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Abstract: Periodic noise corrupts digital images during acquisition and transmission stages by adding repetitive patterns. This
study introduces a new adaptive Gaussian notch filter (AGNF) in Fourier transform domain for effectively restoring images
contaminated with periodic, quasi-periodic and Moiré pattern noises. Since periodic noises are sinusoidal functions added to the
uncorrupted images, Fourier transform of images make these noisy functions to concentrate as easily distinguishable conjugate
peaks in frequency domain. The proposed AGNF effectively identifies the noisy peak positions and adaptively quantifies the
associated noisy areas by analysing the ratio of averages of frequencies from adaptively varying neighbourhoods. These
identified noisy peaks are then diffused by Gaussian notch filter of adaptively varying sizes. The proposed filter ensures
maximum diffusion of identified noisy peak areas by maintaining the minimum frequency values from the outputs of overlapping
notch filters. Visual and quantitative experimental analysis of the proposed algorithm with mean absolute error, peak signal-to-
noise ratio, mean structural similarity index measure and computation time reveals that AGNF is better in restoring images
contaminated with periodic noises when compared to other methods.

1 Introduction
Noise degradations make random variations in the intensity of
uncorrupted image and are caused due to errors in sensors, scanner
circuits, digital cameras and storage devices [1]. Image restoration
attempts to recover or reconstruct the uncorrupted image from its
noisy version [2, 3]. Periodic noises are signal independent but
spatially dependent noises that corrupt digital images by adding
periodically or quasi-periodically distributed repetitive patterns
when external interferences occur during image acquisition/
transmission. Natural images get corrupted with periodic/quasi-
periodic noises when sinusoidal/quasi-sinusoidal noisy functions
created by external electrical/mechanical interferences get added
with pure image contents during image acquisition/transmission
stages. Each sinusoidal/quasi-sinusoidal noisy function added with
contents of natural images creates individual periodic patterns in
images. Hence, a linear combination of sinusoidal functions with
different frequencies creates different periodic patterns with
different periodicity in images and the amplitude of these
sinusoidal functions controls the strength of these patterns. Periodic
noises corrupt digital images by adding periodically or quasi-
periodically distributed repetitive patterns to the image when
electrical interferences occur during image acquisition [4]. These
electrical interferences create line drop out, striping and banding
effects in the corrupted image and affect reprographic techniques
like half-tone printing [5] and cathode ray techniques [6]. Imaging
devices with charge-coupled device based cameras create periodic
noises due to temperature and voltage variations along with
electrical and electro-mechanical interferences [7]. Imaging
devices fitted in non-stabilised imaging holders like helicopters/
aircrafts create periodic noises due to vibration of imaging holders
[8]. Television receivers experience periodic noise based
waveforms in the video outputs when the signal strength is low [9].
Experimental analysis on X-ray imaging devices with
complementary metal oxide semiconductor-active pixel sensors
and scanning transmission X-ray microscopy techniques have
shown that these devices create periodic/Moiré patterns while
frequently imaging multiple frames/images [10, 11]. Radiations
and magnetic induction between circuits of electrical sources

exhibit periodic structures like stripe noise, periodic improper
illumination and inter-slice variations in the greyscales of images
generated by micro-optical sectioning tomography and magnetic
resonance imaging (MRI) techniques [12]. Canvas contamination
creates periodic structures in paintings [13]. In MRI physics, k-
space refers to the Fourier transform of captured MRI and this k-
space is possibly being corrupted with spike artefacts that generate
periodic patterns of stripes/regular wave like fringes in the MRI
sensed data due to loose radio frequency coil connections [14]/
electrostatic discharge in the receiver cables/excess duty cycle/
uncertain humidity conditions [15]. The automatic removal of these
periodic noise based macroscopic density artefacts is an important
step in Nissl-stained microscopic atlas of whole mouse brain
applications [16]. Strain maps of deformed specimens obtained
with Moiré interferometry, speckle interferometry and grid
methods are prone to be affected with periodic/quasi-periodic
noises because of improper grid alignment/sampling/interpolation
errors [17]. Periodic noise corrupts remote sensed images by
introducing striping and banding effects during Moderate
Resolution Imaging Spectroradiometer (MODIS), Hyperion on-
board Earth Observation-1 (EO-1), Landsat Thematic Mapper (TV)
and Satellite Pour l'Observation de la Terre (SPOT) based imaging
processes [18–20]. Since periodic noise affects most of the imaging
processes, it is crucial to have periodic noise removal phase as pre-
processing stage in most of the image processing/computer vision
applications to provide restored version of the image to the
subsequent tasks.

Periodic noise mixes its components with other uncorrupted
pixel values and is spread throughout the spatial domain image by
making the noisy components difficult to be predicted in spatial
domain. Further, any spatial domain based direct noise detection
process is complicated since it is difficult to predict the spatial
pattern/sinusoidal/quasi-sinusoidal function that corrupts the image
by addition. Due to this reason, early kernel based filtering
attempts [21] find difficulty in providing better restoration. Since
periodic/quasi-periodic noises are linear combinations of
sinusoidal/quasi-sinusoidal functions, these noises concentrate in
frequency domain as high magnitude spectral coefficients and
thereby providing impulsive star/spike shaped noisy peaks. Each
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corrupting sinusoidal/quasi-sinusoidal noisy function creates a pair
of noisy peaks in the mutually opposite quadrants of the frequency
spectrum. These noisy peak regions have the largest spectral value
at the centre corresponding to the fundamental frequency of the
noisy sinusoidal function. The decreasing noisy areas in star shape
of the peak are called the noise bandwidth. The positions of these
noisy spikes in frequency spectrum depend on the frequency of the
sinusoidal/quasi-sinusoidal function that corrupts the image in
spatial domain. Sinusoidal/quasi-sinusoidal functions with low
frequencies concentrate near the direct current (DC) coefficient
while sinusoidal/quasi-sinusoidal functions with extremely high
frequencies concentrate at the borders of the Fourier spectrum by
providing star/spike shaped peaks. Since spectral coefficients
corresponding to periodic noises form noisy peak areas with spike
look in the Fourier transformed image, it is easy for restoration
algorithms to distinguish corrupted frequencies from other
uncorrupted frequencies. These aspects of frequency domain
motivated de-noising algorithms to apply their filtering operation
on Fourier transform of the given corrupted image for effectively
identifying and diffusing noisy regions before generating the final
restored image by applying inverse Fourier transform.

Since frequency domain images are symmetric about opposite
quadrants, band reject filters reject specific circular bands of
frequencies around the centre of the frequency domain image.
However, the band reject approaches could not produce effective
results since they reject all frequencies that belong to the circular
band irrespective of their purity status. In frequency domain,
statistics based algorithms replace noisy areas with suitable statistic
values determined from the surrounding frequencies. Although
these algorithms are good in maintaining image details, their noise
attenuation capability is limited since they do not de-noise
neighbouring noisy frequencies. Gaussian notch based filters not
only reject the central noisy peak but also suppress the
neighbouring noisy frequency areas corresponding to noisy spikes.
However, the performance of statistics and notch based algorithms
depends largely on the accuracy in determining the noisy peak
areas. The frequency domain mean filter (FDMF1) [22], frequency
domain median filter (FDMF2) [23], windowed Gaussian notch
filter (WGNF) [24], interpolation filter (IF), Brickwall reject filter
(BRF) and Gaussian notch reject filter (GNRF) [25] algorithms use
static windows of fixed sizes to fix the noisy areas and are non-
adaptive in nature while identifying noisy peak positions. Gaussian
star filter (GSF) proposed by Ketenci and Gangal [26] uses
threshold based region identification technique where all the
frequency values less than the given threshold are identified as
noisy to quantify the noisy areas. The threshold is identified as a
function of central peak frequency although the height of the
central peak from its neighbouring noisy peak areas differs for
different noise types and amount of corruption. Adaptive optimum
notch filter (AONF) [7] identifies the noisy peak positions by
applying global threshold identified as the average of maximum of
all frequency values outside low-frequency region (LFR) and the
average of the noise free smooth arc shaped uncorrupted frequency
regions at the corners of the image spectrum. However, if the noisy
peaks are with large variations in their heights, the global threshold
makes prominent mistakes in effectively identifying all noisy peak
positions.

The algorithm proposed by Hudhud and Turner [27] identifies
noisy peaks by non-automated procedures. The FDMF1, FDMF2,
WGNF, GSF and AONF use automated procedures to find the
noisy central peak. However, these algorithms make
misclassifications in noise detection when applied on noisy peak
areas corresponding to strong periodic noise that fall in the LFRs of
the Fourier transformed image. Chakraborty et al. filter [28] used
frequency domain histogram based thresholding operation for
identifying noisy areas, but this method produces misclassifications
in noise detection when the noise strength is high. The noisy peak
detection procedures employed by Sur et al. filter [29], windowed
adaptive switching minimum filter (WASMF) [30], Laplacian-
based frequency domain filter (LFDF) [31], Chakraborty filter
[32], Ketenci filter [33] and Ionita filter [34] use static
approximation functions but are not adaptive to the noise and
image types. Zhou et al. [35] proposed a bilateral linear filter

operator by incorporating least-squares regression based noise
detection and linear operator based de-noising. Chakraborty et al.
[36] proposed exponential thresholding based automated notch-
reject filter by applying Gabor filter for enhancing corrupted peak
positions. However, the thresholding function used for identifying
the noisy peaks is prone to make errors when the noisy peak
positions fall in the LFR. Frequency-domain-based switching
median filter [37] applies traditional region-growing technique to
generate the noise map from enhanced frequency spectrum. The
identified noisy spectral coefficients are then replaced by the
median of uncorrupted frequency spectrum determined by
recursive median filter. The filter proposed in [38] by Varghese
adaptively moves from the DC coefficient in the centre of the
image to the border of the image to detect and correct the corrupted
frequencies. However, these algorithms address some goals of
periodic noise filtering but could not adequately address other
image restoration goals. These goals are computational efficiency,
adaptation to various noise and image types, accuracy in
identifying noisy peaks and its associated areas, efficacy in
rejecting corrupted frequencies and preserving thin/narrow edges in
restored outputs.

Addressing the limitations posed by existing algorithms, an
adaptive Gaussian notch filter (AGNF) in frequency domain is
presented in this paper for de-noising periodic, quasi-periodic and
Moiré pattern noises from digital images. The algorithm diffuses
adaptively determined noisy peak areas by applying notch reject
filter whose size better suits the noisy region. The paper has five
sections. Section 2 details the proposed AGNF while Section 3,
Section 4 and Section 5, respectively, make the experimental
analysis, discussion and conclusion.

2 Proposed adaptive Gaussian notch filter
Let y be the corrupted observation of natural image x of size M × N
and yi, j denotes the intensity value at i, j  such that 0 ≤ i < M and
0 ≤ j < N. Noisy observation image, y corrupted with periodic/
quasi-periodic noises is denoted by

yi, j = xi, j + ηi, j (1)

where η is the two-dimensional signal independent sinusoidal or
quasi-sinusoidal noise function that affects the uncorrupted image,
x. Since η is a sinusoidal or quasi-sinusoidal function, the Fourier
transform of y makes the noisy frequencies to concentrate in
frequency domain image by providing spiky peak look. These
noisy frequencies mixed with signal contents in spatial domain are
easily distinguishable when Fourier transform is applied on
corrupted image, y. Therefore, the fundamental issues of filtering
periodic noise in frequency domain are to effectively detect and
diffuse these noisy peak areas from frequency domain image.

The AGNF effectively detects and quantifies the area of
periodic noise corruption in frequency domain. These noisy
frequencies are then diffused by applying Gaussian notch filter
whose window size varies adaptively to suit the noisy peak areas.
The flowchart of AGNF is presented in Fig. 1. The proposed
AGNF scheme determines the Fourier transform of the input noisy
image and shifts its origin to the centre of the image for performing
filtering operation in frequency domain and P is expressed as

Fu, v = 1
M × N ∑

i − 0

M − 1
∑
j = 0

N − 1
−1 i + jyi, je− −1 2π u × i

M + v × j
N (2)

Here Fu, v denotes the Fourier transform of y at position u, v . The
Fourier spectrum P of F makes the noisy frequency detection
process easy in real domain and is expressed as

Pu, v = Ru, v
2 + Iu, v

2 (3)

Here Ru, v and Iu, v denote the real and complex parts of Fu, v.
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2.1 Adaptive noisy area identification

The proposed AGNF algorithm adaptively determines the peak
areas associated with noisy frequencies of the corrupted frequency
domain image by using adaptively varying window approach. The
sizes of filtering windows of the proposed filter are adaptively
increased from smaller sizes until the windows cover noisy peak
areas of Fourier transformed image. The proposed algorithm uses
two adaptive windows W1 and W2, W1 being an inner window and
W2 an outer window. For each frequency value, these windows are
utilised for finding relative average frequency deviations of
frequencies from inner and outer neighbourhoods. If the ratio of the
averages of outer and inner neighbourhood frequencies is less than
a predefined threshold, the algorithm assumes the frequency
positions defined by the inner window as noisy since the frequency
values of the inner neighbourhood are extremely higher than outer
window frequencies. Let Ωu, v

W  represent generalised set of image
locations covered by the filtering window with size W × W  at
u, v . Ωu, v

W  is defined by

Ωu, v
W =

j1, j2 :u − d ≤ j1 ≤ u + d,
v − d ≤ j2 ≤ v + d

(4)

Here d is the width of the search window, W × W  and is defined by
d = W − 1 /2 . The algorithm first initialises the de-noised
frequency domain image F

~ = F assuming that all the frequency
positions of F are uncorrupted. The proposed AGNF avoids DC
frequency from the filtering process and hence for each frequency
spectrum Pu, v, other than the DC frequency at (M /2), (N /2)  and a
very small circular portion (a maximum of 6 pixels width) around
DC coefficient, the proposed algorithm performs following steps to
identify the corrupted frequencies. 

Step 1: The algorithm starts by initialising inner window size,
W1 = 3, maximum window size, WMax = 21 and the binary flag
variable, f = 0 indicating an uncorrupted frequency position. The
flag variable, f is used for identifying the purity status of frequency
Fu, v.
Step 2: The outer window size W2 is set to W2 = W1 + 2. The
algorithm uses adaptively varying inner and outer position sets,
Ωu, v

In  and Ωu, v
Out centred at u, v  for effectively quantifying noisy

frequency areas. The frequency values corresponding to Ωu, v
In  and

Ωu, v
Out are used for determining the ratio between the averages of

outer and inner frequencies and these neighbourhood sets are,
respectively, defined by Ωu, v

In = Ωu, v
W1 and Ωu, v

Out = Ωu, v
W2 ∖Ωu, v

W1 where
‘\’ denotes the set difference operator. The pixel positions covered
by Ωu, v

In  and Ωu, v
Out are illustrated in Fig. 2 for W1 = 3.

Step 3: Since noisy peak areas have very high frequency values
when compared to their surrounding frequencies, the algorithm
identifies the frequency position Fu, v as corrupted when the ratio of
averages of pixels from Ωu, v

Out and Ωu, v
In  is less than a threshold, T. If

μIn and μOut, respectively, denote the average of pixels covered by
Ωu, v

In  and Ωu, v
Out then μIn and μOut are defined by

μIn =
∑ i1, i2 ∈ Ωu, v

In Pi1, i2

Ωu, v
In (5)

μOut =
∑ i1, i2 ∈ Ωu, v

Out Pi1, i2

Ωu, v
Out (6)

In (5) and (6),  denotes the cardinality operation which provides
the pixel count in the windows, Ωu, v

In  and Ωu, v
Out. If μOut/μIn ≤ T , it

is clear that Fu, v is a noisy peak position since the frequency values
corresponding to the inner neighbourhood, Ωu, v

In  is significantly
higher than the frequency values corresponding to the outer
neighbourhood defined by Ωu, v

Out. Hence, the flag variable f that
denotes the purity status of Fu, v is set to 1 indicating Fu, v as a
corrupted frequency. In this case, when a frequency Fu, v is found
corrupted, the inner window size W1 is increased to W1 = W1 + 2
for quantifying the area of corruption associated with Fu, v by
continuing from step 2. This process for quantifying the noisy area
associated with Fu, v is repeated until μOut/μIn > T  or W1 has
reached the maximum allowed size, WMax = 21. The final outer
window size, W2 × W2 is determined as the area of corruption and
the notch filter of size W2 × W2 is used for diffusing the noisy
peaks. Although the adaptive window movement of the proposed
filter is similar to AONF, the proposed scheme makes better and
more accurate region quantification of noisy frequencies than
AONF due to its effective ratio based region-growing criteria. The
filtering process of the algorithm is explained in the following
subsection.

2.2 De-noising process

The noise filtering stage of AGNF diffuses the identified noisy
peak areas of Fu, v by applying AGNF of size W2 × W2. The filter
provides identity results when Fu, v is uncorrupted. In other words,

Fig. 1  Flowchart of AGNF algorithm
 

Fig. 2  Illustration of Ω
u, v

In
 and Ω

u, v

Out
 when W1 = 3,  denotes Ω

u, v

In
 and 

denotes Ω
u, v

Out
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after the noise detection stage, if μOut/μIn > T  and f = 1, the
algorithm performs the de-noising process of noisy peak areas
associated with Fu, v by applying Gaussian notch filter of size
W2 × W2 since the adaptively determined W2 × W2 covers the
corrupted noisy peak areas associated with the peak frequency Fu, v

at position u, v . In this case, for all i1, i2 ∈ Ωu, v
W2, the notch

filtering operation is applied to Fu, v for generating the restored
frequency domain image, F

~
u, v. The notch filtering operation is

defined by

F
~

u + i1, v + i2 = Minimum F
~

u + i1, v + i2, Fu + i1, v + i2 × Gi1, i2 (7)

where G is the Gaussian notch function [7, 25] with single valley in
the centre and is defined by

Gi1, i2 = 1 − Ae−B i12 + i22 (8)

where A is the magnitude of the filter and its value lies in the
interval [0, 1]. B is a positive scaling constant along rows and
columns of G [7]. In (7), the minimum operation makes sure that
the algorithm performs maximum diffusion of corrupted
frequencies when the Gaussian notch filter corresponding to
different noisy peaks overlap each other.

Otherwise, if μOut/μIn > T  and f = 0, then it is clear that
current frequency Fu, v under consideration is uncorrupted and the
algorithm processes the next pixel from step 1 of previous
subsection.

Once the algorithm has processed all the frequencies of the
frequency domain image, inverses of shifting and Fourier
transform are determined to reproduce the final de-noised image, Z
as

Zx, y = ∑
i − 0

M − 1
∑
j = 0

N − 1
−1 i + jF

~
i, je −1 2π i × x

M + j × y
N (9)

Here Zx, y denotes the final de-noised image at position x, y .
Since proposed algorithm performs maximum diffusion of

noisy peaks even if the notch filters overlap each other, the
proposed algorithm is better in diffusing noisy frequencies and
thereby providing better restoration of images corrupted by
periodic noises. Fig. 3 shows the procedure/pseudo-code for
implementing AGNF algorithm. The proposed AGNF algorithm is
advantageous in that it adaptively varies its respective window
sizes according to the ratio-based region-growing criteria while

identifying and attenuating noisy frequencies depending upon the
periodic noise intensity and so it provides better ability in de-
noising digital images contaminated with periodic noises.

3 Experimental results and analysis
The experimental simulations are conducted by using Matlab 7
software in an i7 desktop computer with 3.4 GHz speed and 8 GB
RAM. The effectiveness of AGNF is compared with ideal low-pass
filter (ILPF) [4], FDMF1, FDMF2, WGNF, GSF, Chakraborty et
al., AONF, IF, BRF, GNRF, Federic et al., WASMF and LFDF
algorithms. The experiment analysis is made with 27 sets of
naturally and artificially corrupted images with varying feature and
spectral complexities from which the 8-bit Parrot 768 × 512 ,
Lena 512 × 512 , Boats 512 × 512 , Barbara 512 × 512 , Bridge
512 × 512 , Brain MRI 191 × 237 , Street 1024 × 768 , Boy
321 × 480 , Mariner 4 500 × 500 , Lower body MRI 331 × 324 ,

Hand written 772 × 682 , live football match 367 × 291  and
Clown 331 × 324  images are used in this paper for demarcating
the effective performance of the proposed AGNF algorithm. These
images are selected for comparative analysis of different
algorithms according to varying complexities in features, edges and
texture details. Similar to other algorithms [7, 29–31, 36–38], the
sinusoidal functions that create noisy peaks at frequency spectrum
of natural image are used for artificially corrupting images to test
the performance of algorithms. These noise functions with
strength, a are defined below as N1 and N2:

N1 i, j = a*255
Sin 1.8i + Sin 1.8 j + Sin + j

+Sin 2.2i + 2.2 j + Sin 1.8i − 1.8 j
+Sin i − j + Sin 2.2i − 2.2 j

(10)

N2 i, j = a*255 Sin 1.1i + 1.1 j + Sin 1.5i
+ Sin 1.5 j + 2.2 j + Sin 1.1i − 1.1 j

(11)

Here i, j  represents the spatial position. The artificially corrupted
test images for performing quantitative and qualitative analysis of
different algorithms are formed by adding N1 + N2 noise to
uncorrupted synthetic images. The value of strength parameter, a is
set in the interval [0.1 0.9] to corrupt the images.

The corrupted images are symmetrically padded with 30 rows
and columns for avoiding the border effects in the restored images.
For performing quantitative subjective/objective analysis of
filtering algorithms, the metrics such as mean absolute error
(MAE), peak signal-to-noise ratio (PSNR), mean structural
similarity index measure (MSSIM) [39] and computation time
(CT) in seconds are used. Formulations of MAE, PSNR and
MSSIM are as in [7, 29–38]. An effective algorithm needs to
produce high-quality restored outputs with higher PSNR and
MSSIM values and lower MAE and CT values.

Since textural features in natural images have similar visual
appearances like quasi-periodic noises, it is important to analyse
the effectiveness of comparative filters in differentiating textural
features from noisy counterparts and thereby maintaining textural
features in its restored outputs. Tables 1–5 show the quantitative
results of various algorithms in terms of MAE, PSNR, MSSIM and
CT while restoring Lena, Boats, Bridge, Barbara and Parrot images
contaminated by N1 + N2 type noise with a values equal to 0.1, 0.5
and 0.9. 

Quantitative results in Tables 1–3 provide the insight of the
performance of various algorithms in restoring lesser textured
images with different levels of edge details. From the objective
metrics, it is seen that Federic et al. filter provides closer results
with proposed algorithm when restoring images contaminated with
lower quantum of noises while WASMF is closer to the proposed
algorithm when restoring images contaminated with higher
quantum of noises. Quantitative results on Barbara and Parrot
images shown in Tables 4 and 5 are used for analysing the
performance of different algorithms in restoring textured images.
From Tables 4 and 5, it is visible that although WASMF is closer in
terms of quantitative metrics with the proposed algorithm at all

Fig. 3  Pseudo-code of AGNF algorithm
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noise levels, the proposed algorithm is better in restoring images
with textural details.

Further, it is clearly visible that the AGNF produces better
PSNR and MSSIM values than the next best LFDF,WASMF, BRF
and GNRF algorithms. Table 6 shows the average results of various

algorithms while restoring ten standard images contaminated with
N1 + N2 noise. From Table 6, it is found that the average values of
all quantitative metrics are better for the proposed AGNF; MAE
for AGNF being least followed by GNRF with a slightly higher
value, PSNR being the highest for AGNF followed by LFDF,

Table 1 Quantitative comparison of algorithms for restored Lena images from N1 + N2 noise with different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 4.31 31.29 0.96 0.33 7.50 23.96 0.90 0.34 11.10 19.33 0.84 0.34
FDMF1 11.84 23.14 0.75 10.67 58.44 9.35 0.29 10.20 104.78 4.27 0.16 10.13
FDMF2 9.27 25.44 0.79 13.56 42.41 12.24 0.34 13.18 77.44 7.12 0.18 13.97
WGNF 4.17 29.17 0.95 13.32 17.45 16.93 0.71 13.38 31.00 12.04 0.55 13.52
GSF 3.01 30.15 0.98 2.92 9.19 18.36 0.91 9.60 13.78 14.24 0.88 15.99
Chakraborthy et al. filter 3.44 33.77 0.94 3.49 30.13 15.56 0.44 6.13 54.62 10.41 0.28 8.59
AONF 3.77 34.10 0.68 2.36 19.12 19.92 0.25 2.27 33.97 14.95 0.14 2.33
IF 10.00 25.93 0.88 6.35 19.14 19.76 0.65 6.30 27.38 16.03 0.51 6.42
BRF 2.28 37.27 0.98 4.34 10.05 23.81 0.81 4.21 18.94 18.13 0.66 4.19
GNRF 1.69 37.43 0.99 5.16 6.97 24.06 0.92 5.15 13.12 18.25 0.83 5.10
Federic et al. filter 1.61 40.19 0.99 3.59 3.75 30.75 0.93 3.37 5.43 27.01 0.86 4.23
WASMF 2.61 37.40 0.97 2.09 4.35 32.09 0.93 2.79 6.98 27.67 0.86 3.04
LFDF 1.97 39.26 0.98 2.27 5.16 30.71 0.91 2.75 8.12 26.74 0.83 3.19
AGNF 1.28 43.29 1.00 1.73 4.22 32.66 0.95 1.77 7.39 27.71 0.88 1.87
Bold values indicates the best experimental values obtained for all criteria among different algorithms.

 

Table 2 Quantitative comparison of algorithms for restored Boats images from N1 + N2 noise with different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 6.39 28.33 0.94 0.31 9.25 23.24 0.90 0.34 12.62 19.07 0.84 0.31
FDMF1 12.12 22.99 0.78 10.50 58.86 9.29 0.33 10.93 105.74 4.21 0.19 10.73
FDMF2 9.23 25.42 0.83 13.49 43.25 12.16 0.38 14.18 77.53 7.12 0.22 13.98
WGNF 4.54 29.07 0.96 13.18 17.82 16.78 0.74 13.30 31.48 11.92 0.58 14.24
GSF 3.47 29.68 0.98 2.66 9.86 18.15 0.92 8.28 14.92 13.83 0.89 13.31
Chakraborthy et al. filter 3.54 33.66 0.95 3.52 28.90 15.95 0.50 5.82 54.49 10.39 0.32 7.66
AONF 4.13 33.19 0.78 2.26 20.81 19.06 0.32 2.22 32.95 15.11 0.21 2.24
IF 9.06 25.70 0.91 6.29 16.63 20.84 0.72 6.29 26.33 16.38 0.55 6.35
BRF 2.60 36.55 0.98 4.47 10.17 23.77 0.84 4.33 18.92 18.18 0.70 4.35
GNRF 2.04 36.88 0.99 5.22 7.12 24.03 0.93 5.19 14.36 18.14 0.82 5.17
Federic et al. filter 2.37 37.22 0.99 3.28 4.55 29.65 0.95 3.61 6.26 26.01 0.88 5.05
WASMF 3.27 35.07 0.96 2.10 4.35 32.16 0.95 2.76 7.22 27.40 0.88 3.02
LFDF 2.11 38.85 0.98 2.64 5.14 30.77 0.93 2.70 8.10 26.83 0.86 3.15
AGNF 1.85 40.34 0.99 1.68 4.52 32.26 0.96 1.81 7.58 27.58 0.90 1.86
Bold values indicates the best experimental values obtained for all criteria among different algorithms.

 

Table 3 Quantitative comparison of algorithms for restored Bridge images from N1 + N2 noise with different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 10.13 24.95 0.92 0.33 12.37 21.89 0.90 0.35 15.35 18.50 0.86 0.35
FDMF1 12.44 22.68 0.87 10.82 59.31 9.22 0.41 11.52 10.97 4.19 0.24 11.60
FDMF2 10.98 24.19 0.89 11.51 43.11 12.08 0.48 13.40 76.65 7.14 0.28 13.24
WGNF 5.52 27.78 0.98 11.88 19.32 16.14 0.82 13.01 33.41 11.53 0.67 14.07
GSF 4.08 29.50 0.99 3.04 10.48 18.30 0.95 10.28 15.10 14.28 0.92 17.10
Chakraborthy et al. filter 3.57 33.60 0.98 3.45 16.97 19.85 0.78 3.28 52.63 10.81 0.41 8.45
AONF 3.83 34.10 0.92 2.36 18.64 20.19 0.51 2.23 33.50 15.10 0.31 2.35
IF 15.72 21.62 0.87 6.42 21.45 18.93 0.75 6.36 29.97 15.60 0.62 6.49
BRF 2.97 35.68 0.99 4.45 10.26 23.75 0.91 4.34 18.95 18.27 0.81 4.33
GNRF 2.41 36.23 1.00 5.18 9.37 23.32 0.94 5.15 15.51 17.98 0.87 5.09
Federic et al. filter 6.55 28.22 0.93 3.98 8.28 26.07 0.92 3.98 9.78 24.09 0.91 5.27
WASMF 4.08 32.19 0.96 2.10 5.26 30.92 0.97 2.73 7.79 27.04 0.94 2.96
LFDF 3.01 36.00 0.99 2.26 5.43 30.41 0.97 2.74 8.39 26.61 0.93 3.11
AGNF 2.53 37.67 0.99 1.59 4.90 31.57 0.98 1.80 7.84 27.30 0.95 1.84
Bold values indicates the best experimental values obtained for all criteria among different algorithms.
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MSSIM being highest for AGNF and GRNF. Though all
algorithms have O(n2) complexity in frequency domain, the time
taken to run the proposed AGNF is the least when compared to
most other adaptive filters in the comparative study under the same
experimental conditions. Thus, Tables 1–6 demarcates the

effectiveness of the proposed AGNF algorithm in providing better
objective and subjective metric values than other comparative
algorithms.

Fig. 4 shows the restoration results produced by the proposed
AGNF (Fig. 4f) and various frequency/spatial domain based

Table 4 Quantitative comparison of algorithms for restored Barbara images from N1 + N2 noise with different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 9.01 24.41 0.87 0.32 11.86 21.61 0.82 0.35 15.22 18.37 0.77 0.34
FDMF1 12.05 23.01 0.79 10.37 58.66 9.31 0.32 10.88 105.19 4.23 0.17 11.73
FDMF2 9.39 25.37 0.84 13.50 43.31 12.11 0.37 13.20 77.50 7.12 0.20 12.97
WGNF 4.65 28.87 0.96 13.26 18.68 16.36 0.74 13.33 31.64 11.86 0.59 13.34
GSF 3.37 29.87 0.98 3.12 9.55 18.49 0.93 10.58 13.84 14.58 0.89 18.80
Chakraborthy et al. filter 3.53 33.70 0.95 3.64 28.30 16.08 0.52 6.09 53.73 10.54 0.31 6.73
AONF 3.78 34.12 0.76 2.30 20.35 19.30 0.35 2.33 36.62 14.20 0.22 2.33
IF 10.15 25.32 0.87 6.36 16.45 20.93 0.73 6.43 26.10 16.37 0.57 6.49
BRF 2.67 36.26 0.98 4.41 10.26 23.77 0.85 4.32 18.77 18.30 0.73 4.30
GNRF 3.92 32.73 0.96 4.48 7.87 23.83 0.91 4.44 14.04 18.19 0.84 4.42
Federic et al. filter 8.38 24.97 0.88 3.91 8.48 24.91 0.90 3.73 9.48 24.20 0.88 5.12
WASMF 2.81 36.79 0.97 1.93 4.80 31.51 0.94 2.80 7.32 27.46 0.89 3.07
LFDF 3.86 33.32 0.97 2.74 5.34 30.57 0.93 2.69 8.39 26.57 0.86 3.15
AGNF 1.70 40.16 0.99 1.67 4.55 32.03 0.96 1.83 7.65 27.49 0.91 1.97
Bold values indicates the best experimental values obtained for all criteria among different algorithms.

 

Table 5 Quantitative comparison of algorithms for restored Parrot images from N1 + N2 noise with different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 11.20 22.81 0.75 1.50 15.24 22.98 0.74 0.72 12.36 22.43 0.69 0.53
FDMF1 9.79 24.73 0.70 15.55 17.97 11.21 0.22 20.75 86.02 6.13 0.11 20.61
FDMF2 6.61 27.78 0.81 20.82 30.01 14.99 0.33 19.97 53.10 10.03 0.19 20.49
WGNF 3.64 30.34 0.94 21.96 12.62 19.54 0.72 20.82 21.88 14.66 0.56 21.05
GSF 2.36 31.57 0.98 4.86 7.69 19.55 0.90 13.74 11.37 15.65 0.86 22.92
Chakraborthy et al. filter 3.68 32.86 0.90 6.10 22.15 17.25 0.46 4.97 46.00 11.08 0.26 11.64
AONF 4.50 32.01 0.48 3.79 22.74 17.96 0.13 3.48 40.92 12.85 0.07 3.42
IF 8.32 26.10 0.86 10.60 17.78 20.18 0.62 9.65 25.53 16.70 0.45 9.78
BRF 2.32 36.48 0.97 7.14 10.09 23.84 0.73 6.38 17.56 18.72 0.58 6.47
GNRF 2.61 35.36 0.97 8.54 7.48 23.66 0.86 7.71 12.93 18.41 0.75 7.70
Federic et al. filter 1.92 36.25 0.98 5.29 4.85 31.27 0.90 4.37 7.64 28.93 0.88 4.72
WASMF 2.31 35.25 0.97 4.96 4.83 30.56 0.89 4.37 7.87 26.30 0.78 4.53
LFDF 1.89 36.48 0.98 11.15 3.98 31.45 0.91 11.04 6.51 28.98 0.84 11.29
AGNF 1.38 41.03 0.99 2.17 3.42 32.10 0.92 2.54 7.48 29.34 0.88 2.14
Bold values indicates the best experimental values obtained for all criteria among different algorithms.

 

Table 6 Average quantitative results of 25 restored images from N1 + N2 noise of different noise strength a
De-noising methods Noise strength a = 0.1 Noise strength a = 0.5 Noise strength a = 0.9

MAE PSNR MSSIM CT MAE PSNR MSSIM CT MAE PSNR MSSIM CT
ILPF 9.15 24.27 0.88 0.45 11.64 19.8 0.8 0.19 14.79 18.43 0.81 0.34
FDMF1 12.16 20.65 0.75 10.6 58.64 11.08 0.37 11.34 97.32 5.21 0.21 12.03
FDMF2 9.27 27.13 0.77 13.69 43.11 13.1 0.42 13.63 76.94 5.12 0.17 13.14
WGNF 5.12 30.34 0.93 13.39 18.96 17.76 0.69 13.63 32.02 12.6 0.58 13.84
GSF 3.67 29.75 0.91 3.4 10.08 16.38 0.95 10.3 14.62 12.58 0.84 17.57
Chakraborthy et al. filter 3.43 31.86 0.92 3.59 25.63 14.54 0.58 5.59 53.74 9.78 0.32 7.27
AONF 3.41 33.5 0.81 2.61 19.78 19.71 0.38 2.15 35.42 13.7 0.22 2.43
IF 9.74 26.05 0.84 6.51 16.58 22.12 0.73 6.39 26.04 17.51 0.54 6.81
BRF 2.97 36.56 0.95 4.42 10.09 24.49 0.8 4.13 19.02 15.62 0.75 4.29
GNRF 3.09 33.57 0.97 5.11 7.95 22.01 0.96 4.71 13.95 17.78 0.77 4.97
Federic et al. filter 6.66 27.73 0.95 3.81 7.68 25.29 0.93 4.03 8.51 23.86 0.9 5.46
WASMF 2.95 33.75 0.96 1.97 4.67 29.38 0.97 3.02 7.37 26.72 0.92 3.22
LFDF 3.65 32.5 0.94 2.8 5.33 29.2 0.96 3.14 8.59 27.92 0.82 3.49
AGNF 2.04 39.61 0.98 1.8 4.22 30.88 0.97 1.82 7.39 29.02 0.93 2.21
Bold values indicates the best experimental values obtained for all criteria among different algorithms.
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comparative algorithms (Figs. 4c–e) from cropped version of noisy
Parrot image contaminated by N1 + N2 noise with a = 0.5. 

Fig. 5 shows the Fourier transform of restored Parrot images by
different frequency domain based algorithms corresponding to
Fig. 4. From Figs. 4 and 5, it is seen that Federic et al. filter and
LFDF perform well in restoring noisy peaks created in Fig. 5b by
the noisy sinusoidal functions corresponding to periodic noises in
Fig. 4b. The results produced by Federic et al. filter though are
arbitrarily close to the results of AGNF, the proposed AGNF
produces slightly better results as can be understood from the
Fourier transform of Figs. 4c–f in Figs. 5c–f.

The misclassifications of noisy peak areas by the comparative
filters in the restoration phase are also vivid in Figs. 5c–e. Figs. 6
and 7 show the restored results of top ranking algorithms from
naturally corrupted Brain MRI and Street images, respectively. The
images restored by the proposed AGNF (Figs. 6f and 7f) though
have some visual similarity with LFDF (Figs. 6e and 7e), AGNF
shows good improvements in visual quality while comparing the
restored images produced by WGNF (Figs. 6b and 7b), GNRF
(Figs. 6c and 7c) and Federic et al. filters (Figs. 6d and 7d). Fig. 8

shows the naturally corrupted images of different applications. 
Restored images produced by AGNF (Figs. 9a–f) from naturally
corrupted images in Figs. 8a–f demarcate the improved
performance of the proposed AGNF while removing periodic noise
from digital images. 

In order to visually analyse the performance of algorithms in
preserving edges, edge deviations in restored outputs by different
algorithms using Canny edge detection [4] method are shown in
Fig. 10. The red pixels are the edge pixels of the noise-free image
that are not in the edge image of the restored image while blue
pixels denote the wrongly introduced edges in the restored image
that are not in the edge image of the noise-free image. The green
pixels are the correctly retained edges of the restored outputs. From
Fig. 10, it is clear that the edge retention errors in terms of red and
blue pixels are less significant in numbers for the proposed
algorithm (Fig. 10f) and it visually demarcates the improved
capability of the proposed algorithm in preserving edges in its
restored outputs than other algorithms (Figs. 10b–e).

Fig. 4  Restored Parrot images from N1 + N2 noise of strength a = 0.5
(a) Original image, (b) Noisy image (PSNR: 6.80, MSSIM: 0.005), (c) WGNF (PSNR: 19.54, MSSIM: 0.72), (d) Federic et al. filter (PSNR: 31.27, MSSIM: 0.90), (e) LFDF (PSNR:
31.45, MSSIM: 0.91), (f) Proposed AGNF (PSNR: 32.10, MSSIM: 0.92)

 

Fig. 5  Fourier transform of restored Parrot images from N1 + N2 noise of strength a = 0.5
(a) Fourier transform of Fig. 4a, (b) Fourier transform of Fig. 4b, (c) Fourier transform of Fig. 4c, (d) Fourier transform of Fig. 4d, (e) Fourier transform of Fig. 4e, (f) Fourier
transform of Fig. 4f

 

Fig. 6  Restored results of different algorithms from naturally corrupted brain MRI images
(a) Input image, (b) WGNF, (c) GNRF, (d) Federic et al. filter, (e) LFDF, (f) Proposed AGNF

 

Fig. 7  Restored results of different algorithms from naturally corrupted street images
(a) Input image, (b) WGNF, (c) GNRF, (d) Federic et al. filter, (e) LFDF, (f) Proposed AGNF
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4 Discussion and parameter analysis
The ILPF provides its best results when it allows only specific disc
shaped LFR around DC coefficient with a maximum radius so that
it does not meet nearest noisy peak of the corrupted frequency
domain image and this rejection areas centred at DC coefficient are
identified by trial and error approach. The FDMF1, FDMF2 and
WGNF though perform well in detecting noisy peaks, they find
difficulty in providing good restored results since they are not
adaptive in fixing the window size. AONF requires quantification
of circular LFR around DC coefficient for identifying global
threshold to avoid these areas from noisy peak detection process.

However, the proposed algorithm does not require any such
additional calculations since it works on local ratio based
thresholding to identify noisy regions. This advantage of the
proposed algorithm makes it skip the numerous calculations
involved in finding LFR and the possible errors in fixing the radius
of LFR areas. Since the noisy peak heights are locally varying by
the strength of noise amplitude and are scattered in the frequency
domain image in accordance with the noisy sinusoidal frequencies,
the global threshold identified by AONF may not correctly identify
smaller noisy peaks thereby leaving much of these noises unaltered
in its restored images. Further, even in the absence of noise in
images, this global threshold used by AONF may misclassify
natural image frequency variations as noisy peaks.

Although the computational complexity of the algorithm in
frequency domain is same as other algorithms in the comparison
study, the proposed algorithm is faster than most other methods in
terms of time taken in seconds (Tables 1–6). This is due to the fact
that the proposed scheme does not need to employ additional
calculations such as finding LFRs, global threshold and so on. The
improved quantitative values obtained by AGNF tabulated in
Tables 1–6 and the visual analysis on Figs. 4–7 clearly reveal the
improved performance of the proposed algorithm particularly its
accuracy in identifying noisy peak areas, efficacy in rejecting

corrupted frequencies and capability in maintaining thin and
narrow edges in the restored images.

The noise detection and correction window sizes of FDMF1,
FDMF2 and WGNF are set to 7 × 7 as suggested by the authors.
For WGNF and AONF, the parameters A and B of Gaussian notch
filter are, respectively, set to 1.0 and 0.01 as the proposed AGNF
algorithm. The GSF uses region-growing technique based on
similarity of frequency values to quantify the noisy regions. So, the
algorithm could not provide effective results due to unfeasible
similarity checks employed in the exponentially decreasing noisy
peak areas. Similar to the proposed algorithm, AONF performs
noise quantification process by using adaptively varying inner and
outer windows starting from sizes 3 × 3 and 5 × 5. AONF counts
the number of frequency components of larger window that has a
lower value than its corresponding comparison pixel in the lower
window. If this count is more than half of the total outer pixels, the
algorithm increases the size of both windows. The process
continues until the condition fails. The region covered by last outer
window is considered as the quantified area of noise
contamination. However, this region growing criteria may lead to
misclassifications in quantifying the noisy regions. Since the
proposed algorithm uses threshold to check the ratio of relative
deviation in frequency averages of outer frequencies with inner
frequencies to decide the purity of inner frequencies, the proposed
algorithm always provides better accuracy in quantifying noisy
peak regions than AONF and GSF.

Although the noisy peak detection procedures employed by IF,
BRF and GNRF are effective, these algorithms do not quantify the
noisy areas around it. The filtering window width for IF, BRF and
GNRF are, respectively, set to 9, 8 and 9 in brick wall and cross
shapes as suggested by the authors. WASMF, LFDF Federic et al.
filters use static thresholding functions for detecting noisy
frequencies and these functions are not adaptive to varying strength
and type of corrupting noises. Other parameters associated with

Fig. 8  Naturally corrupted images of different applications
(a) Mariner 4 image, (b) Lower body MRI image, (c) Boy image, (d) Hand written image, (e) Live football match image, (f) Clown image

 

Fig. 9  Restored images produced by AGNF from naturally corrupted images of different applications
(a) De-noised Mariner 4 image, (b) De-noised Lower body MRI image, (c) De-noised Boy image, (d) De-noised Hand written image, (e) De-noised Live football match image, (f)
De-noised Clown image

 

Fig. 10  Edge deviations in restored images of corrupted Barbara image with N1 + N2 noise and a = 0.05 by different algorithms indicated as correctly
retained (Green), not retained (Red) and wrongly introduced (Blue) edges
(a) Original image, (b) AONF, (c) WGNF, (d) Federic et al. filter, (e) LFDF, (f) Proposed AGNF
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FDMF1, FDMF2, WGNF, GSF, Chakraborty et al., AONF, IF,
BRF, GNRF, Federic et al., WASMF and LFDF algorithms are set
as suggested by the authors.

In contrast to these algorithms, the proposed AGNF algorithm
need only to optimise the threshold, T used for peak and noisy
region identification. The optimum value of T largely depends on
the height and width of the noisy peak area that in turn depends on
the noise amplitude of corrupting noise. Optimisation of T requires
either a rough estimation of corrupting noise/noisy peak areas or a
trained neural/genetic/deep learning algorithm and these processes
require additional calculations. To speed up the process by
avoiding these additional calculations, this study attempted a
reasonable estimation of T by performing empirical analysis.
Numerous experiments are conducted by varying the value of T,
noise types, noise strength and images to arrive at a reasonable
value for T from which the images added with N1 + N2 noise are
discussed in this paper. The average PSNR values of AGNF
algorithm for varying T from different images corrupted with N1 + 
N2 noise are provided in Table 7. The plot of average PSNR values
from 25 restored images with different noise strength between
threshold values is shown in Fig. 8. Fig. 11 shows that the
performance of AGNF is reasonably stable when T is in the range
[0.25 0.4]. Based on these results, the value of T is set as T = 0.35
for all experiments although better optimisation can be attempted
by performing rough estimation of noise or by applying trained
neural network/deep learning/genetic algorithms as a future work.

5 Conclusion
The paper presented an AGNF in Fourier transform domain for
effectively restoring images contaminated with periodic, quasi-
periodic and Moiré pattern noises. The frequency domain based
proposed algorithm has the capability of adaptively detecting and
quantifying noisy peak areas for diffusing these noisy peaks by
Gaussian notch filter of adaptively varying sizes. Experimental
analysis conducted under different test conditions on various
images proved that the ratio based region-growing criteria of the
proposed algorithm provides better accuracy in detecting and
quantifying noisy peak regions in frequency domain images.
Qualitative and quantitative result analysis demarcated that AGNF
produces better restored outputs and is capable of retaining edges
and textural features in its restored outputs than other comparative
methods used in the experimental study.

6 References
[1] Kursat, G.B., Li, X.: ‘Image restoration: fundamentals and advances’ (CRC

Press, New York, USA., 2012).
[2] Milan, S., Hlavac, V., Boyle, R.: ‘Image processing analysis, and machine

vision’ (Cengage Learning, Boston, 2014, 4th edn.)
[3] Saudia, S., Varghese, J., Nallaperumal, K., et al.: ‘Salt & pepper impulse

detection and median based regularization using adaptive median filter’. Proc.
Int. Conf. IEEE Region 10 TENCON, November 2008, pp. 1–6

[4] Gonzalez, R.C., Woods, R.E.: ‘Digital image processing’ (Pearson Prentice
Hall, New Jersey, USA., 2008, 3rd edn.)

[5] Chen, Y.Y., Kashti, T., Fischer, M., et al.: ‘The lattice-based screen set: A
square-color all-orders Moiré-free screen set’, IEEE Trans. Image Process.,
2016, 25, (4), pp. 1873–1886

[6] Yunfei, L.: ‘Observation of electron beam Moiré fringes in an image
conversion tube’, Ultramicroscopy, 2016, 170, pp. 19–23

[7] Moallem, P., Masoumzadeh, M., Habibi, M.: ‘A novel adaptive Gaussian
restoration filter for reducing periodic noises in digital image’, Signal. Image.
Video. Process., 2013, 9, (5), pp. 1179–1191

[8] Frédéric, S., Grediac, M.: ‘Sensor noise modeling by stacking pseudo-
periodic grid images affected by vibrations’, IEEE Signal Process. Lett.,
2014, 21, (4), pp. 432–436

[9] Yuanhe, T.: ‘Beyond the partial light intensity imager: eliminating Moiré
patterns’, Opt. Commun., 2015, 355, (11), pp. 143–147

[10] Hamed, A.M., Al-Saeed, T.A.: ‘Reconstruction of the corneal layers affected
by a periodic noise application on microscopic interferometry’, Int. J. Phot.
Opt. Tech 2, 2016, 3, pp. 6–12

[11] Zhouping, W.: ‘A median-Gaussian filtering framework for Moiré pattern
noise removal from X-ray microscopy image’, Micron, 2012, 43, (2), pp.
170–176.

[12] Katarzyna, K., Bekiesińska-Figatowska, M.: ‘Artifacts in magnetic resonance
imaging’, Polish J. Radiol., 2015, 80, (2), pp. 93–106

[13] Bruno, C., Dooms, A., Cornelis, J., et al.: ‘Digital canvas removal in
paintings’, Signal Process., 2012, 92, (4), pp. 1166–1171

[14] Sabine, H.: ‘From A as in aliasing to Z as in zipper: artifacts in MRI’, Clin.
Neuroradiol., 2008, 18, (1), pp. 25–36

[15] Yi-Hsuan, K., MacFall, J.R.: ‘Correction of MR k-space data corrupted by
spike noise’, IEEE Trans. Med. Imaging, 2006, 19, (7), pp. 671-680.

[16] Ding, W., Li, A., Wu, J., et al.: ‘Automatic macroscopic density artefact
removal in a nissl-stained microscopic atlas of whole mouse brain’, J.
Microsc., 2013, 251, (2), pp. 168–177.

Table 7 PSNR achieved with different threshold values while de-noising images contaminated with N1 + N2 noise
Images Noise strength, a Values of threshold, T

T = 0.2 T = 0.25 T = 0.3 T = 0.35 T = 0.4 T = 0.45 T = 0.5 T = 0.55
Barbara 0.1 19.96 40.41 40.67 40.16 40.10 39.29 29.10 25.58

0.5 6.01 31.13 31.91 32.03 31.79 31.95 27.43 24.73
0.9 0.91 27.26 27.40 27.49 27.52 27.12 25.77 23.63

Lena 0.1 19.98 40.98 43.27 43.29 43.28 42.15 37.91 35.35
0.5 6.01 31.58 32.53 32.66 32.40 33.74 33.05 32.31
0.9 0.91 27.47 27.67 27.71 27.82 26.82 26.61 26.28

Boats 0.1 19.96 40.47 40.50 40.34 39.97 36.12 33.35 30.21
0.5 6.01 31.38 32.14 32.26 31.66 31.51 30.36 28.11
0.9 0.91 27.14 27.45 27.58 27.19 27.01 26.87 26.67

Bridge 0.1 19.93 37.41 37.84 37.67 37.45 36.44 25.85 23.95
0.5 6.01 31.11 31.47 31.57 31.13 30.38 24.59 23.89
0.9 0.91 26.83 27.54 27.30 27.36 26.79 23.44 22.89

Baboon 0.1 19.92 36.53 36.76 36.22 35.58 32.98 30.67 26.28
0.5 6.01 30.44 30.79 30.87 30.61 28.71 27.60 24.89
0.9 0.91 26.72 26.87 26.99 26.73 26.49 25.03 23.77

Bold values indicates the best experimental values obtained for all criteria among different algorithms.
 

Fig. 11  Plot of average PSNR values recorded while de-noising images
affected with N1 + N2 noise of different strengths

 

IET Image Process., 2020, Vol. 14 Iss. 8, pp. 1529-1538
© The Institution of Engineering and Technology 2020

1537

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 03,2020 at 04:41:15 UTC from IEEE Xplore.  Restrictions apply. 



[17] Michel, G., Frédéric, S., Blaysat, B.: ‘Removing quasi-periodic noise in strain
maps by filtering in the Fourier domain’, Exp. Tech., 2016, 40, (3), pp. 959–
971

[18] Chang, Y., Yan, L., Fang, H., et al.: ‘Anisotropic spectral-spatial total
variation model for multispectral remote sensing image destriping’, IEEE
Trans. Image Process., 2015, 24, (6), pp. 1852–1866

[19] Dou, H.X., Huang, T.Z., Deng, L.J., et al.: ‘Directional ℓ0 sparse modeling
for image stripe noise removal’, Remote Sens., 2018, 10, (3), p. 361.

[20] Xiao, P., Yecai, G., Peixian, Z.: ‘Removing stripe noise from infrared cloud
images via deep convolutional networks.’, IEEE Photonics J., 2018, 10, (4),
pp. 1–14.

[21] Atul, R.: ‘An empirical study of periodic noise filtering in Fourier domain: an
introduction to novel autonomous periodic noise removal algorithms’
(LapLambert Academic Publishing, Saarland, 2013)

[22] Aizenberg, I., Butakoff, C.: ‘Nonlinear frequency domain filter for quasi
periodic noise removal’. Proc. Int. Workshop on Spectra Methods and
Multirate Signal Processing, Toulouse, France, 2002

[23] Aizenberg, I., Butakoff, C.: ‘Frequency domain median like filter for periodic
and quasi-periodic noise removal’. Proc. Int. Conf. on Image Processing:
Algorithms and Systems, San Jose, CA, USA., May 2002, pp. 181-191.

[24] Aizenberg, I., Butakoff, C.: ‘A windowed Gaussian notch filter for quasi-
periodic noise removal’, Image Vis. Comput., 2008, 26, (10), pp. 1347–1353

[25] Anastasios, K.C., Olivo, A., Munro, P.R.T., et al.: ‘Optical characterisation of
a CMOS active pixel sensor using periodic noise reduction techniques’, Nucl.
Instrum. Methods Phys. Res., Sect. A, 2010, 620, (2), pp. 549–556.

[26] Ketenci, S., Gangal, A.: ‘Design of Gaussian star filter for reduction of
periodic noise and quasi-periodic noise in gray level images’. Proc. Int. Conf.
on Innovations in Intelligent Systems and Applications, Trabzon, Turkey,
2012, pp. 1–5.

[27] Hudhud, G.A., Turner, M.J.: ‘Digital removal of power frequency artifacts
using a Fourier space median filter’, IEEE Signal Process. Lett., 2005, 12, (8),
pp. 573–576.

[28] Chakraborty, D., Tarafder, M.K., Chakraborty, A., et al.: ‘A proficient method
for periodic and quasi-periodic noise fading using spectral histogram
thresholding with sinc restoration filter’, AEU-Int. J. Electron. Commun.,
2016, 70, (12), pp. 1580–1592.

[29] Frédéric, S., Grédiac, M.: ‘Automated removal of quasiperiodic noise using
frequency domain statistics’, J. Electron Imaging, 2015, 24, (1), p. 13003

[30] Varghese, J., Subash, S., Tairan, N.: ‘Fourier transform-based windowed
adaptive switching minimum filter for reducing periodic noise from digital
images’, IET Image Process., 2016, 10, (9), pp. 646–656.

[31] Varghese, J., Subash, S., Tairan, N., et al.: ‘Laplacian-based frequency
domain filter for the restoration of digital images corrupted by periodic noise’,
Can. J. Electr. Comput. Eng., 2016, 39, (2), pp. 82–91

[32] Chakraborty, D., Chakraborty, A., Banerjee, A., et al.: ‘Automated spectral
domain approach of quasi-periodic denoising in natural images using notch
filtration with exact noise profile’, IET Image Process., 2018, 12, (7), pp.
1150–1163.

[33] Ketenci, S., Ali, G.: ‘Automatic reduction of periodic noise in images using
adaptive Gaussian star filter 2’, Turkish J. Electr. Eng. Comput. Sci., 2017, 25,
(9), pp. 2336–2348

[34] Ionita, M., Coanda, H.: ‘Wavelet and Fourier decomposition based periodic
noise removal in microscopy images’, Sci. Bulletin Electr. Eng. Faculty, 2018,
38, (1), pp. 68–71

[35] Zhou, W., Yunjie, Z., Yongchao, L.: ‘Bilateral linear operator for period noise
image De-noising’. Proc. ACM Int. Conf. Computer Science and Application
Engineering, Hohhot, People's Republic of China, October 2018, pp. 1–5.

[36] Chakraborty, D., Milan, K.T., Ayan, B., et al.: ‘Gabor-based spectral domain
automated notch-reject filter for quasi-periodic noise reduction from digital
images’, Multimedia Tools Appl., 2019, 78, (2), pp. 1757–1783

[37] Varghese, J.: ‘Frequency-domain-based switching median filter for the
restoration of images corrupted with high-density periodic noise’, Scientia
Iranica, Trans. D, Comput. Sci. Eng., Electr., 2017, 24, (3), pp. 1312–1324

[38] Varghese, J.: ‘Adaptive threshold based frequency domain filter for periodic
noise reduction’, AEU-Int. J. Electron. Commun., 2016, 70, (12), pp. 1692–
1701.

[39] Wang, Z., Bovik, A.C., Sheikh, H.R., et al.: ‘Image quality assessment: from
error visibility to structural similarity’, IEEE Trans. Image Process., 2004, 13,
(4), pp. 600-612.

1538 IET Image Process., 2020, Vol. 14 Iss. 8, pp. 1529-1538
© The Institution of Engineering and Technology 2020

Authorized licensed use limited to: Auckland University of Technology. Downloaded on June 03,2020 at 04:41:15 UTC from IEEE Xplore.  Restrictions apply. 


