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Adaptive Morphological Reconstruction
for Seeded Image Segmentation
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Abstract— Morphological reconstruction (MR) is often
employed by seeded image segmentation algorithms such as
watershed transform and power watershed, as it is able to
filter out seeds (regional minima) to reduce over-segmentation.
However, the MR might mistakenly filter meaningful seeds that
are required for generating accurate segmentation and it is also
sensitive to the scale because a single-scale structuring element
is employed. In this paper, a novel adaptive morphological
reconstruction (AMR) operation is proposed that has three
advantages. First, AMR can adaptively filter out useless seeds
while preserving meaningful ones. Second, AMR is insensitive to
the scale of structuring elements because multiscale structuring
elements are employed. Finally, the AMR has two attractive
properties: monotonic increasingness and convergence that
help seeded segmentation algorithms to achieve a hierarchical
segmentation. Experiments clearly demonstrate that the AMR is
useful for improving performance of algorithms of seeded image
segmentation and seed-based spectral segmentation. Compared
to several state-of-the-art algorithms, the proposed algorithms
provide better segmentation results requiring less computing
time.

Index Terms— Mathematical morphology, image segmentation,
seeded segmentation, spectral segmentation.
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I. INTRODUCTION

MORPHOLOGICAL reconstruction (MR) [1] is a power-
ful operation in mathematical morphology. It has been

widely used in image filtering [2], image segmentation [3],
and feature extraction [4], etc. Among these applications, one
of the most important applications is that MR is often used
in seeded segmentation algorithms [5], [6] such as watershed
transformation (WT) [7] and power watershed (PW) [8] to
reduce over-segmentation caused by image noise and details.
However, there are two drawbacks [9], [10] when MR is used
in seeded segmentation algorithms.

• It is difficult to reduce over-segmentation while obtaining
a high segmentation accuracy for seeded segmentation
algorithms (we use MR-WT to denote MR-based water-
shed transform and use MR-PW to denote MR-based
power watershed). Although MR is able to filter noise
in gradient images, some important contour details are
smoothed out as well.

• MR is sensitive to the scale of structuring elements.
In practical applications, if the scale is too small,
the reconstructed gradient image suffers from a serious
over-segmentation. Conversely, if the scale is too large,
the reconstructed gradient image suffers from an under-
segmentation.

Generally, MR is used in watershed transform to improve
the segmentation effect by employing a structuring element to
filter regional minima [11]. However, it is very difficult to filter
useless regional minima while preserving meaningful ones
by simply considering one single-scale structuring element.
Although H -min imposition [12] is a simple and efficient
method for over-segmentation reduction, it relies on a thresh-
old choice and is likely to miss some important boundaries.
Region merging [13], [14] is also a popular method for this,
but it requires iterating and renewing edge weight leading
to a high computing burden. In addition, some researchers
employ reasonable contour detection methods, e.g., globalized
probability of boundary (gPb) [15] that combines the multi-
scale information from brightness, color and texture, to achieve
better image segmentation. However, the gPb is computation-
ally expensive because it combines too many feature cues
for contour detection. To speed up the algorithm of contour
detection, Dollar and Zitnick [16] took the advantage of the
structure present in regional image patches and random deci-
sion forests, and proposed a fast structured edge (SE) detection
approach using structured forests. This algorithm obtains
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real-time performance and state-of-the-art edge detection but
requires a huge amount of memory for training data. To reduce
memory requirement, Hallman and Fowlkes [17] proposed a
simple and efficient model to learn contour detection, namely
oriented edge forests (OEF). Although these improved contour
detectors are superior to traditional detectors, e.g. Sobel or
Canny, and they are helpful for improving subsequent image
segmentation, they still generate a large number of seeds
leading to serious over-segmentations.

In practice, contour detection methods are usually com-
bined with other approaches to improve image segmentation
effect. For example, Fu et al. [18] proposed a robust image
segmentation approach using contour-guided color palettes
by integrating contour and color cues, where SE, mean-shift
algorithm [19], region merging, and spectral clustering [20]
are combined to achieve better segmentation results. However,
the approach is complex because it combines several different
algorithms that requires many parameters.

In this paper, we propose an adaptive morphological recon-
struction (AMR) operation that is able to generate a better seed
image than MR to improve seeded segmentation algorithms.
Firstly, AMR employs multiscale structuring elements to
reconstruct a gradient image. Secondly, a pointwise maximum
operation on these reconstructed gradient images is performed
to obtain the final adaptive reconstruction result. Because
AMR employs small structuring elements to reconstruct pixels
of large gradient magnitudes while employing large structuring
elements to reconstruct pixels of small gradient magnitudes in
a gradient image, AMR is able to obtain better seed images
to improve the seeded segmentation algorithms. Our main
contributions are summarized as follows.

• Multiscale structuring elements are employed by AMR,
and different scaled structuring elements are adaptively
adopted by pixels of different gradient magnitudes with-
out computing the local features of a gradient image.

• AMR has a convergence property and a monotonic
increasing property, the two properties help seeded
segmentation algorithms to achieve a hierarchical
segmentation.

• AMR has a low computational complexity, and it can help
seed-based spectral segmentation to achieve better image
segmentation results than the-state-of-art algorithms.

The rest of the paper is organized as follows. In the next
section, the research background related with AMR is intro-
duced and analyzed. On this basis, AMR is proposed, and its
two properties, monotonic increasingness and convergence are
carefully analyzed in Section III. To demonstrate the superior-
ity of AMR, AMR is used for seeded image segmentation and
seed-based spectral segmentation. Experiments are presented
in Section IV, followed by the conclusion in Section V.

II. BACKGROUND

A. Morphological Reconstruction

MR is an image transformation that requires two input
images, a marker image and a mask image. Let two grayscale
images f and g denote the marker image that is the starting
point for the transformation and the mask image that constrains

Fig. 1. An example for pointwise extremum operation. (a) Pointwise
minimum. (b) Pointwise maximum.

Fig. 2. Binary MR from markers. (a) A mask image. (b) Reconstructed
result.

the transformation, respectively [21]. If f ≤ g, which means f
is pointwise less than or equal to g, the morphological dilation
reconstruction (Rδ) of g from f is denoted by

Rδg( f ) = δ(n)g ( f ), (1)

where δ(1)g ( f ) = δ( f )∧ g, δ(k)g ( f ) = δ(δ
(k−1)
g ( f ))∧ g for 2 ≤

k ≤ n, k, n ∈ N+ satisfies δ(n)g ( f ) = δ
(n−1)
g ( f ). The symbol

δ represents the elementary morphological dilation operation,
and ∧ stands for the pointwise minimum at each pixel of two
images as shown in Fig. 1(a).

Similarly, if f ≥ g, the morphological erosion reconstruc-
tion (Rε) of g from f , which is the dual operation of Rδ ,
is defined as

Rεg( f ) = ε(n)g ( f ), (2)

where ε(1)g ( f ) = ε( f )∨g, ε(k)g ( f ) = ε(ε
(k−1)
g ( f ))∨g for 2 ≤

k ≤ n, k, n ∈ N+ satisfies ε(n)g ( f ) = ε
(n−1)
g ( f ). The symbol

ε represents the elementary morphological erosion operation,
and ∨ stands for the pointwise maximum at per pixel of two
images as shown in Fig. 1(b).

To further illustrate the principle of MR for image transfor-
mation, we present an example for the binary MR as shown
in Fig. 2, where the red regions denote seeds, i.e., the marker
image f .

According to Fig. 2 and (1)-(2), a suitable marker image
is important for MR. We have known that f ≤ g for Rδ

while f ≥ g for Rε . Thus, there are lots of choices for f .
Different marker images corresponds to different reconstruc-
tion results as shown in Fig. 3. To obtain an efficient f in
practice, the marker image is usually obtained by performing
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Fig. 3. Binary MR from different markers. (a) Mask 1. (b) Mask 2.
(c) Mask 3.

a transformation on the corresponding mask image [22]–[24].
For example, the erosion or dilation result of a mask image
is often considered as a marker image [25], i.e., f = εbi (g)
or f = δbi (g), where bi is a disk shaped structuring element,
the radius of bi is i , i ∈ N+. Therefore, MR is sensitive to
the parameter i because the marker image is decided by the
scale of the structuring element.

As compositional morphological opening and closing oper-
ations show better performance than elementary morpho-
logical erosion and dilation operations for image filtering,
feature extraction, etc., we present the definition of compo-
sitional morphological opening and closing reconstructions
(Rγ and Rφ) of g from f as follows{

Rγg ( f ) = Rδg(R
ε
g( f ))

Rφg ( f ) = Rεg(R
δ
g( f )).

(3)

B. Multiscale and Adaptive Mathematical Morphology
For image filtering and enhancement using morphological

operators, a large-scale structuring element can suppress noise
but may also blur the image details, whereas a small-scale
structuring element can preserve image details but may fail
to suppress noise. Some researchers proposed multiscale and
adaptive morphological operators to improve the performance
of traditional morphological operators. However, most multi-
scale morphological operators [26], [27] such as morpholog-
ical gradient operators and morphological filtering operators,
average all scales of morphological operation results as final
output

y = 1

λ

λ∑
j=1

g j , (4)

where y is the final output result, j is the radius of the
structuring element, 1 ≤ j ≤ λ, j , λ ∈ N+. Although the
average result is superior to the result based on single-scale
morphological operators, it causes contour offset and mis-
takes. Some researchers improved multiscale morphological
operators by introducing a weighted coefficient to (4), and
they defined adaptive multiscale morphological operators as
follows [28]

y = 1

λ

λ∑
j=1

ω j g j , (5)

where w j is the weighted coefficient on the j th scale result.
However, because the computing of weighted coefficients
is complex, the adaptive multiscale morphological operators

Fig. 4. The original image and ground truths (GT) from BSDS500.
(a) “100007”. (b) GT 1. (c) GT 2. (d) GT 3. (e) GT 4. (f) GT 5.
BSDS (http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/) is a
very popular image dataset and it is often used for the evaluation of image
segmentation algorithms. For each image in BSDS, there are 4 to 9 ground
truths segmentations that are delineated by different human subjects.

have a low computational efficiency. Moreover, the weighted
average result is similar to average result because it is difficult
to obtain the optimal weighted coefficient, even though the
former is slightly better than the latter.

Although lots of adaptive multiscale morphological oper-
ators [29]–[32] have been proposed, it can be seen from
(4)-(5) that both the multiscale and adaptive morphologi-
cal operators employ a linear combination of different-scale
results to improve single-scale morphological gradient or
filtering operators. Because the linear combination is unsuit-
able for multiscale morphological reconstruction operation,
in this paper, we try to employ a non-linear combination
(i.e., the pointwise maximum operation denoted by ∨) to
design adaptive morphological reconstruction operators. These
operators are different from conventional multiscale and adap-
tive morphological operators employing linear combination
in (4)-(5). We use non-linear operation ∨ instead of linear
combination since the former is more suitable than the later
for the removal of useless seeds in seeded image segmentation.

C. Seeded Segmentation
Seeded segmentation algorithms, such as graph cuts [33],

random walker [34], watersheds [7], and power watershed [8]
have been widely used in complex image segmentation tasks
due to their good performance [35]. It is not required to give
seed images for both graph cuts and random walker because
they usually consider each pixel as a seed. However, a seed
image is necessary for WT and PW by computing the regional
minima of a gradient image.

Since both WT and PW obtain seeds from a gradient image
that often includes a huge number of seeds generated by noise
and unimportant texture details, they usually suffer from over-
segmentation. A larger number of approaches for addressing
over-segmentation was proposed, and these approaches can be
categorized into two groups.

• Feature extraction or feature learning is used to obtain
a better gradient image that enhances important contours
while smoothing noise and texture details [15]–[17].

• MR is used for gradient reconstruction to reduce the
number of regional minima [36]–[38].

For the first group of approaches, gPb, OEF, and SE are
popular for reducing over-segmentation as shown in Figs. 4-5.
In Fig. 5, although gPb, OEF, and SE provide better gradient
images that can reduce over-segmentation for WT and PW,
the segmentation results are still poor compared to ground
truths shown in Fig. 4.

The second group of approaches depends on MR and WT,
it is denoted by MR-WT. Najman and Schmitt [36] employed
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Fig. 5. Over-segmentation reduction by improving the gradient image of
“100007”. (a) Different gradient images. (b) Seed images (regional minima).
(c) WT. (d) PW (p = 2) [8].

MR to remove regional minima to reduce over-segmentation.
Furthermore, a dynamic threshold is used to change the
gradient magnitude that is smaller than the threshold, and then
a hierarchical segmentation result is obtained. Wang [26] pro-
posed a multiscale morphological gradient algorithm (MMG)
for image segmentation using watersheds. The proposed MMG
employs multiple structuring elements to obtain a better gradi-
ent image, and uses MR to remove regional minima to improve
watershed segmentation.

Fig. 6 illustrates the principle of a seeded segmentation
framework based on MR-WT. We can see that the number of
the regional minima in the gradient image decreases rapidly
with the increase of i , but the boundary is also destroyed
simultaneously. It is clear that the larger structuring element
corresponds to fewer seeds. One major reason is that MR
employs a single-scale structuring element, which equally
treats all pixels of different gradient magnitudes in the gradient
image. For example, in dilation reconstruction, the marker
image f = εbi (g) converges to the minimum grayscale value
of pixels in the mask image as the value of i increases.
Obviously, both large and small structuring elements lead to
poor reconstruction results while a moderate-sized structuring
element achieves a rough balance via sacrificing contour
precision. Therefore, it is difficult to obtain a good seed image
by employing a single-scale structuring element. Although
many researchers employ multiscale structuring elements to
generate a better gradient image, there are few studies on
multiscale MR for gradient images. Moreover, the fusion of
different-scale results is also a problem.

D. Spectral Segmentation

It is well-known that spectral clustering [20] is greatly suc-
cessful due to the fact that it does not make strong assumptions
on data distribution, and it is implemented efficiently even
for large datasets, as long as we make sure that the affinity
matrix is sparse. However, since the size of the affinity matrix
is (M × N)2 for an image of size M × N , and it is not sparse
because of Gaussian similarity measure, spectral clustering

is often inefficient for image segmentation due to eigenvalue
decomposition of the huge affinity matrix. To address the issue,
a great number of algorithms have been proposed to construct
a smaller affinity matrix and thus to improve the computational
efficiency of spectral clustering [39]–[42]. Most of these algo-
rithms employ pre-segmentation (superpixel) methods such
as the simple linear iterative clustering (SLIC) [43], mean-
shift [19], linear spectral clustering (LSC) [44], and superpixel
hierarchy [45], to reduce the number of pixels of the original
image and, in turn, reduces the size of the affinity matrix.
As an example, Zhang et al. [46] proposed a fast image
segmentation approach that is a re-examination of spectral
clustering on image segmentation. The approach provides
better image segmentation results yet requires a long running
time.

The popular superpixel approaches have some draw-
backs for spectral segmentation. Firstly, mean-shift algorithm
involves three parameters and it is sensitive to these parame-
ters. Secondly, SLIC only generates superpixels that include
regular regions, and these regions have a similar shape and
size. Finally, LSC is superior to SLIC because LSC suc-
cessfully connects a local feature with a global optimization
objective function, so that LSC can generate more reasonable
segmentation results. However, similar to SLIC, LSC also
provides superpixels that include regular regions with a similar
shape and size.

As seed-based spectral segmentation algorithms are sensi-
tive to pre-segmentation results, an excellent pre-segmentation
algorithm can improve segmentation results generated by seed-
based spectral segmentation algorithms.

III. ADAPTIVE MORPHOLOGICAL RECONSTRUCTION

A. The Proposed AMR
To overcome the drawback of MR on regional minima

filtering, we propose an AMR that is able to filter useless
regional minima and maintains meaningful ones generated by
salient objects. Fig. 7 shows the motivation of AMR in which
multiscale structuring elements are employed to reconstruct
a gradient image, i.e., small structuring elements are adopted
by pixels of large gradient magnitude while large structuring
elements are adopted by pixels of small gradient magnitude.

Definition 1: Let bs ⊆ · · · bi ⊆ bi+1 · · · ⊆ bm be a series
of nested structuring elements, where i is the scale parameter
of a structuring element, 1 ≤ s ≤ i ≤ m, s, i,m ∈ N+.
For a gradient image g such that f = εbi (g) and f ≤ g,
the adaptive morphological reconstruction denoted by ψ of g
from f is defined as

ψ(g, s,m) = ∨s≤i≤m

{
Rφg ( f )bi

}
. (6)

Note that the pointwise maximum operation is only suitable
for Rφ , but not suitable for Rγ . Because lim

m→∞ Rγg ( f )bm =
max(g) (the proof is presented in Appendix A) and
lim

m→∞ ∨s≤i≤m
{

Rγg ( f )bi

} = max(g), ψ(g, s,m) is unable
to obtain a significantly convergent gradient image if
ψ(g, s,m) = ∨s≤i≤m

{
Rγg ( f )bi

}
.

We apply AMR to the gradient image shown in Fig. 6. The
reconstruction and segmentation results are shown in Fig. 8,
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Fig. 6. A seeded segmentation framework based on MR-WT. (Rφg ( f ) is employed to reconstruct a gradient image, and original gradient (OG) denotes a
row of the original gradient image.)

Fig. 7. The motivation of AMR. (a) Gradient. (b) Reconstructed gradient.

where the adopted structuring elements are disk and s = 1.
More detailed comparisons are shown in Fig. 9. By comparing
Fig. 8 with Fig. 6, it is obvious that AMR obtains better seed
images than MR due to the fact that the non-linear operation
∨ is able to remove efficiently useless seeds.

To further show the influence of s on AMR, Fig. 10 shows
segmentation results provided by AMR through changing the
value of s. We can see that there are some small segmented
areas when the value of s is small. These small areas are
merged by increasing the value of s. However, although a large
s leads to the merge of small areas, the precision of object
contours will be decreased as shown in Fig. 6. Therefore,
we usually set 1 ≤ s ≤ 3 for a moderate-sized image.

B. The Monotonic Increasingness Property of AMR
AMR is an algorithm that aims at finding meaningful

regional minima by merging or filtering useless regional
minima. AMR includes two parameters s and m. When we
increase the value of m, gradient images reconstructed by
AMR keep the increasing order as shown in Theorem 1.

Theorem 1: Let ψ be an adaptive morphological recon-
struction operator, ψ is increasing with respect to the scale
of structuring elements, i.e., for a gradient image g such that
f = εbi (g) and f ≤ g, 1 ≤ p, q ≤ m, p, q,m ∈ N+, we have

p ≤ q ⇒ ψ(g, s, p) ≤ ψ(g, s, q). (7)

The proof of Theorem 1 is presented in Appendix B.
Theorem 1 shows that the gradient image processed by AMR
is monotonous increasing with the increase of m. Fig. 9
demonstrates Theorem 1. We can see that if m is enlarged,
the more unimportant seeds are removed, and important

seeds are preserved. Actually, the result is equivalent to
region merging. However, the method is simpler than region
merging. According to the result, it can be seen that AMR
can help seeded segmentation algorithms to achieve a hier-
archical segmentation [47], [48]. Hierarchical segmentation
is a multilevel segmentation scheme, and it usually outputs
a coarse-to-fine hierarchy of segments ordered by the level
of details. Multiscale combinatorial grouping (MCG) pro-
posed by Pont-Tuset et al. [49] is an excellent hierarchical
segmentation approach that employs a fast normalized cut
algorithm and an efficient algorithm for combinatorial merging
of hierarchical regions. Based on the hierarchical segmentation
results provided by MCG, some improved approaches are also
proposed [50], [51]. These improved approaches achieve better
segmentation effect but have lower computational efficiency
than MCG.

Before analyzing the relationship between AMR-WT and
hierarchical segmentation, we first review some basic concepts
of hierarchical segmentation. Let 	 be a finite set. A hierarchy
H on 	 is a set of parts of 	 such that

• 	 ∈ H .
• For every ω ∈ {	}, {ω} ∈ H .
• For each pair (h, h�) ∈ H 2, h

⋂
h� �= ∅ ⇒ h ⊆ h� or

h� ⊆ h.
Note that H is a chain of nested partitions. Let H0 be the

initial partition of 	, which corresponds to the finest partition
of 	, and Hn be the coarsest partition of 	, which segments
the images as one single region. A partition Hz, 0 ≤ z ≤ n,
on 	 has the property that

Hz = H0, i f z ≤ 0, (8)

∃n ∈ N+, Hz = {	} , ∀z ≥ n, (9)

p ≤ q ⇒ Hp ⊆ Hq, 1 ≤ p, q < n, (10)

where Hp ⊆ Hq denotes the partition. Hp is finer than the
partition Hq . Derived from Theorem 1 and Fig. 9, we obtain

ψ(g, s, p) ≤ ψ(g, s, q) ⇒ S(ψ(g, s, p)) ⊆ S(ψ(g, s, q)),

(11)

where S denotes seeded segmentation algorithms such as WT
or PW. Suppose that H0 = S(g), Hm = S(ψ(g, s,m)),
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Fig. 8. Seeded segmentation framework based on AMR-WT.

Fig. 9. Comparison of gradient reconstruction and seed filtering with variant
value of m. Because AMR has an important property of convergence, the seed
image is unchanged when the value of m is large enough. The seed image is
unchanged when m ≥12 for the image “12003”. (a) The variation of gradient
magnitudes. (b) The variation of seed images.

Fig. 10. Segmentation results using AMR-WT by changing the value of s.
(a) s = 1, m = 10. (b) s = 2, m = 10. (c) s = 3, m = 10. (d) s = 5, m = 10.

and s = 1 then

H0 ⊆ H1 ⊆ · · · ⊆ Hm. (12)

According to (12), the principle of the hierarchical seg-
mentation based on AMR is shown in Fig. 11, in which
the data points represent regions obtained by the hierarchical
segmentation at different levels.

C. The Convergence Property of AMR
By comparing Fig. 6 with Fig. 8, it can be observed that

AMR provides significant gradient images and AMR-WT gen-
erates convergent segmentation results via enlarging the scale
of structuring elements. An important convergence property of
AMR is described in the following.

Theorem 2: Let ψ be an adaptive morphological recon-
struction operator, ψ is convergent when increasing the scale

Fig. 11. The principle of hierarchical segmentation, H0 ⊆ H1 ⊆ · · · ⊆ Hm .

parameter m, i.e., for any gradient images f and g such
that bs ⊆ · · · bi ⊆ bi+1 · · · ⊆ bm , if min(ψ(g, s,m)) ≥
max(Rφg ( f )bm+1) then

ψ(g, s,m) = ψ(g, s,m + j), (13)

i.e., ∨s≤i≤m

{
Rφg ( f )bi

}
= ∨s≤i≤m+ j

{
Rφg ( f )bi

}
, 1 ≤ s ≤ m,

j ∈ N+, and the proof is presented in Appendix C.
According to Fig 9, it can be seen that the gradient result

and the corresponding seed image will remain unchanged
when m ≥ 12. This empirically illustrates that the gradient
image reconstructed by AMR is convergent when increasing
the value of m. Besides, the large gradient magnitude is
unchanged while the small gradient magnitude converges to
ones larger than itself for AMR. However, the large gradient
magnitude converges to one smaller than itself while the
small gradient magnitude converges to one larger than itself
for MR when the structuring element is small. With the
increase of the value of m, the value of gradient magnitudes
finally converges to the minimum of the original gradient
image, i.e., lim

m→∞ Rφg ( f )bm = min(g) (see Appendix A).
Consequently, MR removes all regional minima while AMR
only filters useless regional minima and preserves significant
ones when m → ∞.

Furthermore, we analyze how to determine the parame-
ter m for AMR. The computational efficiency of AMR
is influenced by the parameter m. A small m means a
low computational complexity. According to Theorem 2,
the reconstructed gradient image and the corresponding



5516 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 11, NOVEMBER 2019

Algorithm 1 Adaptive Morphological Reconstruction (AMR)

segmentation result are unchanged when min(ψ(g, s,m)) ≥
max(Rφg ( f )bm+1), but the obtained m is usually large. As the
paper aims at employing AMR to improve seeded seg-
mentation algorithms, we replace the convergence condition
min(ψ(g, s,m)) ≥ max(Rφg ( f )bm+1) with checking the dif-
ference between ψ(g, s,m) and ψ(g, s,m − 1). We propose
an objective function for justifying the convergence of AMR

J (g, s) = max |ψ(g, s,m)− ψ(g, s,m − 1)|, (14)

where m ≥ 2, m ∈ N+. It is clear that the segmentation
result will remain unchanged when J ≤ η, η is a minimal
threshold error, and it is a constant used for J , but m is a
variant for ψ(g, s,m). Consequently, only a parameter s needs
to be tuned for obtaining different reconstruction results.

D. The Algorithm of AMR
AMR only involves the parameter s and η, as described

in the detailed steps of AMR in Algorithm 1.1 To speed
up the convergence of Algorithm 1, the three parameters
s, m, and η are used for AMR because the iteration can be
stopped according to m or η. The computational complexity
of AMR depends on the values of m or η. A large value of
m corresponds to a small value of η. The larger is the value
of m, the longer is the execution time of AMR. Since we have
known that AMR has a fast convergent property as shown
in Fig. 8, a small m is enough for moderate-sized images in
practical applications. A small m indicates that AMR has a
low computational complexity.

Note that the parameter m is unnecessary theoretically,
we use two convergent condition m and η to speed up the con-
vergence of Algorithm 1. We applied Algorithm 1 to images
with complex texture content to demonstrate that the proposed

1Source code is available at https://github.com/SUST-reynole/AMR

Fig. 12. Segmentation results on images with complex texture. Here,
N denotes the number of superpixel areas used for SLIC, LSC, and SH;
N is 400 for the left two images and N is 800 for the right two images. Also,
r denotes the radius of structuring element used for MR-WT; values of r are
7 and 4, respectively. For AMR-WT, s = 2 and m = 10 are used for the left
two images, while s = 2 and m = 6 are used for the right two images.

Fig. 13. Segmentation results using AMR-WT by changing the value of m.
The results shows that AMR is monotonic increasing by increasing the value
of m. Moreover, AMR is convergent because the segmentation result is
unchanged when m ≥ 11. (a) Images. (b) s = 1, m = 1. (c) s = 1, m = 3.
(d) s = 1, m = 11. (e) s = 1, m = 50.

AMR is effective for reducing over-segmentation as shown
in Fig. 12. AMR-WT not only overcomes the problem of over-
segmentation but also obtains better contours than MR-WT
and state-of-the-art superpixel methods. Furthermore, we test
Algorithm 1 on images with text to show the monotonic
increasing and convergent properties of AMR. Fig. 13 shows
the comparison results. We can see that the segmentation
results are nested, which demonstrates the monotonic increas-
ing property of AMR. Moreover, the segmentation results are
unchanged when m ≥ 11, which demonstrates the convergent
property of AMR.

IV. EXPERIMENTS

To demonstrate the effectiveness and efficiency of the pro-
posed AMR, we apply AMR to seeded image segmentation
and spectral segmentation. We conduct experiments on the
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Fig. 14. Comparison of segmentation results using AMR-WT/PW
(s = 2). (a) Gradient images. (b) Seeds (regional minimum). (c) WT.
(d) PW (q = 2) [8].

BSDS500 dataset. The experiments are performed on a work-
station with an Intel Core (TM) i7-6700, 3.4GHz CPU and
16GB memory.

We compare the proposed algorithms with state-of-the-
art algorithms including a multiscale morphological gra-
dient for watersheds (MMG-WT) [26], multiscale ncut
(MNCut) [52], oriented-watershed transform-ultrametric con-
tour map (gPb-owt-ucm) [15], the algorithm recovering
occlusion boundaries from an image proposed by Hoiem
(gPb-Hoiem) [53], spectral segmentation algorithms pro-
posed by Kim et al. (FNCut, cPb-owt-ucm) [39], Higher-
order correlation clustering (HO-CC) [54], global/regional
affinity graph (GL-graph) [55], single-scale combinatorial
grouping (SCG) [49], and multiscale combinatorial grouping
(MCG) [49]. The open source codes and model parameters
suggested by the corresponding authors are used. Because
the author did not present specific parameter values for
MMGR-WT, we set r = 5 and 0.1 ≤ h ≤ 0.3, where h is
a threshold and it is used to generate a marker image, and
r is the radius of the structuring element used for MR. For
the proposed approaches, we set 1 ≤ s ≤ 3, m = 50, and
η = 10−4.

We report the experimental results using three evaluation
metrics to quantitatively measure the performance of segmen-
tation algorithms: probabilistic rand index (PRI), segmentation
covering (CV), and variation of information (VI). The PRI and
CV are similarity measures, and they are large while the VI is
small when the final segmentation is close to ground truth
segmentation.

A. Seeded Image Segmentation

AMR is useful for improving seeded image segmentation
because it employs multiscale structuring elements to obtain a
convergent seed image without pre-setting many parameters.
To show the capability of AMR, it is applied to different
gradient images to filter seeds. Fig. 14 shows reconstructed
gradient images by AMR and the corresponding segmentation
results by WT/PW. These results are clearly better than the

TABLE I

COMPARISON OF THE NUMBER OF SEEDS GENERATED
BY GRADIENT IMAGES

ones shown in Fig. 5. The problem of over-segmentation
for seeded segmentation algorithms is therefore addressed.
Furthermore, compared Fig. 6 to Fig. 14, although both MR
and AMR are able to filter seeds, AMR is able to maintain
meaningful seeds that correspond to important contours.

Furthermore, Table I shows the number of seeds generated
by gradient images. We can see that the reconstructed gradient
images generate fewer seeds than original gradient images,
which demonstrates AMR is efficient for the filtering of
useless seeds. Moreover, AMR is robust for different gradient
images obtained by Sobel, gPb, OEF, and SE because the final
segmentation results are similar.

In Fig. 14, we set s = 2 because the segmentation result
includes too many small regions when s = 1. Clearly, s
controls the number of small regions in segmentation results.
Generally, the value of s depends on the resolution of the
images to be segmented, e.g., 1 ≤ s ≤ 3 for BSDS500.

To demonstrate that the proposed AMR is robust for differ-
ent images, we implement AMR-WT/PW on the BSDS500.
Fig. 15 shows the comparison of segmentation results using
different algorithms, i.e., Sobel-AMR-WT/PW, gPb-AMR-
WT/PW, OEF-AMR-WT/PW, and SE-AMR-WT/PW. The
segmentation results demonstrate the effectiveness of AMR
for the filtering of useless seeds, Moreover, AMR is effective
for both WT and PW.

To compare the performance of different algorithms on
the BSDS500, Table II shows experimental results of three
evaluation metrics: PRI, CV, and VI. We can see that AMR
is more efficient for improving segmentation results obtained
by WT or PW compared to MR. MR is sensitive to r while
AMR is insensitive to s. Although MMG-MR-WT/PW is
effective for the over-segmentation reduction by introduc-
ing the parameter h, segmentation results are sensitive to
both r and h. The gPb-AMR-WT/PW, OEF-AMR-WT/PW,
and SE-AMR-WT/PW obtain better performance than Soble-
AMR-WT/PW since the former provides better gradient
images. The SE-AMR-WT/PW obtains the best performance.
In addition, AMR-WT obtains higher PRI, CV, and lower
VI than AMR-PW in the same situation.

Because AMR converges quickly, AMR has a high compu-
tation efficiency for gradient reconstruction. Table III shows
the comparison of running time of AMR-WT on different
gradient images obtained by Sobel, gPb, OEF, and SE, respec-
tively. We only present the running time of AMR-WT here
because AMR-PW has a similar running time as AMR-WT.
It can be seen from Table III that AMR-WT has a short running
time to achieve image segmentation on the BSDS500. The
SE-AMR-WT requires the shortest running time because the
corresponding gradient image converges quicker under AMR.
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Fig. 15. Comparison of segmentation results using different algorithms
(s = 2). (a) Images. (b) Sobel-MR-WT (r = 5). (c) Sobel-MR-PW (r = 5).
(d) MMG-MR-WT (r = 5 and h = 0.2). (e) MMG-MR-PW (r = 5
and h = 0.2). (f) Sobel-AMR-WT. (g) Sobel-AMR-PW. (h) gPb-AMR-WT.
(i) gPb-AMR-PW. (j) OEF-AMR-WT. (k) OEF-AMR-PW. (l) SE-AMR-WT.
(m) SE-AMR-PW.

Tables II-III show AMR is effective and efficient for improving
seeded segmentation algorithms such as WT and PW.

Additional evidence of the superiority of AMR can be found
in Fig. 16 which shows experimental results on images with
rich texture and faded boundaries. According to Figs. 15-16,
we can see that the proposed AMR is effective for different
kinds of images.

B. Seed-Based Spectral Segmentation
In this section, we directly construct the affinity matrix on a

pre-segmentation image provided by AMR-WT to reduce the
size of the affinity matrix, and then compute the subsequent
steps of spectral segmentation (we name it AMR-SC). Note
that we employ AMR-WT rather than AMR-PW because the
former is able to provide better pre-segmentation results than

TABLE II

QUANTITATIVE RESULTS (PRI, CV, VOI) ON THE BSDS500. LARGER
IS BETTER FOR PRI AND CV WHILE SMALLER IS BETTER

FOR VI. THE BEST VALUES ARE IN BOLD

TABLE III

COMPARISON OF AVERAGE RUNNING TIME OF AMR-WT ON

THE BSDS500 (IN SECONDS). LOWER IS BETTER.
THE BEST VALUES ARE IN BOLD (η = 10−4)

Fig. 16. Comparison of segmentation results using different algorithms
(s = 2). (a) Images with rich texture or faded boundaries. (b) Sobel-MR-
WT (r = 5). (c) MMG-MR-WT (r = 5 and h = 0.2). (d) Sobel-AMR-WT.
(e) gPb-AMR-WT. (f) OEF-AMR-WT. (g) SE-AMR-WT.

the latter as shown in Table II. As the pre-segmentation image
only consists of dozens of regions, we consider color feature in
CIELAB color space and Gaussian function as the criterion to
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Fig. 17. Comparison of segmentation results on the BSDS500 using different algorithms (s = 2). (a) Images. (b) Ground truths. (c) gPb-owt-ucm. (d) FNCut.
(e) GL-graph. (f) SCG. (g) MCG. (h) Sobel-AMR-SC. (i) gPb-AMR-SC. (j) OEF-AMR-SC. (k) SE-AMR-SC.

Fig. 18. Comparison of segmentation results on the BSDS500 using different
algorithms (s = 2). Compared to Figs. 15 and 17, we use an overlay of the
segmented result with respect to the original image to show the accuracy of
the boundary. (a) Images. (b) Ground truths. (c) gPb-owt-ucm. (d) FNCut.
(e) GL-graph. (f) SCG. (g) MCG. (h) Sobel-AMR-SC. (i) gPb-AMR-SC.
(j) OEF-AMR-SC. (k) SE-AMR-SC.

measure the similarity of two regions. Throughout the paper,
we use σ = 1. It is clear that the affinity matrix produced by
AMR is a small matrix. Therefore, the clusters can be detected
easily and fast with the k-means algorithm.

In this paper, the pre-segmentation depends on AMR.
According to Table II, we set s = 2 and 3, and we set the
number of clusters for the k-means according to [39], [55]. The
proposed AMR-SC is evaluated on BSDS500 and compared
with algorithms such as gPb-owt-ucm, FNCut, GL-graph, SCG
and MCG. Figs. 17-18 show that the proposed AMR-SC
generates better segmentation results than those comparative
algorithms. The result demonstrates that AMR is useful for
improving spectral segmentation due to two reasons. The first
is that the regional spatial information of an image provided
by pre-segmentation is integrated into spectral segmentation,
and the second is that the affinity graph is reduced efficiently
by removing useless seeds.

Furthermore, we employ the three measures: PRI,
CV and VI to compare the proposed AMR-SC with nine

TABLE IV

QUANTITATIVE RESULTS (PRI, CV, AND VI) ON THE BSDS500. LARGER

IS BETTER FOR PRI AND CV WHILE SMALLER IS BETTER FOR VI
AND RUNNING TIME. THE BEST VALUES ARE IN BOLD

state-of-the-art image segmentation algorithms. Table VI
shows the region benchmarks on the BSDS500. In Table VI,
the proposed AMR-SC clearly dominates other algorithms
on PRI and CV, and is on par with SCG on VI mainly
due to accurate pre-segmentation provided by AMR-WT. The
OEF-AMR-SC and SE-AMR-SC provide better performance
than gPb-AMR-SC and Sobel-AMR-SC because OEF and SE
obtain better gradient images than gPb and Sobel. In addition,
AMR-SC is insensitive to the parameter s.

We tested the running time complexity on the BSDS500
dataset. The running time comparison is shown in Table IV.
On average, generating a pre-segmentation result with
SE-AMR-WT takes 0.54 seconds (SE generates a gradient
image requiring 0.06 seconds. AMR-WT takes 0.48 seconds,
s = 3 and η = 10−4), and constructing an affinity graph
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TABLE V

THE NUMBER OF ITERATIONS OF SE-AMR-WT UNDER DIFFERENT
VALUES OF η, (s = 3). THE NUMBER OF ITERATIONS m

IS UNCHANGED WHEN η ≤ 10−4 , AND THE

INVARIANT VALUES OF m ARE IN BOLD

TABLE VI

THE AVERAGE NUMBER OF ITERATIONS OF SE-AMR-WT UNDER

DIFFERENT VALUES OF η, s = 3. THE AVERAGE NUMBER
OF ITERATIONS IS UNCHANGED WHEN η ≤ 10−4 , AND

THE INVARIANT VALUES OF m ARE IN BOLD

TABLE VII

THE AVERAGE RUNNING TIME OF SE-AMR-WT ON THE

BSDS500 (IN SECONDS), s = 3. THE AVERAGE

RUNNING TIME IS UNCHANGED WHEN

η ≤ 10−4 , AND THE INVARIANT
VALUES ARE IN BOLD

and spectral clustering take 0.059 seconds. Consequently,
SE-AMR-SC takes about 0.60 second to segment an image
from the BSDS500. In contrast, the gPb-owt-ucm takes
almost 106.38 seconds, FNCut takes about 10.58 seconds.
As GL-graph has four steps, i.e., over-segmentation, fea-
ture extraction, bipartite graph construction and graph par-
tition using spectral clustering, it is more complex than
SE-AMR-SC, and takes almost 7.41 seconds. MCG takes
about 18.60s per image to compute the multiscale hierarchy
but SCG takes only 2.21s per image. It is clear that our
SE-AMR-SC is the fastest because AMR-SC only depends
on the gradient information, and the generated affinity matrix
is small.

C. Discussion

AMR has two parameters, η and s. η relates to the con-
vergent condition. Generally, a large value of η means a few
iterations (a small m, where m is the number of iterations)
while a small value of η corresponds to many iterations
(a large m). Table V shows the influence of η on m for test
images. We can see that m increases with the decrease of η
but m is unchanged when η ≤ 10−4.

Furthermore, to show the influence of η on AMR, we imple-
ment AMR on the BSDS500 by setting different values of η,
and Tables VI-VII show the results. It is clear that the number
of iterations for AMR-WT is smaller and running time is
shorter if the value of η is larger. However, the number of
iterations and running time are unchanged when η ≤ 10−4.

TABLE VIII

QUANTITATIVE RESULTS (PRI, CV AND VI) OF SE-AMR-WT ON THE
BSDS500 UNDER DIFFERENT VALUES OF η, s = 3. LARGER

VALUE IS BETTER FOR PRI AND CV WHILE

SMALLER VALUE IS BETTER FOR VI

TABLE IX

QUANTITATIVE RESULTS (PRI, CV AND VI) OF SE-AMR-WT ON

THE BSDS500 UNDER DIFFERENT VALUES OF s , η = 10−4 .
LARGER VALUE IS BETTER FOR PRI AND CV WHILE

SMALLER VALUE IS BETTER FOR VI

Therefore, in practical application, users can select different
values of η according to their requirements.

Furthermore, we implemented SE-AMR-WT on BSDS500
with different values of η. The performance indices of segmen-
tations are shown in Table VIII. By comparing Tables V-VIII,
we can see that the average number of iterations, running time,
and segmentation accuracy are unchanged for AMR-WT when
η ≤ 10−4. Therefore, the proposed AMR is insensitive to η.

The value of s controls the initial gradient value of images.
A large s will cause the contour offset while a small value of
s will cause too many unexpected small regions. Therefore,
we choose s = 2 and s = 3 for the BSDS500 in Table IV.
To further show the influence of s on AMR, Table IX shows
the performance indices of segmentations on BSDS500 by
setting different values of s. It can be seen from Table IX
that SE-AMR-WT is insensitive to s if 1 ≤ s ≤ 6.

V. CONCLUSION

In this work, we have studied the advantages and disad-
vantages of MR on seeded segmentation algorithms. We pro-
posed an efficient AMR algorithm that can preferably improve
seeded segmentation algorithms. The proposed AMR has two
significant properties, i.e., the monotonic increasingness and
the convergence. The monotonic increasingness helps AMR
to achieve a hierarchical segmentation. The convergence is
able to alleviate the drawback of MR by filtering out useless
regional minima in a gradient image, and guarantees a con-
vergent result. Moreover, we have explored the applications of
AMR and have found that AMR is not only able to improve
seeded image segmentation results, but also can obtain better
spectral segmentation results than state-of-the-art algorithms.
Furthermore, the proposed AMR-SC is computationally effi-
cient because a small affinity matrix is used for spectral
clustering. Experimental results clearly demonstrate that the
proposed AMR-WT generates satisfactory and convergent
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segmentation results without hard-tuning parameters, and the
AMR-SC outperforms most of the state-of-the-art algorithms
for image segmentation, and it performs the best in two
metrics: PRI and CV.

The segmentation results generated by AMR-WT or
AMR-SC can be directly used in object recognition and
scene labeling. However, neither AMR-WT nor AMR-SC can
obtain semantic segmentation results compared to the popular
convolutional neural network (CNN), e.g., fully convolutional
network (FCN) [56]. To further improve the contour quality of
segmentation results, traditional algorithms such as conditional
random field [57], image superpixel [58], and spatial pyramid
pooling [59], are used to improve the performance of CNN
on image segmentation. AMR can be also used in CNN
to improve semantic segmentation results. For our future
work, we plan to investigate how to combine AMR and FCN
effectively and efficiently.

APPENDIX A
PROOF OF lim

m→∞ Rγg ( f )bm = max(g)

Proof: Since

f = δbm (g) ,m → ∞, lim
m→∞ δbm (g) = max (g)

we have,

f = max(g),

and

ε(1)g ( f ) = ε( f ) ∨ g

= ε(max(g))∨ g

= max(g),

ε(n)g ( f ) = ε(ε(n−1)
g ( f )) ∨ g

= max(g).

According to Rγg ( f ) = Rδg(R
ε
g( f )), Rεg( f ) = εn

g( f ) in (1),
we get

R(ε)g ( f ) = max(g).

Thus,

lim
m→∞ Rγg ( f )bm = lim

m→∞ Rδg(R
ε
g( f ))

= Rδg(max(g))

= max(g).

In terms of the duality of morphological operation,

lim
m→∞ Rφg ( f )bm = min(g).

�

APPENDIX B
PROOF OF THEOREM 1

p ≤ q ⇒ ψ(g, s, p) ≤ ψ(g, s, q)

Proof: Let s ≤ p ≤ q ≤ m, from Definition 1, we have

ψ(g, s, p) = ∨
{

Rφg ( f )bs , Rφg ( f )bs+1, · · · , Rφg ( f )p

}
,

ψ(g, s, p) = ∨
{

Rφg ( f )bs , Rφg ( f )bs+1, · · · , Rφg ( f )q
}
.

Because p ≤ q ,

ψ(g, s, p) = ∨
{
ψ(g, s, p), Rφg ( f )bp+1, · · · , Rφg ( f )q

}
,

i.e.,

ψ(g, s, p) ≤ ψ(g, s, q).

�

APPENDIX C
PROOF OF THEOREM 2

ψ(g, s,m) = ψ(g, s,m + j),

min(ψ(g, s,m)) ≥ max(Rφg ( f )bm+1)

Proof: From Definition 1, we have

lim
m→∞ψ(g, s,m)

= ∨s≤i≤m

{
Rφg ( f )bi

}
= ∨s≤i≤m

{
Rφg ( f )bi

}
∨

{
Rφg ( f )bm+1, Rφg ( f )bm+2, · · · , Rφg ( f )b∞

}
= ψ(g, s,m) ∨

{
Rφg ( f )bm+1, Rφg ( f )bm+2, · · · , Rφg ( f )b∞

}
Since bm ⊆ bm+1 ⊆ · · · ⊆ bm+ j and Rφg ( f )b∞ = min(g)
from Appendix A, we get

max(Rφg ( f )bm+1) ≥ max(Rφg ( f )bm+2) ≥ · · · ≥ Rφg ( f )b∞ .

We have known that min(ψ(g, s,m)) ≥ max(Rφg ( f )bm+1),
thus

ψ(g, s,m) ≥ ∨
{

Rφg ( f )bm+1, Rφg ( f )bm+2, · · · , Rφg ( f )b∞
}
,

i.e.,

ψ(g, s,m) = ψ(g, s,m + j),where m, j ∈ N+.

�
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