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Abstract 

Using 3-D scanned data to analyze and extract pore network plays a vital role in investigation of 
porous media’s chrateristics. In this paper, a new simple method is developed to detect pores and 
throats for analyzing the connectivity and permeability of the network. This automated method 
utilizes some of the common and well-known image processing functions which are widely 
accessible by researchers and this has led to an easy algorithm implementation. In this method, 
after polishing and quality control of images, using City-block Distance Function and Watershed 
Segmentation Algorithm, pores and throats are detected and 3-D network is produced. This 
method can also be applied on 2-D images to extract some characteristics of the porous media 
such as pore and throat size distribution. The results of network extraction were verified by 
comparing the distribution of coordination number with a prevalent method in the literature.       

Keywords: Micro-Tomography Images, City-block Distance Function, Watershed Segmentation 
Algorithm, Pore Network Extraction. 

 

1. Introduction 

Pore network modeling is one of the primary means to simulate hydraulic behavior of porous 
media in micro scale level. Network models that represent the void space of a rock by a lattice of 
pores connected by throats can predict relative permeability once the pore geometry and 
wettability are known (Dong & Blunt, 2009). The predictive value of network models depends 
on the accuracy of imaging and the correspondence of network via real porous rocks (Sheppard 
et al., 2005). There are three different ways in which a 3-D representation of the void space of a 
rock can be obtained (Al-Kharusi & Blunt, 2007); a) description of the sedimentary process by 
which the rock is formed, b) two point or multiple point statistics to reconstruct 3-D images 
using 2-D image data, c) micro-CT scanning tools to create a 3D image. The development of 
computational methods to analyze the 3-D structure of pore networks has advanced significantly 
with the advent of Synchrotron CMT (Computed Micro Tomography) generating 3-D data sets at 
the micron scale level (Youssef et al., 2007). In order to interpret and simplify the 3-D volume 
data sets, the main challenge is to determine which every void space is exactly pore or throat. 
Although, the continuous and integrated void volume of porous media is hardly dividable to 
distinct pores and throats, it is inevitable to make some simplifying assumptions. There are two 
common approaches in the literature which aim to extract simplex pore network from real 3-D 
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volume data: a) Maximal Inscribed Spheres and pore space distance approach (Jones et al., 
2006), b) Skeletonizing and thinning methods (Al-Raoush & Willson, 2005). A concise literature 
review about the precedent methods of pore network extraction is provided in Table 1. 
 

Table 1. Some of previous Pore Network Extraction methods and brief description 

Method Description Developers 

Simple 
Statistical 

Simple Statistical Method using phase binarization describes how 
size and shape of pores affects the flow.  

(Rezanezhad et al., 
2009) 

Inscribed 
Circles 

Draws circles inscribed by pore walls and centered by the farthest 
points from grains to extract pores and throats. 

(Sweeney & Martin, 
2003) 

Master-Slave 
Spheres 

Defines two types inscribes spheres, Masters and Slaves, which is 
the bigger and smaller balls respectively compared to their 
neighbors. 

(Silin & Patzek, 2006) 

Maximal Ball 
Clustering 

Divides inscribed balls to subsections attending the severity of 
being Master or Slave and denotes the local minima of sphere size 
as throats and vice versa as pores. 

(Dong & Blunt, 2009) 

Medial Axis 
Transform 

Quantitative method characterizes void structure via Burn Number 
distribution analysis (Lindquist et al., 1996) 

Skeletonization 

Obtains detailed geometric and topological description of pore 
network using the skeleton of the pore space as a basis to estimate 
the effective hydraulic and electrical conductance of individual 
flow paths identified with skeleton links. 

(Liang, Ioannidis, & 
Chatzis, 2000) 

 

Inscribed ball 
via Skeleton 

Based on the three-dimensional Skeletonization that simplifies the 
pore space to networks in the form of nodes connected to paths 
coupled with Dilation algorithms developed to generate inscribed 
spheres on the nodes and paths of the medial axis to represent 
pore-bodies and pore-throats of the network, respectively. 

(Al-Raoush & Willson, 
2005) 

Extremal 
distance map 

Based on the extremal structures of the distance map of the pore 
space defines a merge concept that accomplishes a hierarchical 
merge using the significance of the pore separations. 

(Homberg et al., 2012) 

Velocity Based 
Is based on 3D thinning of the velocity field in the pore space. The 
velocity field is calculated from a solution of the Stokes equations 
directly on the rock microstructure image. 

(Dong et al., 2008) 

Grain 
Recognition 

Based 

Grains are identified by partitioning the solid phase. By knowing 
the grains, pore space can then be divided into polyhedra using 
Voronoi tessellation and the edges of the Voronoi polyhedra 
define the pore skeleton. 
 

(Øren & Bakke, 2003) 

Watershed 
Based 

Applying anisotropic diffusion filter to remove noise while 
preserving significant features. Perform un-sharp mask sharpening 
filter which enhances edges and using combination of watershed 
and active contour methods for segmentation of the grey-scale 
data. 

(Sheppard et al., 2004) 

 
With all these methods, pre-processing and/or post-processing is required to remove excess pores 
and throats. For instance, in Skeletonization methods this usually means pruning the skeleton, 
whereas for maximal ball methods it usually involves merging adjacent regions (Wildenschild  & 
Sheppard, 2013). Dong et al. (2008) presents a comparative study on four different network 
extraction methods available in the literature. They have found the Medial Axis method produce 
networks which contain more isolated and single connected pores than the Maximal Ball and 
Velocity Based networks. Dong et al. (2008) stated that for the sample with highest level of 
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noise, the applied Medial Axis algorithm failed to identify a realistic pore network and pore sizes 
determined by the Velocity Based and Maximal Ball networks tend to be similar. In addition, the 
pore sizes for the Medial Axis and Grain Recognition networks are relatively similar, but slightly 
larger than those of the Velocity based and Maximal Ball networks. Although, Maximal Ball 
method provides reliable results, it was observed that this approach is relatively CPU intensive 
among other methods in which requires modifications (Byholm et al., 2006).  
This paper presents a new computational algorithm to extract pore network characteristics 
automatically which can present the realistic structure of pores and throats. In this method, by 
coupling two well-known image processing algorithms known as distance function and 
watershed segmentation, pores and throats are directly detected and separated. Coordination 
number or connectivity of pore network is easily obtained by analyzing the abutting pores and 
throats and counting the number of throats connected to each pore. Pore connectivity is one of 
the most important parameters determining the hydraulic characteristics of the porous medium. 
Not-interconnected porous martial have no permeability and vice versa. 
Distance function calculates the distance between each pixel in the void volume of the porous 
media and the close by occupied pixel by the solids. In order to digitize pore volumes, binary 
images are utilized and every segment of porous media is converted to a binarized map which 
contains 1 for grains or solids and 0 for pores or voids (Maurer et al., 2003). Distance function 
appears in four different forms of generating contour lines or planes; a) Euclidean, b) City-block, 
c) Chessboard, d) Quasi-Euclidean (Rosenfeld & Pfaltz, 1966).  
In the watershed segmentation, it is stated that intuitively, a drop of water falling on a 
topographic relief flows towards the "nearest" minimum. The "nearest" minimum is that 
minimum which lies at the end of the path of steepest descent. In terms of topography, this 
occurs if the point lies in the catchment basin of that minimum. The watershed line is the basic 
tool for segmenting images in mathematical morphology (Malpica et al., 1997). A rigorous 
definition is given in terms of a distance function called topographic distance. If the 
topographical function is itself a distance function, then the topographical distance becomes 
identical with the geodesic distance function and the watershed becomes identical with the 
skeleton by zone of influence (Meyer, 1994). Watershed has been used previously to analyze the 
sand beds segmentation and granular size  (Sime & Ferguson, 2003). 
 

2. Methodology 

Although Watershed algorithm is powerful tool for segmentation, its application for rock 
network extraction does not straightforwardly lead to the acceptable results. In the present study, 
a practical and general workflow has been presented using well-known image processing 
functions in order to makes it possible for researcher to rerun this method using different 
software applications.   

The first step in segmenting the porous media and network extraction is to use the proposed 
algorithm on 2-D images of sedimentary rocks. The aim is to breakdown the monolithic void 
structure of rock into specific pores and throats connecting to each other. Initially, two connected 
bodies should be detached by these image processing algorithms.  

The watershed transform is a key building block for morphological segmentation (Dougherty & 
Lotufo, 2003). A classical approach for producing edge images is to apply a gradient and then 
threshold the resulting gradient image to produce a binary edge image. The most important 
difficulty with this approach is how to select an appropriate threshold value (Dougherty & 
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distance map, the distance between one specific white pixel and an arbitrary black pixel should 
be minimized. This Euclidean distance is:  

( )2 2( )b b i b iD x x y y= − + −     (1) 

Where bD  is distance between a specific white pixel ( ix , iy ) and an arbitrary black pixel  

( bx , by ). This function is known as the Euclidean form. For Manhattan or City-block distance 

map the formula for calculating distance is expressed in equation 2.  

b b i b iD x x y y= − + −      (2) 

Watershed segmentation is sensitive to image noises. In noised images, many fake watershed 
ridge lines may be detected. In order to prevent this error, median filter for alleviating the noise 
intensity in distance map is suggested. Here, the neighborhood pixel interval used for filtering is 
5 by 5 pixels. As it is visible in Figure 3, in the lack of median filtering over distance map many 
parallel fake ridge lines will be detected (Figure 3 (b)) while there is more adequate boundary 
detection for image that received filtering. Majority morphological transform is also a common 
image processing function which keeps the main parts of structure and removes the minor 
roughness or noises which may distract the Watershed function from being accurate (Figure 4). 
Majority transform interval is 5 pixel in this study and needs to be done before preparing 
distance map while median filtering is required after distance mapping.  

 
Figure 3. Comparison between a 2D sandstone sample with median filtering of distance function (a) and the same 

image with no filtering (b) 
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Figure 4. Effect of Majority morphological transform on more clear and distinct pore/throat detection, original 
image (a), Watershed segmentation with Median filtering but without performing Majority transform (b) and 

Watershed segmentation with Median filtering and Majority transform 

As mentioned, there are four different forms of distance function (Figure 5). In this study, it is 
found that the best form of distance function for distinction between rock pores and throats is 
City-block.  Contour lines in this function has shown sharp change in the boundary between the 
two pores. Further investigation and test show that Chessboard form is also appropriate but not 
the best for this purpose. Both City-block and Chessboard forms create angular and cubical 
contours which intersect with curved pore walls in explicit boundaries while watershed flooding 
and this leads to better and clearer pore-throat distinction. Those breakpoints visible in the 
curvature of contours in City-block and Chessboard image, represents the watershed ridge line 
which can be obtained by connecting produced points together.    
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Considering the complicated internal structure of rocks it is not possible to model the network 
without applying simplifying assumptions. In the presented method, it has been assumed that the 
radius of model pores are equal to the radius of realistic pores with the same volume. 
Consequently the porosity of network model remain as the same as rock porosity. Also, throats 
has been modeled as cylinders which connecting the pores alongside the direction between the 
center of pores. In addition, cylindrical throats of model have volume equal to the real throats 
volume by stipulating an appropriate radius.      

  

3. Results and Discussions 

The developed algorithm for porous media segmentation is implemented on two various rock 
types where the 3-D volume data and analysis were available in the literature. Berea Sandstone 
and a heterogenic Carbonate sample are studied and after segmentation, their pore network is 
extracted. The analysis of coordination number of samples is in the agreement with previous 
reputable method known as Maximal Ball (Dong & Blunt, 2009) (Figure 17 and Figure 18). 
Table 2 compares the average coordination number of networks between Watershed and 
Maximal ball method.  

Table 2. Comparison between average coordination numbers obtained by two methods 

Rock Maximal Ball Method 
average coordination number 

Watershed Method 
average coordination number 

Berea Sandstone 3.91 3.57 
Carbonate Sample 3 2.7 

 

Figure 8 and Figure 9 illustrate the 3D volume data of samples studied in this work. As it is 
visible, Berea is homogenous whereas Carbonate sample is not. Although the major changes in 
image resolution may transform the generated networks, the variety in the pore structures of 
different rocks and fabrics did not affect the results. 
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Figure 17. Coordination number distribution for Berea sample obtained by the proposed method (Watershed) and a 
common method (Maximal Ball) 

 

Figure 18. Coordination number distribution for Carbonate sample obtained by the proposed method (Watershed) 
and a common method (Maximal Ball) 

4. Conclusion 

In the present study, a new algorithm for extraction of pore network from 3-D Realistic Micro-
tomography images has been developed. In this automated method, after pre-filtration and 
quality control using Majority and Opening functions, images are transformed by City-block 
distance function and are exposed to median filtering for noise removal. Performing 
segmentation using watershed algorithm leads to detect throats and consequently to differentiate 
pores. By assuming pores as spheres and throats as cylinders, a clarified pore network model is 
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generated. The Coordination number calculated from this approach is in agreement with the 
results of maximal inscribed ball which is one of the most common method for this purpose. 
Here, a practical and general workflow has been developed using well-known image processing 
functions which makes it possible for researcher to rerun this method using different commercial 
or open source image processing software packages or libraries.  
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