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A B S T R A C T

Sequential Gaussian Simulation (SGS) is a stochastic simulation technique commonly employed for generating
realizations of Gaussian random fields. Arguably, the main limitation of this technique is the high computational
cost associated with determining the kriging weights. This problem is compounded by the fact that often many
realizations are required to allow for an adequate uncertainty assessment. A seemingly simple way to address this
problem is to keep the same simulation path for all realizations. This results in identical neighbourhood con-
figurations and hence the kriging weights only need to be determined once and can then be re-used in all sub-
sequent realizations. This approach is generally not recommended because it is expected to result in correlation
between the realizations. Here, we challenge this common preconception and make the case for the use of a
constant path approach in SGS by systematically evaluating the associated benefits and limitations. We present a
detailed implementation, particularly regarding parallelization and memory requirements. Extensive numerical
tests demonstrate that using a constant path allows for substantial computational gains with very limited loss of
simulation accuracy. This is especially the case for a constant multi-grid path. The computational savings can be
used to increase the neighbourhood size, thus allowing for a better reproduction of the spatial statistics. The
outcome of this study is a recommendation for an optimal implementation of SGS that maximizes accurate
reproduction of the covariance structure as well as computational efficiency.
1. Introduction

Sequential Gaussian Simulation (SGS) is a popular method for gener-
ating stochastic values on a grid under the constraints of a statisticalmodel
and, possibly, some initially knownvalues, herein referred to as hard data.
SGS has been extensively used by practitioners because of its intuitive
theoretical basis, its simple numerical implementation, and its high flex-
ibility (e.g. G�omez-Hern�andez and Journel, 1993; Pebesma and Wessel-
ing, 1998). Arguably, themajor drawback of SGS is its computational cost.
The exact estimation of kriging relies on taking into account all condi-
tioning nodes, which results in large linear systems that need to be solved.
For a squarematrix of size n, common linear solvers have a computational
complexity of Oðn3Þ (Trefethen and Bau, 1997), which means that the
computational effort is proportional to the cube of the matrix dimension.
Therefore, the sequential simulation of a grid with N nodes represents an
OðN4Þ-type problem (Dimitrakopoulos and Luo, 2004).

Various attempts have been undertaken to reduce the associated
computational cost. Themost widespread approach is the so-called limited
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or moving neighbourhood, that is, the approximation of the kriging esti-
mate by using only a limited number of conditioning points referred to as
the neighbours (e.g. Isaaks and Srivastava, 1989; Deutsch and Journel,
1992;Goovaerts, 1997). This reduces the computational complexity of SGS
to Oðk3NÞ, where k denotes the number of neighbours. This approach is
rooted in the observation that neighbours which are located far away from
the simulated point receive small or even vanishing weights. This effect
originates from the rapid decrease of correlation with distance inherent to
most covariance functions and is enhanced by the presence of intermediate
neighbours screening the influence of those behind (e.g. Chil�es and Del-
finer, 1999). However, the omission of neighbours has shown to bias the
simulation covariancematrix (Emery and Pel�aez, 2011; Nussbaumer et al.,
2017), which in turn results in artifacts in the realizations (e.g. Meyer,
2004). Recent works on reducing such detrimental effects, while limiting
the neighbourhood size and optimizing the computational efficiency,
include those of Gribov and Krivoruchko (2004), Rivoirard and Romary
(2011) and Dimitrakopoulos and Luo (2004).

An alternative to reducing the size of the kriging covariance matrix is
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to approximate it. Barry and Kelley Pace (1997) formulate
covariance-based kriging, which leads to the inversion of sparse sym-
metric matrices. Sparse matrix solvers considerably improve the
computational performance, but this approach is limited to simulations
based on covariance functions with a finite range. Furrer et al. (2006) and
Memarsadeghi and Mount (2007) further increase the sparsity of the
matrix by tapering the covariance for large lag-distances. Related ap-
proaches comprise the approximate iterative method (Billings et al.,
2002), the low rank approximation (Kammann and Wand, 2003), the
Sherman-Morrison-Woodbury formula (Sakata et al., 2004), and fast
summationmethods (Memarsadeghi et al., 2008; Srinivasan et al., 2008).

Another approach is to only consider simulations whose covariance
function is from a limited set of easily solvable covariance models. Omre
et al. (1993) propose the screening sequential simulation, which provides
exact simulations for covariancemodelswith theMarkovproperty, suchas,
for example, the exponential model in 1D. Hartman and H€ossjer (2008)
approximate the simulated Gaussian field with a set of Gaussian Markov
randomfields (Rue andTjelmeland, 2002),which can be simulated exactly
and efficiently. Finally, Cressie and Johannesson (2008) consider covari-
ancemodels composed of afixed number of basic non-stationary functions.
This technique is also referred to as fixed-rank kriging. A related approach
is the predictive processes method (e.g. Banerjee et al., 2008).

A more general technique to cope with the high computation costs of
SGS is parallelization, which reduces the computation time by splitting
the work among several cores (Vargas et al., 2007; Mariethoz, 2010;
Nunes and Almeida, 2010; Rasera et al., 2015). It is important to note
that parallelization does not reduce the computational burden, but
merely spreads it over several cores, and hence is just a useful comple-
ment to the other techniques.

The approach explored in this study aims at decreasing the overall
computational cost by taking advantage of the large number of realizations
typically needed in geostatistical applications. Indeed, an uncertainty
assessment can only be performed with an ensemble of realizations span-
ning the variability of outcomes. When the simulation path, that is, the
order in which the nodes are simulated, is kept identical among multiple
realizations, the neighbourhood configurations of each simulated node are
also identical throughout these realizations. Because the kriging weights
are computed solely with the relative distances between nodes, a constant
neighbourhood configuration produces the same kriging weights. There-
fore, theseweights only need to be computed once and then can be re-used
for all realizations. This reduces the computational effort of eachadditional
realization to simple matrix multiplications.

While some works outline the advantages of using a constant path
(e.g. Verly, 1993), the overwhelming majority still discourages its use,
because of the risk to draw correlated realizations, and rather advocate a
randomized path to explore the solution space more homogenously (e.g.
Deutsch and Journel, 1992; Goovaerts, 1997). Conversely, C�aceres et al.
(2010); Boisvert and Deutsch (2011) reported that using a constant path
in SGS does not result in a significant reduction of the space of uncer-
tainty for neither first- nor second- order statistics, while allowing for
compelling reductions in computational cost. However, both studies are
based on empirical evidence and hence the generic validity of their
findings remains to be verified.

In the presentwork,we seek to provide a thoroughunderstanding of the
implications of changing the simulation path in order to assess the constant
path method. The paper is organized as follows. We begin by presenting a
methodological description of randomized path simulations (section 2),
followed by the implementation of a constant path method (section 3) and
thequantificationof the associated computational gains (section4). Finally,
wediscuss some limitations of the covariancematrix evaluation (section5).

2. Theory of randomized paths simulations

In order to understand the implications of generating stochastic re-
alizations based on the same simulation path, the links between the
random function (RF) Z, the realizations z, and the path pi need to be
122
explored in some detail.

2.1. Definition of a random function

In probability theory, a random variable (RV) denoted X is a deter-
ministic function mapping the set of possible outcomes Ω of a random
phenomenon to their values, usually a real number ℝ,

X : Ω→ℝ (1)

ω7!x:

In the definition of a RV, Ω has to be a probability space, which im-
plies that each possible outcome ω has a well-defined probability. Thus,
the probability PðX � xTÞ is defined by the set of events
fω 2 Ω : XðωÞ � xTg.

For instance, a RV describing the sum of two rolled dice n1 and n2 is
defined as the function mapping every possible outcome ðn1; n2Þ to the
measure n1 þ n2

Xðfn1; n2gÞ ¼ n1 þ n2: (2)

With this formalism, the probability of the sum of two dice being 5 is
defined as

PðX ¼ 5Þ :¼ Pðfn1; n2 2 f1; 2; 3; 4; 5; 6g : n1 þ n2 ¼ 5gÞ
¼ Pðf1; 4g; f2; 3g; f3; 2g; f4; 1gÞ ¼ 4

�
62 ¼ 1=9: (3)

A realization xðlÞ is the value observed from a RV X given a specific
outcome of the random phenomenon, also called random variate, ωl

xðlÞ ¼ XðωlÞ: (4)

2.2. Sequential Gaussian Simulation

GS is an algorithmwhose purpose is to produce realizations zðlÞðuÞ of a
regionalized multi-Gaussian random function (RF) ZðuÞ.

1. A RF is a collection of indexed RV. If the indexation is multi-
dimensional, the collection is usually referred to as random field
instead.

2. A RF is called regionalized (Matheron, 1965) if it is distributed in a
continuous space domain D⊂ℝn,

Z ¼ fZðuÞ; u 2 Dg; (5)

where u represents a space coordinate vector.

3. A RF is multi-Gaussian if any finite collection of its components has a
multi-variate normal distribution. While this constraint is restrictive,
it allows for the RF to be fully determined by its first- and second-
order moments, that is, the mean μZ and the covariance matrix CZ

Z � N ðμZ ;CZÞ: (6)

SGS takes advantage of this multi-Gaussian property to produce re-
alizations of Z. It iteratively visits each node of the grid, computes the
kriging estimate andvariance error σE basedonpreviously simulatednodes
and samples a value from the corresponding conditional probability dis-
tribution. A newly simulated node thus becomes a conditioning node for
the next one to be simulated. Mathematically, this can be summarized as

ZðuiÞ ¼
Xi�1

j¼1

λjðuiÞZ
�
uj

�þ σEðuiÞUðuiÞ; 8i ¼ 1;…; n; (7)

where U is a standard Gaussian vector used for randomly sampling the
conditional distribution and λj are the kriging weights which define the
influence of the conditioning nodes.
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In the framework of probability theory, the underlying random phe-
nomenon of ZðuÞ is the standard normal variableU (equation (7)). Indeed,
given a specific vector Ul, SGS always produces the same realization zðlÞ

zðlÞ ¼ ZðUlÞ: (8)

2.3. Algorithm-driven random function (ADRF)

For computational reasons, SGS is commonly used with a limited
neighbourhood. As a result, the realizations are altered and the actual
simulatedRFdeviates from the original RFZ. In sucha case, SGS is sensitive
to both the simulation path and the neighbourhood search strategy.

As it is a common situation in geostatistics to have algorithms devi-
ating from the original RF, Boucher (2007) introduced the formalism of
an algorithm-driven random function (ADRF): an RF defined by an al-
gorithm which is parametrized by a random variate, or seed number, and
a set of parameters. From now on, the term simulated RF will be used to
refer to the ADRF simulated by the SGS algorithm. For simplicity, the
neighbourhood search strategy is assumed to be defined as the n closest
neighbours of the simulated node and is therefore constant for a neigh-
bourhood configuration.

In this context, SGS is a technique which produces realizations of the
simulated RF Zpi defined by

zðlÞpi ¼ ZðUl; piÞ ¼ Zpi ðUlÞ; (9)

where Ul is the random variate of the underlying random process and pi
the simulation path used as a parameter in the simulated RF.

2.4. Covariance matrix for error quantification

The errors due to the limited neighbourhood in Zpi can be fully
characterized through the mismatch ε between the covariance matrix of
the simulated RF CZpi and the covariance matrix of the target RV CZ

(Emery and Pel�aez, 2011), hereafter, referred to as the simulated
covariance matrix and the model covariance matrix, respectively,

ε ¼ CZpi
� CZ (10)

The model covariance matrix is computed from the covariance
function of the spatial model

CZðα; βÞ ¼ C
�
uα � uβ

�
: (11)

The simulation covariance matrix CZpi
can be theoretically evaluated

based on the kriging weights and the variance errors. Indeed, Emery and
Pel�aez (2011) showed that equation (7) can be reformulated to extract U

U ¼

2
66666666664

1
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0 ⋯ 0

⋮ ⋱ ⋱ ⋮
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Zpi ¼ ΛZpi ; (12)

where Λ is constructed during the simulation by storing each kriging
weight and variance error. The simulation covariance matrix can be
expressed exclusively with Λ

CZpi
¼ E

h�
Zp � E

�
Zpi

���
Zp � E

�
Zpi

��Ti

¼ E
h
Zpi Z

T
pi

i

¼ E
h�
Λ�1U

��
Λ�1U

�Ti

¼ Λ�1E½UUT ��Λ�1
�T

¼ Λ�1
�
Λ�1

�T
:

(13)
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A key advantage of this evaluation of a simulated RF is that it does not
rely on realization statistics, but purely on the actual simulated RF
equations. The random variate is taken out of the equation, leaving only
the deterministic part of the algorithm.

2.5. Simulated random function with a randomized path

The purpose of this study is to compare the error of a simulated RF
with and without a randomized path, that is, if the simulation path is
changed for each realization or kept constant. When the simulation path
pi is randomly sampled among a set of paths P, it can be viewed as a
random variate rather than a parameter. In this case, a newly simulated
RF ZP can be defined

zðl;iÞP ¼ ZPðUl; piÞ; pi 2 P; (14)

where both Ul and pi are considered as random variates. Yet, it is

important to note that, as each realization zðl;iÞP of ZP is sampled with a
unique path pi, it is also a realization of the simulated RF Zpi where the
path pi is viewed as a parameter rather than a random variate

ZPðUl; piÞ ¼ zðl;iÞP ¼ zðlÞpi ¼ Zpi ðUlÞ: (15)

The simulation covariance matrix CZP can be computed based on CZpi

using the discrete version of the covariance due to the finite number of

realizations. When nk realizations fzðl;kÞP ; k ¼ 1;…; nkg are performed, the
empirical covariance at two locations uα and uβ of the grid is given by

CZP ðα; βÞ ¼ Cov
�
ZPðuαÞ;ZP

�
uβ

��

¼ 1
nk

X
k

n
zðl;kÞP ðuαÞ � E½ZPðuαÞ�

on
zðl;kÞP

�
uβ

�� E
�
ZP

�
uβ

��o
:

(16)

Emery and Pel�aez (2011) showed that the expected value of each
simulated RF Zpi is exactly reproduced for unconditional simulations and
for conditional simulations provided that all hard data are present in
every kriging system. We thus have

E½ZPðuÞ� ¼ E
�
Zpi ðuÞ

� ¼ E½ZðuÞ�; 8pi 2 P: (17)

Furthermore, as outlined by equation (15), each realization zðk;lÞP has
only one path associated with it and can be replaced by zðlÞpk .

Combining these two aspects in equation (16) simplifies the covari-
ance matrix of the simulated RF ZP to an arithmetic average of the
covariance matrices of the simulated RFs Zpk where pk 2 P

CZP ðα; βÞ ¼
1
nk

X
k

n
zðkÞpk

ðuαÞ � E
�
Zpk ðuαÞ

�on
zðkÞpk

�
uβ

�� E
�
Zpk

�
uβ

��o

¼ 1
nk

X
k

CZpk
ðα; βÞ:

(18)

Let εpiα;β denote the covariance error of the simulated RF Zpi between a
pair of points uα, uβ. Using equation (10), we then have

εpiα;β ¼ CZpi
ðα; βÞ � CZ

�
uα;uβ

�
; (19)

and hence, using equation (18),

εPα;β ¼
1
nP

XnP
i

CZpi
ðα; βÞ � CZ

�
uα;uβ

� ¼ 1
nP

XnP
i

εpiα;β: (20)

Therefore, the errors of a simulated RF with a randomized path ZP are
equal to the average of the errors of all simulated RFs Zpi , such that pi 2 P.
This is exact for an infinite number nP of paths in P and is reasonably well
approximated if a large number of paths is used. This average operator
has two main effects: (1) the expected values of the errors are identical
but (2) their variances are reduced proportionally to the number of paths
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used.

3. Numerical implementation and computational savings

3.1. Pseudo-code

The simplest modification of the classical SGS (Algorithm 1) allowing
124
for a constant path consists in moving the loop over the realizations into
the loop over the grid nodes, following the computation of the weights
(Algorithm 2). This simple permutation of loops illustrates why the
simulation path P has to remain the same for all realizations.

Algorithm 1. Traditional SGS.
Algorithm 2. SGS with constant path.
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3.2. Parallelization

Parallelization is easily implemented on the traditional SGS by
sending each realization to a different core, which corresponds to par-
allelizing the loop of line 1 in Algorithm 1. In the new implementation,
the realization loop can also be parallelized (line 2 in Algorithm 2). Yet, a
more efficient implementation is described in Algorithm 3, where the
weights are computed and stored prior to the simulation. An important
advantage of separating the computation of the weights and the simu-
lation of the nodes is the ability to compute the weights in parallel. In
practice, this is implemented by searching for neighbours with a lower
path index than that of the simulated node, instead of searching for all
existing values in the realization. Note that this parallelization strategy is
not as easily implemented in the traditional SGS algorithm because the
simulation of the node is in the same loop and requires the value of the
neighbours. Finally, a third option is to parallelize the whole algorithm so
that each core computes a subset of realizations, each with a different
constant path. This hybrid solution between randomized and constant
path does not combine the computational benefits of parallelization and
constant path, but improves realization accuracy as is later discussed in
the paper.

Algorithm 3. Parallelized SGS with constant path.
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3.3. Memory requirements

Compared to the traditional approach (Algorithm 1), the serial
implementation (Algorithm 2) does not require additional memory.
However, the parallel implementation (Algorithm 3) has to store the
indices of the neighbours IDk½n; k�, the kriging weights Λ½n; k�, and the
kriging variance errors ΣE ½n�, which results in a memory increase of
4nkþ 8nkþ 8n ¼ ð12kþ 8Þn bytes. In comparison, storingm realizations
requires 8nm bytes. Thus, reducing m by 1:5k compensates the memory
increase, which is not a problem for typical applications where m≫k.

In simulations with large grids and/or large numbers of realizations,
memory can still become an important issue. In the traditional imple-
mentation (Algorithm 1), this was handled by writing each realization or
group of realizations on the disk when completed. In the parallelized
implementation (Algorithm 3), the realizations can similarly be written
on the disk in the realization loop (line 3). If the neighbourhood size k is
large, storing the weights Λ and the neighbours indexes IDk can become a
challenge. The solution for such situations is to write them during the
first loop (line 3) and read them in the realization loop (line 3) but this
can increase the computation time. Note that, in most typical situations,
using a constant path remains more efficient because the computation of
the weights is more expensive than writing and reading a file. Moreover,
simulations with such settings are usually performed on high-
performance computers, which have large amounts of memory



Fig. 1. Speed-up as a function of the number of realizations performed for 3 different grid sizes and neighbourhood sizes. The grid sizes were selected such that the multi-grid path is
optimal and the neighbourhood size such that the resulting full neighbourhood is symmetric. The computation time for the first realization is also shown in the legend.
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available and thus are able to store at least the weights and indices.
Despite not storing the weights and indices, the serial implementation
(Algorithm 2) cannot be efficiently used for simulations with a large grid
and/or large numbers of realizations.
3.4. Computation time

With the constant path approach, the only operation left to be
repeated for each realization is to iterate through all the nodes and
simulate a value, which corresponds to a simple vector multiplication
(line 3 in Algorithm 3). As such, with an ideal implementation, the gain
in computation time corresponds to the effort of finding the neighbours
(line 3 in Algorithm 3), and computing the kriging weights and variance
errors (line 3 in Algorithm 3) for each additional realization
j ¼ f2;…;mg. In the following paragraphs, these two computational ef-
forts are described in more detail to better understand the conditions
and, the extent of the benefits of using a constant path.

First, the kriging neighbours are found by posing the optimization
problem known as k-Nearest Neighbour (k-NN). The optimal solution to
this problem varies with the simulation parameters: (1) grid size, (2)
neighbourhood size, (3) number and location of hard data, and (4)
covariance model range. Because of this diversity of settings, the choice
of an appropriate neighbourhood search strategy is of upmost importance
and it often is the bottleneck with regard to computation time in SGS. The
most common strategies in SGS are listed below. The “exhaustive search”
sorts all n available nodes by their distance to the simulated node and
takes the first k nodes. The complexity of the well-known quicksort al-
gorithm is OðnlogðnÞÞ (Hoare, 1962). A considerable improvement of this
strategy consists of only sorting the first k nodes, thus reducing the
complexity to Oðnþ klogðkÞÞ with partial quicksort (Martínez, 2004).
This strategy is optimal for simulations of a small grid with a large
neighbourhood size and presents the advantage of being able to treat
equally data at any location. The “spiral search” (Deutsch and Journel,
1992) visits each node of the grid by order of proximity to the simulated
node, skips the empty nodes, and stops once k simulated nodes have been
found. This method is efficient for large grids with a small neighbour-
hood, particularly when combined with a multi-grid path. Hard data
have to be moved to the closest node, at least temporarily. Another trick
is to define an exploration distance threshold to limit the search to the
nodes within a certain distance to the simulated one. The “superblock
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search” (Journel and Huijbregts, 1978; Deutsch and Journel, 1992) and
“tree-based search” (Hassanpour and Leuangthong, 2006; Manchuk and
Deutsch, 2012) provide alternative solutions, which can be more effi-
cient, especially for the simulation of irregular points or when dealing
with hard data within a two-part search method (Deutsch and Journel,
1992).

Secondly, the time to compute the kriging weights and variance er-
rors is mainly determined by solving kriging systems, one for each
simulated node. This has an overall computational complexity of Oðnk3Þ
(Dimitrakopoulos and Luo, 2004), making the neighbourhood size k the
main parameter influencing the computation time. Another common
solution to reduce the computational cost in regular grids is to use a
covariance lookup table, which pre-computes and stores the covariance
of all pairs of nodes within the search ellipsoid.

The total computational savings provided by the constant path are the
sum of these two computational costs multiplied by the number of re-
alizations required, such that implementing the constant path approach
is only rewarding when several realizations are needed. In addition, the
constant path allows for a more flexible choice of parameters because the
computational cost associated with these parameters is only paid once.
Therefore, using a sub-optimal neighbourhood strategy does not increase
the computational cost as much as it would in the traditional approach.
This suggest that a good strategy is to increase the neighbourhood size to
reduce the simulation error without excessively increasing the compu-
tational burden.

The computational benefit of using a constant path is numerically
assessed with the speed-up, that is, the ratio of computation time of the
traditional SGS Ttrad over the constant path SGS Tcst . It can be expressed
as a function of the number of realizations m based on the simulation of a
single realization,

S ¼ Ttrad

Tcst
¼ mTtradð1Þ

Tcstð1Þ þ ðm� 1ÞTcst
realð1Þ

; (21)

where Tcst
realð1Þ refers to the time spent in the realizations loop for a single

realization (lines 11–16 in Algorithm 3). Fig. 1 shows the speed-up for
unconditional simulations performed with a spherical covariance func-
tion having a range of 20, using a spiral search and a multi-grid path, and
without covariance lookup table. SGS with constant path is simulated
with the parallel implementation (Algorithm 3) but running on a single



Fig. 2. Boxplots of the SFN of simulated RFs ZP for different numbers of simulation paths nP ¼ 1;…;128. 512 simulated RFs Zpi were computed and different numbers of them combined to
construct the simulated RFs with a fully randomized path ZP according to equation (20).
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core. The processor used is a AMD Opteron (2300Mhz). These results
show that the speed-up increases with the neighbourhood size and scales
well with grid size. In this particular case, around 30000, 50000 and 60000
realizations can be performed with a constant path for the same duration
than 100 realizations without constant path for neighbourhood sizes of
20, 52 and 108 nodes, respectively. This case study reveals that, even if
only 5 realizations are needed, it is computationally more efficient to
generate them with a constant path and a neighbourhood of 108 nodes
than without constant path and a neighbourhood of 20 nodes.

4. Simulation errors

In the following, six covariance functions (exponential, Gaussian,
spherical, hyperbolic, k-Bessel, and cardinal sine) are considered because
of their variability close to the origin and near the range as well as is their
popularity. A correlation range of 20 nodes normalized by their integral
value is used. Because of the large cost of computing the exact covariance
matrix, a small grid of 65� 65 nodes is used in this section.

4.1. Covariance errors

In order to compare large covariance matrices, Emery and Pel�aez
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(2011) proposed to aggregate the covariance errors with the standard-
ized Frobenius norm (SFN)

ηpi ¼

���CZpi
� CZ

���
CZ

; (22)

where k ⋅ k denotes the L2;2 or Frobenius norm. Limitations associated
with this metric are discussed in section 5.3.

With this single value, it is possible to compare the error of simulated
RFs using different numbers of paths nP as well as different covariance
function types. The SFNs of 512 simulated RFs with a constant path Zpi
were computed. Then, using equation (20), the simulated RFs with a
randomized path ZP, with nP ¼ 2;…;128 were computed. Fig. 2 shows
the corresponding results in the form of boxplots. Simulations were
performed with a neighbourhood size of 20 nodes and a fully randomized
path.

For all covariance function types, a decrease of the mean and variance
of the SFN is observed for simulated RFs using larger numbers of paths.
The reduction of the variance is an expected result of the averaging
described in equation (20). But the decrease of the mean error is due to
the aggregation of errors in the SFN. This will be further explored in the



Fig. 3. Boxplot of the SFN for several simulated RFs for different numbers of simulation paths and different neighbourhood sizes for a spherical covariance function.

Fig. 4. Boxplot of the SFN for several simulated RFs using different numbers of simulation paths for multi-grid or random simulation paths.
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discussion part. It can also be noted that the value of the SFN rapidly
converges and, in this specific case, with more than approximately 16
different paths no significant error reduction is observed. The magnitude
of the error reduction is strongly linked to the shape of covariance
function where, for instance, the Gaussian or cardinal sine present larger
128
reductions than hyperbolic or exponential covariance functions.
4.2. Sensitivity to neighbourhood and path type

To provide a perspective on these error reductions obtained by



Fig. 5. (Left) Mean and standard deviation of the SFN using up to 16 different randomized multi-grid paths for simulations where the constant path approach is switched on at different
grid level. Note that the curves for levels 1–4 and for the fully constant path are superimposed. (Right) Corresponding speed-up of simulations.
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varying the path, we compare them to those obtained for an increase in
neighbourhood size and the use of different types of paths.

Firstly, the influence of neighbourhood size is analyzed. Fig. 3 shows
the SFN for simulated RFs for a variable number of paths and several
neighbourhood sizes. The number of neighbours used in the kriging has a
stronger influence on the error than varying the path. Only the simulated
RF for a spherical covariance function is shown because the results for all
other covariance function types considered in this study are qualitatively
similar. These results reinforce the suggestion made in section 3.4 to take
advantage of the computational savings associated with the use of a
constant path to increase the neighbourhood size. Indeed, a much larger
reduction of covariance errors is achieved by increasing the neighbour-
hood size than by using different randomized paths.

Secondly, two different path types are compared: a random path
which visits each cell of the grid equiprobably and amulti-grid path using
a series of nested grids to guide the order of the simulation. More spe-
cifically, the first grid simulates the four corners of the final grid, then
each subsequent grid doubles the previous grid resolution, re-using the
previously simulated nodes and simulating the empty nodes randomly.
Note that both random and multi-grid paths can be randomized. Fig. 4
compares the SFN of simulated RFs with random and multi-grid paths for
different numbers of randomized paths.

As already shown in Nussbaumer et al. (2017), Fig. 4 illustrates that a
multi-grid path generally improves the reproduction of the covariance
matrix. However, it also shows that usingmultiple randomizedmulti-grid
paths only reduces slightly both the magnitude of the SFN and its vari-
ability. Note that the cardinal sine covariance function presents an
interesting exception where increasing the number of randomized paths
results in greater SFN reduction with a random path than with a
multi-grid path. This can be explained by the fact that when few neigh-
bours are available the reproduction of the covariance function can
follow a non-linear behaviour due to the cyclical nature of this covari-
ance function. Fig. 10 in Nussbaumer et al. (2017) shows that the type of
path has a limited effect on the cardinal sine. With this particular
covariance function, the neighbourhood size is the most important
parameter, as illustrated by Fig. 9 in Nussbaumer et al. (2017).

A compelling asset of the multi-grid path is that it allows for switching
from either randomized to constant path or vice versa at each grid level.
This feature is attractive because a randomized path at the initial coarse
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levels maximizes the variability of the poorly constrained nodes.
Conversely, a constant path at the subsequent finer levels allows for
important computational gains while not compromising the variability,
because these nodes are anyway well constrained by the coarser grid.
Fig. 5 shows the SFNs and corresponding speed-ups for simulations
starting with a randomized path and switching to constant path at dif-
ferents multi-grid levels. The simulations were performed on a 129� 129
grid with a spherical covariance function and 20 neighbours.

Switching to a constant path during levels 1 to 4 results in similar SFN
values than with a fully constant path for any number of paths. This
means that changing the order of simulated nodes belonging to these
levels does not result in any measurable improvement in the reproduc-
tion of the final covariance matrix. In this case study, switching path at
level 5 results in a relatively limited error reduction when several ran-
domized paths are used. Switching path at the following levels has little
or no impact on the reproduction of the covariance matrix, which can be
explained by the grid spacing of these levels being smaller than the
covariance function range. Indeed, during the simulation of those levels,
the simulation of nodes is well constrained by the previous multi-grids. In
all cases, the magnitude of the errors is small, even when using fully
constant path, as shown in Fig. 3. As a general rule, multi-grid levels with
a grid spacing much lower than the covariance range can be simulated
with a constant path without affecting the SFN values. The corresponding
speed-up indicates that using a constant path on the last levels of the
multi-grid provides the largest computational improvement due to the
large number of nodes.

4.3. Conditional simulation

For conditional simulations, the constant path strategy can be
implemented in the same way as for the unconditional case by computing
once and storing the kriging weights associated with the hard data for all
simulated nodes and then re-using them for each additional realization.

Conditional simulations can be considered as a special case of un-
conditional simulations, for which the first nodes of the path are the hard
data with a constant outcome and whose sampling outcome is constant.
Emery and Pel�aez (2011) show that the assessment of a conditional
simulation is based on the reproduction of the covariance matrix of the
simulated nodes and the reproduction of the expected field. They



Fig. 6. Distributions of all values εα;β (equation (19)) of 20 simulated RFs with a constant path (black lines) and of a simulated RF with a randomized path (red lines). (For interpretation of
the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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demonstrate that the covariance matrix of the simulated nodes is similar
to that of the unconditional case (Equation (11) in Emery and Pel�aez
(2011)). The exact reproduction of the expected value, which corre-
sponds to matching the kriging predictor, is only achieved when all hard
data are used in every kriging system (Appendix 1 in Emery and Pel�aez
(2011)). In this case, using a constant or randomized path has the same
benefits and consequences as it does for unconditional simulations where
a constant path is enforced on the first nodes equivalent to the hard data.

However, if too many hard data are present, not all can be retained in
every kriging system. In this case, the expected field does not match the
kriging predictor, and, in turn, Equation (17) does not hold. The conse-
quences on the effects of using a constant path are difficult to assess in
general. However, if hard data are included more generously with a two
part search strategy, it can be expected that the effect of the missing hard
data is limited. Consequently, from a qualitative point view, the overall
results of this study remain valid.

Another effect of including hard data is that the presence of numerous
and scattered hard data constrains the simulation, such that, randomizing
the path results in a smaller reduction of errors. An equivalent effect can
be observed in Fig. 5, where simulations switching from a randomized to
constant path for the last levels of the multi-grid produce similar errors
reductions.

5. Discussion

5.1. Unlucky path

An unlucky path is a particular path which leads to especially bad
covariance matrix reproduction. These paths can be discussed by
comparing the tails of the errors distribution in Figs. 2–4. With the
reduction of variance demonstrated in equation (20), maximal SFN
values in Fig. 2 also decrease with a largest number of simulation paths
130
used. Based on Figs. 3 and 4, increasing the neighbourhood size or using a
multi-grid approach reduces even further the occurrence of unlucky
paths.
5.2. Empirical covariance

In this section, the assessment of error based on aggregating multiple
realizations errors with empirical inter-realization statistics is discussed.

Firstly, even if the covariance error of several realizations is small, it
does not mean that each realization has a smaller error. Indeed, each
realization could contain large errors, but averaging these errors may
lead to small inter-realization errors. This is an important consideration
for our comparison because each realization of a simulation RF with a
randomized path is produced with a single path and, therefore, with the
same potential errors as a realization of a simulation RF with a constant
path. This means that although a simulation RF with a randomized path
can improve the overall inter-realizations statistics, each individual
realization still contains a similar amount of errors.

Secondly, when covariance errors are empirically computed, the
number of realizations is limited and the ergodic fluctuations should be
taken into account. In theory, for equation (18) to be correct, an infinite
number of realizations of each constant path simulation is required. As
the path changes for each realization, discrepancies between the simu-
lation covariance and the model covariance are expected (Matheron,
1989; Emery, 2004).
5.3. Aggregation of the covariance matrix errors

While the SFN provides a reliable and simple measure of error
(equation (22)), there are also some limitations that need to be high-
lighted. Essentially, the SFN can be viewed as a normalized root mean
square error (RMSE) measure
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which has the well-known effect of enhancing the influence of larger
errors. Thus, a few pairs of nodes with large covariance errors are pre-
dominant over many small errors. While this is a commonly accepted
procedure, a thorough investigation of the effect of varying the path
requires analysis of the exact distribution of the covariance errors. Fig. 6
displays the distribution of all values of εα;β (equation (19)) of 20 simu-
lated RFs with a constant path and the simulated RF with a randomized
path. The latter is constructed by combining the previous 20 simulated
RFs according to equation (20).

Each covariance function type produces different distributions, but in
each of them, the 20 simulated RFs with a constant path generate similar
distributions. In comparison, the simulated RF with a randomized path
generally has a smaller number of covariance pairs with large and small
errors. However, the number of intermediate errors is increased. This can
be explained by the averaging of the covariance error for each pair of
nodes in equation (20). Indeed, averaging tends to reduce extreme values
and to increase the medium-range values. This means that, although
extreme errors are avoided, the number of pairs of nodes with no errors is
also reduced. Therefore, if instead of looking at the root mean square
error, the number of correct pairs of nodes was computed, a simulated RF
with a constant path would produce a more favourable result.

6. Conclusions

This study analyzed in detail the benefits and limitations of using a
constant simulation path in SGS. Compared to the traditional imple-
mentation of SGS, the use of a constant path provides computational
gains of several orders of magnitude. While randomizing the path among
realizations slightly reduces the covariance errors, this reduction is only
significant for a limited number of randomized paths. Most importantly,
our analyses demonstrated that, for the majority of our simulations, these
error reductions were relatively small in comparison to the effects of
increasing the neighbourhood size or, to a lesser extent, using a multi-
grid path. The optimal approach with regard to computational effi-
ciency and statistical fidelity is to switch from a randomized path to a
constant path in the course of a multi-grid path. The timing of this switch
should correspond to a grid spacing smaller than the covariance range.
However, as this solution can be rather tedious to implement and given
the relatively limited gains it provides in terms of error reduction, our
recommendation is to use a fully constant path and to employ the asso-
ciated computational gains to increase the neighbourhood size. The
constant path approach can readily be extended to other sequential
simulation methods as long as some computationally expensive opera-
tions are the same for all realizations. In order to be common, such op-
erations have to be independent of the data values, such as, for instance,
the computation of the kriging weights or the neighbourhood search.
This includes methods such as Sequential Cosimuation, Sequential Indi-
cator Simulation (Isaaks, 1984) or Direct Sequential Simulation (Billings
et al., 2002).
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