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In structural dynamic analysis, the blind source separation (BSS) technique has been accepted as one of the most effective ways for
modal identification, in which how to extract the modal parameters using very limited sensors is a highly challenging task in this
field. In this paper, we first review the drawbacks of the conventional BSSmethods and then propose a novel underdetermined BSS
method for addressing the modal identification with limited sensors. (e proposed method is established on the clustering
features of time-frequency (TF) transform of modal response signals. (is study finds that the TF energy belonging to different
monotone modals can cluster into distinct straight lines. Meanwhile, we provide the detailed theorem to explain the clustering
features. Moreover, the TF coefficients of each modal are employed to reconstruct all monotone signals, which can benefit to
individually identify the modal parameters. In experimental validations, two experimental validations demonstrate the effec-
tiveness of the proposed method.

1. Introduction

One of the main issues in structural dynamic analysis is to
identify the modal parameters, e.g., frequency, damping, and
modal shape. Starting from [1, 2], the blind source sepa-
ration (BSS) technique has become more and more popular
in modal identification, due to its straightforward, com-
putationally fairly efficient, nonparametric, and requiring no
prior information of the dynamic system. From early lit-
eratures, it can be known that the applications of conven-
tional BSS methods, e.g., independent component analysis,
second-order blind identification, and their improved ver-
sions, mainly focus on fundamental research and theorem
analysis [3–7]. As research interest increased, some limi-
tations of conventional BSS techniques are gradually rec-
ognized. An essential assumption that guarantees successful
application of conventional BSS methods is that the number
of sensors should be not less than that of sources, namely, the
issue of the determined BSS. However, considering various
limitations in practice, e.g., costs, and difficulties in access,
the installation of multiple sensors may not be feasible.
Furthermore, without the prior knowledge of active modals

in most cases, the requirement of adequate sensors is too
strict to meet [8, 9]. (erefore, there is a strong requirement
to develop the underdetermined BSS techniques for struc-
tural dynamic analysis, which can address more sources with
limited sensors.

Recently, an underdetermined BSS method called sparse
component analysis (SCA) draws many attentions in
structural dynamics [10, 11]. By transforming the original
signal from time domain into sparse domain, the mixing
matrix and monotone modal sources can be precisely ob-
tained. (en, we can estimate the modal parameters by the
monotone modal identification method. Sadhu utilized
wavelet transform (WT) to transform raw signals into
wavelet domain to achieve the sparsity, and then principal
component analysis and parallel factor decomposition
method were employed for determining the mode shape
vectors, natural frequency, and damping, respectively
[12, 13]. Yang proposed a scheme using the clustering al-
gorithm to estimate the mode shape matrix in frequency
domain and then separated monotone modal responses via
linear programming techniques [14]. Yu estimated the mode
shape combining with single source point method and time-
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frequency ratio of mixtures (TIFROM) after executing
short-time Fourier transform (STFT), and then natural
frequency and damping can be identified by detecting TF
ridges [15]. Qin proposed a hybrid method combining
[14, 15] to improve the accuracy of matrix estimation and
source separation [16]. With more papers being carried out,
the SCA method shows more and more powerful ability in
modal identification than conventional determined BSS
techniques [17, 18].

However, the SCA method only works well in the sit-
uation of instantaneous mixture, which means that the
modal response signals should reach the sensors at the same
time [10, 11]. In practical applications, this requirement is
also too strict to meet. (erefore, there are two main pur-
poses in this paper: first to provide detailed analysis on the
theorem of SCA and point out its limitations in practical
applications and then to establish a novel BSS method that
can overcome the limitations. With these prime objectives,
this paper is organized in the following manner. Section 2
illustrates the detailed theorem of SCA. Section 3 introduces
a novel BSS method. Two experimental validations are
carried out in Section 4. (en, the conclusion is followed in
Section 5.

2. Principle of SCA

2.1. Motivation of SCA. (e SCA framework illustrates that,
in the sparse domain (e.g., TF domain or frequency domain),
the sparse coefficients of different monotone modals can
cluster into the straight line. (is phenomenon motivates
that it is possible to separate the sparse coefficients based on
the clustering features. (erefore, the clustering features in
the SCA are the most important issue that should be well
explored. Given a numerical example, where three harmonic
sources si(t) are linearly mixed into two observations xj(t):

s1(t) � sin(2π1.5t),

s2(t) � sin(2π3t),

s3(t) � sin(2π5t),

(1)

x1 � s1 + 0.8s2 + 0.5s3,

x2 � 0.5s1 + 0.8s2 + s3.
(2)

We first display the time-series values of two observa-
tions by the scatter plot, which is shown in Figure 1(a). It can
be seen that any useful information on three sources cannot
be obtained in time domain. If we use STFT to transform the
original signal into TF domain, then we plot the scatter of the
real value of two observations, as shown in Figure 1(b). It can
be obviously observed that there appear three clustering
lines. Meanwhile, the directions of these straight lines
correspond to the column vector of the mixing matrix

1 0.8 0.5
0.5 0.8 1 . By estimating the clustering directions, we

can obtain the mixing matrix, and then these sources can be
separated by linear programming techniques or L1-norm
minimum algorithm. (erefore, it motivates us to first ex-
plore the reason that why the clustering features appear.

2.2. Lissajous Figure. Before analysis of the SCA, it is nec-
essary to illustrate some essential background knowledge. In
mathematics, a Lissajous figure is the graph of a system of
parametric equations:

x � A · sin(a · t),

y � B · sin(b · t + δ),
(3)

which can describe the complex harmonic motion. (is
motion system was investigated in detail by Lissajous in
1857. (e appearance of the figure is highly dependent on
the ratio a/b. For a/b � 1 and δ � 0, the figure is a line, whose
direction is determined by A/B, as shown in Figure 2(a). For
a/b � 1 and δ ≠ 0, the figure is an ellipse, whose shape is
determined by A/B and δ, as shown in Figure 2(b).

2.3. Sparse Transform Method. Selecting an appropriate
sparse method is helpful for executing the SCA algorithm.
(e time-frequency analysis method has been accepted as
themost effective method to achieve sparse inmost of papers
[10–15, 19–22]. (erefore, we select the STFT as the sparse
method in this paper. Given the regular STFT as

G(t,ω) � 
+∞

− ∞
g(u − t) · s(u) · e

− iωudu, (4)

where g(u − t) is the moved window and s(u) is the
truncated signal. Consider the modified STFT with addi-
tional phase shift than regular STFT as

G(t,ω) � 
+∞

− ∞
g(u − t) · s(u) · e

− iω(u− t)du. (5)

According to Parseval’s theorem, the modified STFTcan
be written as

G(t,ω) �
1
2π


+∞

− ∞
g(ω − ξ) · s(ξ) · e

iξtdξ, (6)

where g(ω − ξ) is the Fourier transform (FT) of the window
function, supp(g) ⊂ [− Δ,Δ], and s(ξ) is the FTof the signal.
Consider a purely harmonic signal s(t) whose frequency is
ω0:

s(t) � A · e
iω0t

. (7)

Considering that s(ξ) � 2πAδ(ξ − ω0), the STFT of the
harmonic signal can be written as

G(t,ω) � A · g ω − ω0(  · e
iω0t

. (8)

Equation (8) denotes us a first impression on how STFT
works [23–27]. (e STFT of the harmonic signal is con-
stituted by a series of harmonic signals with the same fre-
quency (which is consistent with the original signal) but
different amplitudes (which is determined by both of the
signal amplitude and the Fourier transform of window
function). Given two harmonic signals with different
frequencies:

s1(t) � A1 · e
iω1t

,

s2(t) � A2 · e
iω2t

.
(9)
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(en, the corresponding STFTs can be written as

Gs1(t,ω) � A1 · g ω − ω1(  · e
iω1t

,

Gs2(t,ω) � A2 · g ω − ω2(  · e
iω2t

.
(10)

Based on the instantaneous mixture, two sources (9) are
first mixed into two observations linearly:

x1(t) � a11 · s1(t) + a12 · s2(t),

x2(t) � a21 · s1(t) + a22 · s2(t).
(11)

According to the linearity property of STFT, the STFTs
of two observations can be written as

Gx1(t,ω) � a11 · Gs1(t,ω) + a12 · Gs2(t,ω)

� a11 · A1 · g ω − ω1(  · e
iω1t

+ a12 · A2 · g ω − ω2(  · e
iω2t

,

Gx2(t,ω) � a21 · Gs1(t,ω) + a22 · Gs2(t,ω)

� a21 · A1 · g ω − ω1(  · e
iω1t

+ a22 · A2 · g ω − ω2(  · e
iω2t

.

(12)

Herein, it is needed to assume |ω1 − ω2|> 2Δ, whichmeans
that the frequency distance between two sources is larger than
the frequency support of window function. (erefore, this
assumption suggests that it is better to select the long window
function, which makes sure that the frequency support is
narrow enough. (en, we can have the following equations:
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Figure 1: (e scatter plot of instantaneous mixture in (a) time domain and (b) TF domain.
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Figure 2: (e Lissajous figure: (a) line and (b) ellipse.
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Gs1(t,ω)≠ 0,

Gs2(t,ω) � 0,

forω ∈ ω1 − Δ,ω1 + Δ ,

(13)

Gs1(t,ω) � 0,

Gs2(t,ω)≠ 0,

forω ∈ ω2 − Δ,ω2 + Δ .

(14)

Equations (13) and (14) mean that there exists no overlap
between two sources in the TF domain. (erefore, for
ω ∈ [ω1 − Δ,ω1 + Δ], we can construct the following
formulation:

Re Gx1(t,ω)( 

Re Gx2(t,ω)( 
�

a11 · Re Gs1(t,ω)( 

a12 · Re Gs1(t,ω)(

�
a11 · A1 · g ω − ω1(  · cos ω1t( 

a12 · A1 · g ω − ω1(  · cos ω1t( 

�
a11

a12
,

(15)

where Re() denotes taking the real part. (en, for
ω ∈ [ω2 − Δ,ω2 + Δ], we can construct the following
formulation:

Re Gx1(t,ω)( 

Re Gx2(t,ω)( 
�

a21 · Re Gs2(t,ω)( 

a22 · Re Gs2(t,ω)( 

�
a21 · A2 · g ω − ω2(  · cos ω2t( 

a22 · A2 · g ω − ω2(  · cos ω2t( 

�
a21

a22
.

(16)

Equations (15) and (16) denote that, for the in-
stantaneous mixture, when we plot the scatter of the real part
of STFT of two observations, i.e., Re(Gx1(t,ω)) versus
Re(Gx2(t,ω)) in each frequency bin, it is equal to plot a
series of Lissajous figure of the special case (a/b � 1, δ � 0),
i.e., straight lines. (ese lines have the same direction which
is determined by the column vector of mixing matrix, e.g.,
a11/a12 or a21/a22. (is is the reason that why there can
appear several clustering lines in the scatter plot (see
Figure 1(b)), which can also be employed to estimate the
mixing matrix.

2.4. Delay Mixture. For the signal of equation (9), we
consider the delay mixture:

x1(t) � a11 · s1(t) + a12 · s2(t),

x2(t) � a21 · s1 t + z1(  + a22 · s2 t + z2( ,
(17)

where zi ≠ 0 denotes time delay. According to equation (8),
the STFT of two observations can be written as

Gx1(t,ω) � a11 · Gs1(t,ω) + a12 · Gs2(t,ω)

� a11 · A1 · g ω − ω1(  · e
iω1t

+ a12 · A2 · g ω − ω2(  · e
iω2t

,

Gx2(t,ω) � a21 · Gs1′(t,ω) + a22 · Gs2′ (t,ω)

� a21 · A1 · g ω − ω1(  · e
iω1 t+z1( )

+ a22 · A2 · g ω − ω2(  · e
iω2 t+z2( ).

(18)

Similar to equation (13), for ω ∈ [ω1 − Δ,ω1 + Δ], we
have

Gs1(t,ω)≠ 0,

Gs1′ (t,ω)≠ 0,

Gs2(t,ω) � 0,

Gs2′ (t,ω) � 0.

(19)

(en, we can have the following equation:
Re Gx1(t,ω)( 

Re Gx2(t,ω)( 
�

a11 · Re Gs1(t,ω)( 

a12 · Re Gs1(t,ω)( 

�
a11 · cos ω1t( 

a12 · cos ω1t + z1( 

≠
a11

a12
.

(20)

And for ω ∈ [ω2 − Δ,ω2 + Δ],
Gs1(t,ω) � 0,

Gs1′ (t,ω) � 0,

Gs2(t,ω)≠ 0,

Gs2′ (t,ω)≠ 0.

(21)

(en, we can have the following equation:
Re Gx1(t,ω)( 

Re Gx2(t,ω)( 
�

a21 · Re Gs2(t,ω)( 

a22 · Re Gs2(t,ω)( 

�
a21 · cos ω2t( 

a22 · cos ω2t + z2( 

≠
a21

a22
.

(22)

Equations (20) and (22) denote that, for the delay
mixture, when we plot the scatter of the real part of STFTof
two observations, i.e., Re(Gx1(t,ω)) versus Re(Gx2(t,ω))

in each frequency bin, it is equal to plot a series of Lissajous
figure with the ellipse case (a/b � 1, δ ≠ 0). (e shape of
these ellipses is determined by both amplitude and time
delay in observations. We then utilize the numerical ex-
ample to further illustrate above analysis. For the nu-
merical example of equation (2), we consider the delay
mixture, the scatter plot in the time domain and TF do-
main is displayed in Figures 3(a) and 3(b), respectively. It
can be seen that, both in the time domain and the TF
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domain, the linear clustering features completely disap-
pear, which lead to that we cannot obtain any useful in-
formation on the mixing matrix.

From above analysis, it can be known that the sparsity
of the observation signals is highly sensitive to time delay.
Considering the dynamic engineering in practice, we
need to record the response signals by sensors located at
different positions. Even if we can measure the signal at
the same time, we cannot avoid the propagation delay of
sources between all sensors. When the time delay of
recorded signals heavily damages the sparsity of the
signals, the SCA will fail to separate sources. (is
drawback of the SCA greatly restricts itself in practical
application.

3. A Novel BSS Method

3.1. .eory of the Proposed Method. In this section, we de-
velop an effective BSS method that can overcome the lim-
itations in the SCA method. For a specified harmonic signal
whose frequency is ω0, we have the reconstruction formu-
lation of STFT as

s(t) � Re C
− 1
g 

ω0+Δ

ω0− Δ
G(t,ω)dω , (23)

where Cg � (1/2)  g(ξ)dξ. Equation (23) denotes that if
we can obtain the frequency band of each source in the
TF representation, i.e., [ω0 − Δ,ω0 + Δ], we can re-
construct each source effectively. (erefore, it motivates
us to first estimate the frequency band for each source.
Considering from the viewpoint of signal energy, at the
same time, the energy ratio of the same source recorded
by two sensors should be determined, which depends on
the source amplitude in recorded signals. (erefore, it
inspires us to estimate the frequency band by calculating

the TF energy of the signal. Based on the STFTof signals,
we first define the formulation of frequency energy
function as

E(ω) � 
+∞

− ∞
|G(t,ω)|dt. (24)

For the signal of equation (18), we can have the following
equation:

E1(ω)

E2(ω)
�


+∞
− ∞ Gx1(t,ω)


dt


+∞
− ∞ Gx2(t,ω)


dt

�


+∞
− ∞ a11 · Gs1(t,ω) + a12 · Gs2(t,ω)


dt


+∞
− ∞ a21 · Gs1′ (t,ω) + a22 · Gs2′ (t,ω)


dt

.

(25)

For the frequency band of s1(t), i.e., ω ∈ [ω1 − Δ,ω1
+Δ], according to equation (19), equation (25) can be
written as

E1(ω)

E2(ω)
�


+∞
− ∞ a11 · Gs1(t,ω)


dt


+∞
− ∞ a21 · Gs1′ (t,ω)


dt

�


+∞
− ∞ a11 · A1 · g ω − ω1(  · eiω1t


dt


+∞
− ∞ a21 · A1 · g ω − ω1(  · eiω1 t+z1( )



dt

�
a11




a21



·

A1 · g ω − ω1( 




A1 · g ω − ω1( 



·


+∞
− ∞ eiω1t


dt


+∞
− ∞ eiω1 t+z1( )



dt

�
a11




a21



,

(26)

where |eiω1t| � 1. Similarly, for the frequency band of
s2(t), i.e., ω ∈ [ω2 − Δ,ω2 + Δ], equation (25) can be
written as
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Figure 3: (e scatter plot of delay mixture in (a) time domain and (b) TF domain.
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E1(ω)

E2(ω)
�


+∞
− ∞ a12 · Gs2(t,ω)


dt


+∞
− ∞ a22 · Gs2′ (t,ω)


dt

�


+∞
− ∞ a12 · A2 · g ω − ω2(  · eiω2t


dt


+∞
− ∞ a22 · A2 · g ω − ω2(  · eiω2 t+z2( )



dt

�
a12




a22



·

A2 · g ω − ω2( 




A2 · g ω − ω2( 



·


+∞
− ∞ eiω2t


dt


+∞
− ∞ eiω2 t+z2( )



dt

�
a12




a22



.

(27)

Equations (26) and (27) denote that, for the frequency
band of each source, the ratio of frequency energy is
consistent, which is determined by the source amplitude
in recorded signals. When we plot the scatter of the
frequency energy data of two observations, i.e. E1(ω)

versus E2(ω), if |a11|/|a21|≠ |a12|/|a22|, there will appear
several clustering lines which can correspond to the
frequency band of each source. (erefore, we can esti-
mate the frequency band of each source according to
these clustering features. For the delay mixture of nu-
merical signals of equation (2), the scatter plot of fre-
quency energy is shown as Figure 4(a). It can be seen that
there are three obvious clustering lines.

In Figure 4(a), each point in the clustering lines cor-
responds to the frequency bin of source in TF representa-
tion. (en, it is required to develop an effective procedure to
estimate these points. As observing the scatter plot, each
clustering line has the maximum value located at the end of
line (as red label “∗”), and other points have the same cosine
distance with this end point. (e point of maximum value
can be detected by the peak data by summing all frequency
energy data:

E(ω) � 
m

i�1
Ei(ω). (28)

(erefore, we can first obtain the maximum value point,
as shown in Figure 4(b) (as red label “∗”), and then calculate
the cosine distance with it to estimate other points by

C D E1(ω), E2(ω), . . . , En(ω) , E1 ωp , E2 ωp , . . . , En ωp   < ε,

(29)

where ωp is the detected peak frequency and ε is a low value
which is suggested to be empirically set as 0.004. If condition
(29) is satisfied, these scatter points should belong to the
same source. By repeating this procedure, we can obtain the
frequency bands of all sources. After frequency band being
estimated, we can reconstruct all sources by inversion of
STFT. For the numerical signal, the three recovered sources
are shown in Figure 5. It can be observed that three sources
are well separated as monocomponents.

A known drawback of STFT reconstruction is the
boundary effect, i.e., the amplitude in the beginning and end

of the sources cannot be well recovered. In order to eliminate
the boundary effect of the recovered sources, we introduce a
padding line, as

L(t) �


+∞
− ∞ g(u)du


t2
t1 g(u − t)du

, (30)

where g(u − t) is the moved window and (t1, t2) denotes the
discrete beginning and end time point of the analysed signal.
(e padding line of the numerical signal is shown in Fig-
ure 6. And then, each source is corrected through multi-
plying this padding line. (e three sources that consider
padding method are shown in Figure 7. It can be seen that
the amplitudes of all sources are also recovered precisely.

(erefore, the proposed BSS method can be summarized
as follows:

(1) Utilize STFT to transform recorded signals into the
TF domain

(2) Obtain the frequency energy data according to
equation (24)

(3) Sum all frequency energy data and pick the peak data
by the peak detection method

(4) Calculate the cosine distance of other points with
detected peak data to estimate the frequency band

(5) Recover each source according to the estimated
frequency band by inversion of STFT

(6) Eliminate the boundary effect of each source by the
padding method

3.2. Numerical Signal Analysis. In this subsection, we con-
sider the performance of the proposedmethod in analysing a
five-component signal added with heavy Gaussian noise.
(is five-component signal mixed into two observations is
modelled as

S1(t) � sin(2π30t) + sin(2π70t) + sin(2π110t)

+ sin(2π150t) + sin(2π190t),

S2(t) � 0.5 sin(2π30t) + 0.9 sin(2π70t) + 1.3 sin(2π110t)

+ 1.7 sin(2π150t) + 2.2 sin(2π190t),

(31)

where the sampling frequency is 512 Hz and sampling time
is 2 s. (e waveforms of the two observations are plotted in
Figure 8. In Figure 9, the time-frequency representations
of two observations generated by STFT are displayed.
(en, the scatter of the frequency energy data is calculated
and plotted in Figure 10. It can be seen that there are five
obvious clustering lines in Figure 10, which correspond to
the frequency band of five sources. (e eventual separated
sources are plotted in Figure 11. It is shown that all sources
are well separated into monocomponent signals.

4. Experimental Validation

In this section, we employ two experiments to validate
the proposed method. (ese two experiments have been
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analysed in two published papers [15, 17]. (erefore, their
analysed results can be the comparison references. To test
the ability of the proposed method comparable to the SCA,
we also display the results analysed by SCA.

4.1. Experiment 1. As shown in Figure 12, the structure is a
uniformTC4 titanium-alloy column of 0.38∗ 0.038∗ 0.006m3,
and three acceleration sensors are mounted on the beam which
is excited by impact hammer. (e sampling frequency is
2560Hz, and we take 0.5 s data to analyse. (e acceleration
responses X1, X2, and X3 are shown in Figure 13. For com-
parative analysis, we list the identified results in [15], such as
frequency and damping ratio, as shown in Table 1.

To show the processing procedure of the SCA method,
we first utilize STFT to transform three recorded signals into
the TF domain. (en, the scatter of original time-series
signals and the real part of the STFT results are plotted in
Figures 14(a) and 14(b), respectively. It can be seen that the
original signal in time domain cannot provide any useful
information about the mixing matrix. However, in
Figure 14(b), there obviously appear four clustering lines for
the recorded signals, which should correspond to four
column vectors of the mixing matrix. (en, we can separate
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Figure 4: (a) (e scatter plot of frequency energy data; (b) the sum of frequency energy data.
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Figure 13: (e time waveform and the spectrum of the recorded vibration signals X1, X2, and X3.

Table 1: Identified results of the structure in experiment 1.

Modal Reference [15] SCA Proposed method

Frequency (Hz)

1st 31.28 30.72 30.78
2nd 216.5 215.6 215.6
3rd 596.8 585.9 585.9
4th 1115 1115.2 1115.3

Dam (%)

1st 2.661 2.733 2.863
2nd 0.511 0.508 0.505
3rd 0.601 0.606 0.585
4th 0.242 0.234 0.234
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each source using this mixing matrix, as shown in Figure 15.
It can be seen that, through the SCA method, each source is
well separated as monotone exponentially decaying sinu-
soid. (en, we utilize the monotone mode method to
identify modal parameters, and the identification results are
listed in Table 1. It is known that the SCA provides a similar
modal identification result with [15].

(en, for the proposed method, according to equation
(24), we first calculate the frequency energy function. (e
detected peaks of the sum of Ei(ω) are shown in
Figure 16(a), where “∗” denotes the detected peaks. It can be
seen that six peaks are detected. Among them, two more
sources are discovered than SCA, which is caused by un-
expected interference. In Figure 16(b), we plot the scatter
of frequency energy data, which also shows six obvious

clustering lines. To facilitate comparison with SCA, we do
not list the separated results of two interference sources.
(erefore, four separated sources are shown in Figure 17. It
is shown that each source is well recovered as the mono-
modal response. (e estimated frequencies and damping are
listed in Table 1, which show satisfactory accuracy [15] as
well. It can be concluded that when the sparsity of signal in
the TF domain is satisfactory, the monomodal sources can
be well separated both by SCA and the proposed method.

4.2. Experiment 2. As shown in Figure 18, the structure is a
uniform steel cantilever beam of 0.9∗0.05∗0.008m3, and five
displacement sensors are settled upon the beam which
is excited by impact hammer. (e sampling frequency is
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Figure 14: (e scatter plot in (a) time domain and (b) TF domain generated by SCA.
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1600Hz, and we take 1000 samples to analyse. (e vibration
responses X1–X5 are shown in Figure 19. Meanwhile, we
first list the identified modal parameters by the method in
reference [17] in Table 2.

To illustrate the ability of the proposed method applied in
the underdetermined case, we only deal with three sensor data,
i.e., X1, X2, and X5. (e scatter plot of STFT results of the
recorded signals is first displayed in Figure 20. It can be seen
that, due to influence of time delay, there appear several ellipses,
which make the SCA hard to estimate the accurate mixing

matrix. (e separated results by the SCA are also displayed in
Figure 21. It can be observed that the recovered sources S3, S4,
and S5 are unwillingly mixed with other sources.

For our proposed method, according to equation (24),
we first calculate the frequency energy Ei(ω). And the scatter
plot of frequency energy data is shown in Figure 22, where
“∗” denotes the detected peaks. It can be seen that there
appear five obvious clustering lines, which correspond to the
frequency band of five sources. (e sources separated by the
proposed method are listed in Figure 23, which show all
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Figure 19: (e time waveform and the spectrum of the recorded vibration signals X1, X2, X3, X4, and X5.

Table 2: Identified results of the structure in experiment 2.

Mode Reference [17] SCA Proposed method

Frequency (Hz)

1st 10.07 8.948 8.957
2nd 56.27 55.87 55.85
3rd 155.7 156.5 156.4
4th 304.2 306.1 306.1
5th 500.9 481.4 505.4
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Figure 20: (e scatter plot generated by the SCA.

12 Shock and Vibration



monomodal responses being recovered successfully. (e
identified parameters are listed in Table 2. Due to the re-
covered sources being close to harmonic signals, it cannot
provide accurate estimation for damping, which is neglected
in the identified parameters. From the identified parameters,
it can be seen that the identified modal parameters show
satisfactory accuracy with [17].

From above analysis, it can be known that, when the
sparsity of the signal in the TF domain is heavily damaged
by time delay, the SCA may fail to achieve accurate esti-
mation of mixing matrix and recovery of sources. How-
ever, our proposed method can deal with it successfully.

Furthermore, we consider the computational cost of the
proposed method in dealing with the experimental data.
Because it is helpful for judging whether the proposed
method can be used in real-time applications or not. (e
tested computer configuration is as follows: Intel Core i7-
6500 2.5 GHz, 8.0 GB of DDR3 RAM, Windows 10 OS, and
MATLAB version R2016a. (e required computation times
in the first experiment and the second experiment are 0.91 s
and 0.82 s, respectively. It can be concluded that the
proposed methods can finish the processing within one
second, which is in the acceptable range in real-time
applications.
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5. Conclusions

In this paper, we focus on a hot topic on application of
underdetermined BSS in structural dynamic analysis. (e
SCA technique, as an effective underdetermined BSS
method, has drawn many attentions in recent papers.
However, all of these papers only pay attention to the ap-
plication of SCA, but none of them illustrates its theorem in
detail, which lead to some limitations of SCA being
neglected. (erefore, we start with the classical TF method
and harmonic signal, to illustrate the detailed theorem of
SCA. Meanwhile, we point out its limitation in practical
engineering. Furthermore, we propose a novel BSS method.
Bymeans of TF transform and estimation of frequency band,
the proposed method can effectively deal with the problem
existed in SCA.

(e time delay between recorded signals is mainly de-
termined by the propagation speed and distance. For the
structures in experiments 1 and 2, they have the similar width
and height, but distinct lengths.(e structure in experiment 2
is obviously longer than the structure in experiment 1. Under
the similar condition of propagation speed, the structure
length has become the critical influence of the time delay. It is
obvious that a longer structure will produce a larger time
delay.(erefore, we suggest that the SCA technique should be
applied to analyse small structures, whichmakes sure the time
delay being in the acceptable range.
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