the algorithms were
initialized with the same number of searcher agents.

The experiment is conducted on a system having 64-bit operating system, 2.2 GHz Intel@
core processor and 4GB RAM. Further, the implementation of the algorithms and datasets
has been done using MATLAB R2013a. The source codes are publicly available on Github,
i.e. https//:github.com/SAJADAHMAD1.

The particles are initialized in a randomized way with a range of ½−10; 10�. Besides, all
algorithms are having the same population size of 20. Themaximum iteration(s) is selected as
a stopping criterion for getting a global minimum. Moreover, the maximum iterations are 100
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for XOR, Sigmoid, Iris, and cosine datasets; 60 for Balloon while 50 for Breast Cancer, Heart
and Sine datasets.

The specification of classification and function approximation datasets are provided in
Table 2 and Table 3, respectively. In Table 2, it can be observed that the XOR dataset has the
minimum number of training (8) and testing instances (8). On the other hand, the Heart
dataset has the maximum number of attributes (22) and test instances (187). Moreover,
Table 2 indicates that the sigmoid function has 61 instances for training MLP and 121 for
testing MLP. The sigmoid dataset is a simple approximation dataset in terms of sample size
while the Sine function dataset is difficult having 126 training and 252 testing instances.

The algorithms were repeated over 10 independent runs. The mean (or, average), standard
deviation (SD), andmedian of 10 independent trials are reported. Further, theminimumvalue of
mean and SD shows that the algorithm has more capability as compared to others in resolving
stagnation in the local minima problem. It is not enough to calculate the mean and SD of
algorithms over 10 independent runs to declare a particular algorithm as efficient (Derrac et al.,
2011). Rather, a statistical test should be conducted for a fair comparative analysis ofHAs. In this
paper, the non-parametric statistical test namely the Wilcoxon Rank sum test has been carried
out at a 5% significance level. In this test, p-values are calculated for every algorithm. Generally,
p-values less than 0.05 are enough todisprove the null hypothesis.When theparticular algorithm
hasminimummean andSDvalues, it shows itwill not be comparedwith itself and is represented
in tables byN/A, i.e. “NotApplicable.” In addition, the bestMSEvalues are highlighted in a italic
fontandp-valuesgreater than0.05areunderlined to indicate thecompetitivenessof thealgorithm
with the best one. In short, the null hypothesis consists of an algorithm havingminimum values
for mean and standard deviation i.e. p-values less than 0.05. On the other hand, the alternate
hypothesis consists of the algorithm(s) having p-values greater than 0.05. Simply mean and
standard deviation values are close to the best performing algorithm.

The other performance metrics reported in the simulation results are average
classification and test error rates. Besides, the datasets having different ranges for
attributes are normalized using min-max normalization. It is mathematically formulated as
shown in Equation (22).

Y
0 ¼ ðy� pÞ3ðs� rÞ

ðq� pÞ þ r (22)

such that y belongs to the closed interval from [a,b] to [c,d].

Dataset Attribute Training sample Test sample Class MLP structure

XOR 3 8 8 2 3-7-1
Baloon 4 16 16 2 4-9-1
Iris 4 150 150 3 4-9-3
Breast Cancer 9 599 100 2 9-19-1
Heart 22 80 187 2 22-45-1

Dataset Training sample Test sample MLP structure

Sigmoid : q ¼ 1
ð1þe�pÞ 61: p∈ ½−3 : 01 : 3� 121: p ∈ [–3:0.05:3] 1-15-1

Cosine : q ¼
	
cosðpπ2



7 31: p ∈ [1.25:0.05:2.75] 38: p ∈ [1.25:0.04:2.75] 1-15-1

Sine: q 5 sin (2p) 126: p∈ ½−2π : 0:1 : 2π� 252: p∈ ½−2π : 0:05 : 2π� 1-15-1

Table 2.
UCI repository
datasets for
classification

Table 3.
Description of function
approximation
datasets
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Another important element for getting proper simulation results is the structure of MLP.
The number of hidden nodes (h) is calculated by using Equation (23).

h ¼ 23nþ 1 (23)

where n is the number of MLP input(s).
All optimization algorithms are first initialized before going through the various phases of

iterations. They have different parameters that should be first initialized. Table 4 shows the
initial values of 9 participating algorithms in this study. The initial values of all algorithms
are according to their traditional default versions, i.e. values used by the authors who have
proposed the algorithms. Let us take the example of PSO. Table 4 depicts C1, C2, Wmax, and
Wmin parameters of PSO having values of 2, 2, 0.9, and 0.2, respectively. Every researcher in
the swarm optimization field knows that personal and social constants of PSO have a value of
2 because it shows more suitable results on these values. Similarly, parameters for other
algorithms were selected considering the stability and fairness of the experimental setup.

The remaining part of the paper dealswith statistical and simulation analysis of the UCI datasets
and function approximation benchmarks by employing nine different HAs including CPSOGSA.

9.2 Classification problems
The classification benchmarks were selected in increasing levels of complexity meaning if a
benchmark is having more number of features then it is difficult for an algorithm to classify
the attributes of a dataset. In simpler terms, the size of MLP is directly related to the number
of inputs (weights and biases). Besides, for a larger MLP, it is quite difficult for an algorithm
to find correct values for weights and biases. So, the XOR dataset is the simplest recognition
benchmark; while the Heart dataset is the strenuous classification benchmark. The
simulation results of various UCI classification datasets are presented and discussed in the
following sub-sections.

9.2.1 XOR dataset. It is a non-linear separable problem which makes it impossible to solve
without using a hidden layer(s). Themain goal of the XORproblem is to find the number of 1’s
in the input. In a simple XOR truth table, if the number of 1’s is odd, then the output is 1 else
0 as shown in Table 5.

Algorithm Name of the parameter Value of the parameter

GSA Elitist Check (Number of Fittest Agents after Stopping Criterion) 1
Rpower (Exponent of Distance between Agents) 1
Min_flag (1: Minimum; 0: Maximum) 1

PSO C1, C2 (Personal and Social Constants) 2
Wmax (Maximum Inertia Weight) 0.9
Wmin (Minimum Inertia Weight) 0.2

CPSOGSA w1, w2 (Control Parameters) 2.05
ACO Pheromone Update Constant 1

Initial Pheromone 10
Pheromone Sensitivity 0.3
Visibility Sensitivity 0.1

DE Lower bound of Scaling factor 0.2
Upper Bound of Scaling factor 0.8
PCR (Crossover Probability) 0.8

BBO nKeep (Number of Habitats retained after every Generation) 0.2
Pmutation (Mutation Probability) 0.9

DA β (Constant) 1.5
SCA a (Constant) 2
SSA c2, c3 (Random Numbers) [0,1]

Table 4.
Initialization

parameters of
algorithms
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TheMLP structure for the XORproblem is 3-7-1 i.e. 3 inputs, 7 hidden layers, and 1 output.
The statistical results are reported in Table 6. It can be seen that PSO provides minimum
values for average and SD. Moreover, DE, SSA and CPSOGSA have also competitive values
for MSE. It indicates that BBO, DE, SSA and CPSOGSA have the capability to resolve
stagnation in local minima issue of MLP. In addition, average classification rates of DE and
CPSOGSA are very close while BBO has the highest classification rate (CR) of 76.25%.
Besides, the execution time of participating algorithms is reported in which SCA takes less
time for getting optimal values while DA takes maximum time. However, the execution time
of CPSOGSA, PSO, GSA, SCA, and SSA is also close to each other indicating good
exploitation power.

Further, the convergence curves of participating algorithms are shown in Figure 5. It can
be clearly observed that SSA and BBO have higher convergence speed than PSO while DE
and CPSOGSA curves overlap with each other indicating close values for MSE. The p-values
also confirm the efficient performance of SSA and BBO over PSO. To further validate the
results, box plots were taken for all participating algorithms. Figure 6 box plots depict that
PSO has minimum values for lower quartile, median and upper quartile while ACO has large
values for MSE indicating its sub-optimal performance.

9.2.2 Balloon dataset. This is one of the simplest datasets available in the UCI repository
having four features including act, size, color, and age. The output of the dataset involves
balloon inflating. The output is 1 if balloon inflates otherwise 0. Moreover, the MLP structure
for the balloon dataset is 4-9-1 meaning 4 inputs, 9 hidden nodes, and 1 output layer.

Table 7 shows the statistical results of the balloon dataset. It may be observed that PSO
provides minimum values for MSE. Besides, SSA, DE, and CPSOGSA also show impressive
values for average and SD. Further, CPSOGSA gives a high classification rate of 78.5% only
behind BBO. It indicates that CPSOGSA has the capability to resolve local minima problems.

The convergence curves are depicted in Figure 7. It is clearly evident that PSO has the
steepest curve showing the high speed of convergence while CPSOGSA also indicates

Algorithm Best Worst Average SD Median CR p-values Exec. Time

GSA 0.13075 0.24259 0.19875 0.037184 0.2044 3.75% 0.001953 6.1299
PSO 2.76e-09 0.0627 0.0063 0.0198 1.69e-05 0% N/A 7.3583
CPSOGSA 0.00434 0.18781 0.09400 0.066473 0.07638 31.25% 0.001953 7.682
ACO 0.5 0.5 0.5 0 0.5 50% 0.001953 19.5911
BBO 3.411e-06 0.18766 0.03993 0.06649 0.00134 76.25% 0.19335 11.7511
DE 0.011614 0.08079 0.044064 0.022422 0.04194 40% 0.037109 5.5833
DA 0.25048 0.36012 0.30768 0.04111 0.30798 0% 0.001953 21.2589
SCA 0.0075 0.16565 0.11168 0.0525 0.13044 0% 0.001953 5.1481
SSA 7.15e-08 0.1916 0.04517 0.0612 0.02066 0% 0.130859 5.1932

Input Output

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Table 6.
Simulation Results of
XOR classification
Dataset

Table 5.
3-bit XOR truth table
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appreciable performance in finding a global minimum. Besides, Figure 8 shows box plots of
all participating HAs. In fact, CPSOGSA, BBO, and DE are at the same level, i.e. their MSE
values are approaching zero while CPSOGSA, SCA and SSA showing some outliers.
Moreover, GSA has somewhat bigger values for both quartiles and median. On the other
hand, ACO, DAandGSAprovide large values forMSE and show sub-optimal performance as
compared to other algorithms.
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9.2.3 Iris dataset. This dataset is one of the popular and challenging classification
benchmarks. It consists of 150 instances and three classes, i.e. setosa, versicolor and virginica.
The MLP structure used for iris dataset is 4-9-3.

Table 8 provides simulation results of HAs in which BBO, CPSOGSA, SCA, SSA and GSA
have close values for average, SD and median. Moreover, the classification rate of all
algorithms is zero because the calculations were taken on a computer having less processing
power. In fact, it is recommended to increase the number of searcher agents and themaximum
number of iterations while using a high-speed computer. Clearly, it will increase the accuracy
of MSE values of existing optimal algorithms like PSO, BBO and CPSOGSA. On the other
side; it will provide an improvement in the recognition rates of HAs. Besides, p-values indicate
that MSE values of CPSOGSA, DE, SCA, SSA, and GSA are statistically significant as
compared to PSO because they have p-values greater than 0.05 i.e. 0.845703, 0.322265,
0.625000, 0.130859 and 0.375000, respectively.

The convergence curves of HAs are shown in Figure 9 indicating CPSOGSAhaving a high
exploitation rate as compared to ACO, DA, and PSO while GSA, BBO, SCA, and SSA also
have appreciable convergence speed. Furthermore, box plots are shown in Figure 10
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SCA 3.63e-07 0.047 0.0128 0.0161 0.0058 0% 0.001953 13.9575
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depicting the sub-optimal performance of ACO, DA, and SCA while CPSOGSA, SSA, and
BBO show efficient results for averageMSE having minimummedian values and no outliers.

9.2.4 Breast cancer dataset.The data for this classification benchmark was collected at the
University of Wisconsin, USA. It consists of 599 instances, 9 attributes, and 2 classes. In this
dataset, cancers are categorized into benign andmalignant.When theMLP gives 2 as output,
it represents benign cancer and 4 indicates malignant cancer. The architecture of MLP
employed for breast cancer dataset is 4-9-3. In fact, this dataset has more complexity and
difficulty level as compared to previous datasets. So, if an algorithm provides good results for
this dataset; it depicts a high level of diversification power.

Moreover, Table 9 shows the convergence curves of algorithms. It is clearly evident that
CPSOGSA has efficient results for all statistical measures, i.e. average, SD, and median while
GSA provides second-best MSE results for breast cancer dataset. Further, CPSOGSA gives
an absolute recognition rate of 100%andGSA shows 76.2%. Besides, theWilcoxon rank-sum
test (p-values) also confirms the best performance of the CPSOGSA algorithm as all p-values
are less than 0.05. However, CPSOGSA takes somewhat more execution time than other HAs.

Algorithm Best Worst Average SD Median CR p-values Exec. Time

GSA 0.68791 0.77607 0.71715 0.02673 0.7147 0% 0.375000 258.5619
PSO 0.6671 0.7540 0.7015 0.0291 0.6989 0% N/A 261.5995
CPSOGSA 0.68083 0.85908 0.77038 0.06155 0.77482 0% 0.845703 246.5869
ACO 1.7094 1.7725 1.7436 0.01763 1.7414 0% 0.001953 281.8333
BBO 0.67162 0.79227 0.71403 0.03862 0.7063 0% 0.027343 252.5695
DE 0.74389 0.83701 0.77415 0.02792 0.7695 0% 0.322265 242.0731
DA 0.8757 0.9775 0.9138 0.03596 0.8955 0% 0.001953 251.6013
SCA 0.6785 0.8263 0.7438 0.0483 0.7353 0% 0.625000 253.4301
SSA 0.6692 0.8889 0.7015 0.0673 0.6778 0% 0.130859 230.9610
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GSA 0 0.01509 0.001509 0.0047749 0 76.2% 0.001953 375.3096
PSO 0.01902 0.0426 0.0284 0.0084 0.0288 0% 0.0019531 364.503
CPSOGSA 0 0.00518 0.000518 0.0016406 0 100% N/A 395.1375
ACO 0.66316 0.66316 0.66316 1.1703e-16 0.66316 0% 0.001953 505.1518
BBO 0.01005 0.02865 0.01878 0.0059462 0.01748 16.2% 0.005859 394.1052
DE 0.03558 0.04330 0.03852 0.0023677 0.03778 4% 0.001953 387.7554
DA 0.04185 0.04849 0.04644 0.00230 0.04741 0% 0.001953 364.5036
SCA 0.033689 0.04424 0.03835 0.0038225 0.038322 0% 0.001953 348.9934
SSA 0.0070087 0.03786 0.01776 0.010077 0.015105 0% 0.001953 342.778
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Figure 11 shows the convergence curves of HAs. It can be seen that CPSOGSA has the
highest convergence speed showing its capability of providing optimal values for connection
weights and biases. Furthermore, box plots are presented in Figure 12 indicating minimum
values of lower and upper quartiles for CPSOGSA while ACO, DA and DE have large values
for both quartiles.

9.2.5 Heart dataset. The main purpose of designing this dataset was to correctly interpret
STEM images for diagnosing heart disease patients. It consists of 22 attributes, 80 instances
and 2 classes. The attributes are encoded in binary format in which 1 represents the patient is
normal while 0 portrays the patient is abnormal. The architecture of MLP considered for the
heart dataset is 22-45-1.

The simulation results are reported inTable 10. Clearly, BBO and CPSOGSAhave the best
values for average MSE. Moreover, BBO, DE, and CPSOGSA have high recognition rates
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while DA, SCA and SSA have the same average classification rate of 50%. However, p-values
indicate the statistically significant performance of CPSOGSA and PSO as compared to BBO.

Further, Figure 13 shows the high convergence speed of PSO, BBO, and CPSOGSA in
finding a global minimum. Furthermore, box plots in Figure 14 convey that CPSOGSA and
BBO have close MSE values while GSA, ACO, DA, SCA, and DE have large values for the
median, lower and upper quartiles.

It is evident from the summarization of classification benchmark results that CPSOGSA
shows the best results for breast cancer and heart datasets. Moreover, the average
recognition rate of CPSOGSA is best for breast cancer and the second most for iris datasets.
Besides, the convergence speed attained by CPSOGSA is more in the iris, breast cancer, and
heart classification benchmarks. Additionally, it is evident that PSO, BBO, and SSA also
provide good simulation results for classification datasets.

In the next section, HAs will be applied to function approximation datasets for handling
complex search spaces.

9.3 Function approximation problems
MLPs are trained by evolutionary algorithms to generate the approximate curves for three
1- dimensional functions (sigmoid, cosine and sine). The architecture of MLPs employed for
estimating the values of functions is 1-15-1 meaning 1 input, 15 hidden nodes, and 1 output.
Moreover, the difficulty level of a dataset is directly related to the training data of the
benchmark. In fact, function approximation datasets were selected based on the complexity
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CPSOGSA 0.12639 0.28295 0.1764 0.0534 0.15289 62.5% 0.845703 147.681
ACO 0.5 0.5 0.5 0 0.5 50% 0.001953 2193.9785
BBO 0.088232 0.15915 0.11964 0.024412 0.11607 8.5% N/A 205.6027
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in which sigmoid function is simple to approximate having only 61 instances while sine
function is the most strenuous to approximate as it consists of 126 training samples. So, it
will be quite interesting to see how HAs will train MLP to handle instance complexity of
function approximation benchmarks.

9.3.1 Sigmoid function (SF) dataset. The sigmoid function is basically an exponential
function which lies in the closed interval of ½−3; þ 3� having 61 data instances. The MLP
structure considered for the SF benchmark is 1-15-1. Besides, Figure 15 depicts the sigmoid
function graphically.

Table 11 presents statistical results of HAs for the SF dataset in which average MSE
values of CPSOGSA, PSO, and BBO are close to each other while SD values of CPSOGSA are
lower than BBO. It indicates that CPSOGSA and PSO are the best MLP trainer(s) for SF
benchmark. Moreover, p-values also indicate that CPSOGSA is statistically significant than
BBO. Besides, CPSOGSA also has minimum average test error (ATE) portraying capability
in handling local minima entrapment problem.
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In addition, Figures 16 and 17 depict approximate curves of CPSOGSA and BBO. It can be
seen that CPSOGSA approximate curve is having fewer deflections and intercepts as
compared to BBO approximate curve. Moreover, the convergence curves are shown in
Figure 18. Basically, theMSE values of CPSOGSA, BBO, GSA, and DE are close to each other,
that is why convergence curves are overlapping. In fact, CPSOGSA is having a steep slope
showing the high speed of convergence towards the global minimum. Furthermore, box plots
are reported in Figure 19. It also indicates the best MSE results for CPSOGSAwhile ACO and
DA again show unsatisfactory values for statistical measures.

9.3.2 Cosine function (CF) dataset. The cosine function benchmark is more complex than
the SF dataset. It consists of 31 training and 38 testing instances.Moreover, it lies in the closed
interval of [1.25, 2.75]. The graph of CF used for simulation analysis is shown in Figure 20. It
may be observed that CF has one lower minimum.

The statistical results are reported in Table 12. It is evident that BBO, CPSOGSA, PSO,
and SSA have optimal values for average and SD. Also, they are close to each other indicating
the same level of competitiveness in handling stagnation in local minima issues. Besides,
CPSOGSA shows a second-best average test error of 0.48036 only behind BBO (0.4678). It
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PSO 0.24637 0.24772 0.24688 0.00047 0.2466 5.046 0.10546 102.6512
CPSOGSA 0.24641 0.24872 0.24687 0.0006934 0.24666 1.8032 0.625000 98.3518
ACO 1.4925 1.4925 1.4925 1.3512e-11 1.4925 5.4761 0.001953 116.9261
BBO 0.24639 0.24671 0.24671 9.4725e-5 0.24653 3.5529 N/A 105.9214
DE 0.24658 0.25043 0.24803 0.0011518 0.24772 1.931 0.001953 103.6034
DA 0.25397 0.45032 0.32027 0.68524 0.29963 5.1311 0.001953 113.8915
SCA 0.24718 0.25167 0.2494 0.001568 0.24885 5.0417 0.0019531 94.1501
SSA 0.2465 0.24727 0.2468 0.000254 0.24671 5.0562 0.005859 102.7184

Figure 16.
Approximate curve of
CPSOGSA for SF
benchmark

Table 11.
Simulation results of
sigmoid function
approximation dataset

IJICC
13,2

154



shows the ability of CPSOGSA in providing correct values for MLP inputs (weights, biases,
and hidden nodes). In addition, p-values prove that CPSOGSA, PSO, andDE statistical results
are more significant and impressive than BBO.

Furthermore, Figures 21 and 22 present approximate curves of CPSOGSA and BBO,
respectively. It can be observed that both curves show identical behavior. However,
CPSOGSA curve deflects more in the beginning while the BBO curve maintains its trajectory
throughout the process of iterations.

Moreover, the convergence graphs are depicted in Figure 23 indicating BBO has a high
speed of convergence while CPSOGSA, DE, SCA, SSA, and GSA show appreciable
intensification power. Also, the box plots are shown in Figure 24. It indicates that the median,
lower and upper quartile values of CPSOGSA, BBO, and DE are spread in adjacent numerical
range of MSE while GSA, DA and ACO have large values for median and MSE depicting
ordinary performance in handling complex and non-linear search spaces.
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9.3.3 Sine function (SFN) dataset. It is the most complex and strenuous function
approximation dataset having 126 instances for training algorithms and 252 test instances
for investigating the performance of HAs in handling entrapment in local minima problems.

Cosine Function

Y

X

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1
5 10 15 20 25 30

Algorithm Best Worst Average SD Median ATE p-values Exec. Time

GSA 0.29298 0.38412 0.34744 0.032926 0.3549 0.97471 0.003906 79.9584
PSO 0.17581 0.1811 0.17767 0.001843 0.17671 1.3017 0.322265 76.4363
CPSOGSA 0.17652 0.37893 0.25797 0.10395 0.17814 0.48036 0.431640 77.2955
ACO 1.0801 1.0801 1.0801 1.0961e-13 1.0801 1.4501 0.001953 99.6037
BBO 0.17608 0.17842 0.17719 0.0007064 0.17718 0.4678 N/A 82.5839
DE 0.17844 0.18999 0.18331 0.0036538 0.18303 0.7295 0.083984 85.6778
DA 0.21288 0.49761 0.39592 0.073706 0.39789 1.426 0.0019531 93.678
SCA 0.18067 0.20902 0.19256 0.008623 0.19202 1.3444 0.0019531 89.7449
SSA 0.17623 0.17999 0.17789 0.001154 0.17754 1.3164 0.625000 83.8211

GSA

B
es

t F
itn

es
s 

Va
lu

e

1.4

1.2

1

0.8

0.6

0.4

0.2

PSO CPSOGSA ACO BBO
Algorithm(s)

Sigmoid Dataset

DE DA SCA SSA

Figure 20.
Cosine function

Table 12.
Simulation results of
cosine function
approximation dataset

Figure 19.
Box plot of SF
benchmark

IJICC
13,2

156



The function numerical values belong to the closed interval ½−2π; þ 2π�with an increment of
0.1 for training instances and 0.05 for testing instances. Also, the SFN graph is having four
peaks as shown in Figure 25.

Moreover, simulation results are reported in Table 13. It may be observed that SSA is
having minimum average MSE values indicating the efficient performance of the algorithm.
Besides, CPSOGSA also provides efficient results for MSE and average test error measures.
Moreover, the Wilcoxon rank-sum test reveals that CPSOGSA, PSO, BBO, SCA, and DE are
having p-values greater than 0.05 indicating statistical edge over SSA.

Also, Figures 26 and 27 present approximate curves for CPSOGSA and SSA in which the
CPSOGSA curve is showing symmetrical behavior at the beginning but afterward, it remains
flat. On the other hand, the SSA curve indicates sine-like behavior on initial iterations;
however, afterward, it depicts a linear straight line pattern. It also conveys that CPSOGSA
has more approximation power than SSA.

Furthermore Figure 28 shows convergence curves of HAs in which CPSOGSA has the
highest and ACO lowest speed of convergence in selecting optimal candidate solutions for

BBO
0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1

Y

Real curve
Approximated curve

1.61.4 1.8 2

X
2.2 2.4 2.6 2.8

0

-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

-1
1.4 1.6 1.8 2

X

Y

CPSOGSA

2.2 2.4 2.6

Real curve
Approximated curve

2.8

Figure 22.
Approximate curve of
BBO for CF benchmark

Figure 21.
Approximate curve of

CPSOGSA for CF
benchmark

A hybrid
CPSOGSA for
training MLP

157



Cosine Dataset

Algorithm(s)

B
es

t F
itn

es
s 

Va
lu

e

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

PSOGSA CPSOGSA ACO BBO DE DA SCA SSA

Sine Function

X

Y

0.8

20 40 60 80 100 120

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

100

10-0.1

10-0.2

10-0.3

10-0.4

10-0.5

10-0.6

10-0.7

Iteration

Cosine Dataset

lo
g(

M
SE

)

0 10 20 30 40 50 60 70 80 90 100

GSA
PSO
CPSOGSA
ACO
BBO
DE
DA
SCA
SSA

Figure 24.
Box plot of CF
benchmark

Figure 25.
Sine function

Figure 23.
Convergence curve for
CF benchmark

IJICC
13,2

158



finding the global minimum meaning enhanced intensification power. In addition, Figure 29
shows box plots of HAs in which the median and inter-quartile range values of CPSOGSA,
BBO, SCA, SSA, andDE are at the same level. Moreover, ACOmaintains its sub-standard and
ordinary performance.
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To sum up the results of HAs for function approximation datasets; it is clear that CPSOGSA
shows efficient performance in handling local minima problems and optimization of input
values for MLP. Moreover, CPSOGSA has the best MSE values for sigmoid and sine function
datasets and also impressive average test error (ATE) results for the cosine function
benchmark. However, BBO, SSA, PSO and DE also gave fine results for MSE and test errors
while ACO performs poorly in all three function approximation benchmarks.

10. Conclusion and future directions
In this paper, a recently proposed hybrid CPSOGSA algorithm has been employed for
trainingMLP. Eight benchmark datasets including five classification datasets (XOR, Balloon,
Iris, Breast Cancer and Heart) and three function-approximation datasets (Sigmoid, Sine, and
Cosine) were used for performance evaluation of CPSOGSA in training MLP.

The statistical results indicate that CPSOGSA gives the best results for two classification
benchmarks, that is, breast cancer and heart while also providing efficient MSE values for
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two function approximation benchmarks including sine and sigmoid function as compared to
GSA, BBO, ACO, SCA, SSA, PSO and DE. Moreover, CPSOGSA also provides very
competitive results for other datasets only behind to BBO. In addition, CPSOGSA also shows
the best average recognition rates for the iris dataset and impressive average test error rates
for all function benchmarks. Besides, CPSOGSA has effectively resolved stagnation in local
optima problem and increasing the overall convergence speed of MLP.

For future studies, it would be interesting to apply CPSOGSA for training other types of
neural networks such as convolution neural network (CNN), modular neural network, and
long/short term memory (LSTM) networks. Moreover, CPSOGSA can be applied to find the
structural parameters of the MLP. Besides, the fine-tuning of CPSOGSA can also be
investigated.

Abbreviations
NN Neural Network
ANN Artificial Neural Network
FNN Feedforward Neural Network
MLP Multi-Layer Perceptron Neural Network
BP Back Propagation Algorithm
CGA Conjugate Gradient Algorithm
MA Marguardt Algorithm
LM Levenberg-Marguardt Algorithm
HA Heuristic Algorithm
GSA Gravitational Search Algorithm
PSO Particle Swarm Optimization
GA Genetic Algorithm
DE Differential Evolution
ACO Ant Colony Optimization
BBO Biogeography Based Optimization
CPSOGSA Constriction Coefficient Based PSO and GSA
ABC Artificial Bee Colony Algorithm
CFO Central Force Optimization
SSO Social Spider Optimization
CRO Chemical Reaction Optimization
CSS Charged System Search
IWO Invasive Weed Optimization
MOA Magnetic Optimization Algorithm
GWO Grey Wolf Optimizer
GSO Glowworm Swarm Optimization
SOS Symbiotic Organisms Search Algorithm
DA Dragonfly Algorithm
SCA Sine-Cosine Algorithm
SSA Salp Swarm Algorithm
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