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Improving the operation of wind energy generation system is a big challenge especially when it operates
under unstable weather conditions. Therefore, installing a tracker for monitoring the maximum power
expected to be generated from the wind energy system is essential, this controller is known as maximum
power point tracker (MPPT). Hill climbing based approaches were applied for simulating the tracker,
however they have limitations in tracking speed and efficiency. This paper proposes a recent efficient
approach of Archimedes optimization algorithm (AOA) for simulating MPPT installed with the wind
energy generation system. The constructed system composes wind turbine (WT) connected to a perma-
nent magnet synchronous generator (PMSG), the AC output power from the generator is converted to DC
via 3-phase rectifier, the DC voltage is the input of boost converter which is controlled via its MOSFET
duty cycle. The designing process is presented as an optimization problem considering the electrical out-
put power from the system as the target. The proposed AOA tunes the converter duty cycle to maximize
the output power. Three scenarios are followed in this work which are fixed wind speed, variable wind
speed, and real wind speed recorded at four sites in Saudi Arabia (Sakaka, Riyadh, Jeddah, and Jizan). The
obtained results via the proposed approach are compared with the results obtained via cuckoo search
(CS), grasshopper optimization algorithm (GOA), and electric charged particle optimization (ECPO). The
results confirmed the robustness of the proposed AOA-MPPT in achieving the best performance of wind
energy generation system.

� 2021 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams Uni-
versity. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).
1. Introduction

Due to the environmental concerns related to the usage of con-
ventional energy generation sources, renewable energy sources
(RESs) like solar and wind penetrated strongly in many engineering
applications [1–3]. Among RESs, wind energy represents the most
quickly developed source of energy [4,5]. In wind energy genera-
tion system, the electrical energy is generated from the mechanical
power produced from wind turbine (WT) which is coupled to
prime mover via a gear box. It causes the rotor of generator to
move while the load is connected to the stator winding. The
mechanical power from WT can be controlled in the specified
range of wind speed, this range begins from the cut-in speed (V-

cut-in) to the cut-out speed (Vcut-out). For wind speed out of the spec-
ified range, the prime mover shouldn’t operate for safety purpose.
WTs are classified based on constant or variable wind speed. How-
ever, the maximum power can be obtained only for turbines of
variable wind speed. In such type of the turbine, it is required to
install power converter to control the power flow, this controller
is the maximum power point tracker (MPPT). In variable speed
WTs, the rotational speed can be varied to be consistent with the
wind speed variation. Therefore, they have a merit of preserving
constant optimum tip speed ratio at which the maximum power
is obtained. To extract the maximum power from WT, MPPT is
essential. The algorithms employed in MPPT can be categorized
to indirect and direct power controllers. The first one maximizes
the mechanical power only without any control in electrical power
r wind
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while the second one controls directly the electrical output power.
The direct power controller algorithms are hill climbing search
(HCS) and incremental conductance (INC), these algorithms are
sensorless that locate the maximum power point (MPP) via analyz-
ing the power variation with the aid of predetermined curve. Per-
turb and observe (P&O) is considered as the commonly used HCS.
However, these conventional control algorithms have some limita-
tions in tracking speed and efficiency as they failed in extracting
the MPP especially in case of rapid change in wind speed.

The rest of the paper is arranged as: Section 2 introduces the
previous reported methods, Section 3 presents the detailed model
of the wind energy based system, Section 4 introduces the main
aspects of Archimedes optimization algorithm, Section 5 explains
the proposed optimization formula, Section 6 introduces the
results and discussion, and conclusions are given in Section 7.

2. Literature review

Great works were conducted in simulating the MPPT for wind
energy generation system, most of them employed conventional
algorithms like P&O and modified P&O while other researchers
used metaheuristic optimization approaches to optimize either
proportional integral (PI) controller or artificial neural network
(ANN)-based controller.

Sitharthan et al. [6] presented a modified particle swarm opti-
mizer (PSO) for simulating the MPPT for doubly fed induction gen-
erator fed via wind energy. The authors used neural network with
radial basis function in addition to the modified optimizer. Kumar
et al. [7] introduced a comparative study between two different
approaches which are P&O and HCS for hybrid solar/wind system.
A brushless power split transmission system has been introduced
by Luo et al. [8] to drive the wind energy generation system, more-
over a comparison with single MPPT was conducted. Priyadarshi
et al. [9] used ant colony optimizer for simulating the MPPT used
with a hybrid solar/wind system for enhancing its output power.
Moreover, Fuzzy logic control (FLC) has been employed to control
the inverter in comparison with the classical PI controller. Some
problems accompanied to the operation of wind energy generation
were vanished by employing newMPPT strategy based on adaptive
active fault tolerant control [10]. Ghoudelbourk et al. [11] developed
a fractional control methodology for tuning the pitch angle of the
wind energy system formaximizing its generated power.Moreover,
comparison to the PI and PIa controllers has been conducted. Kumar
et al. [12] reviewed many algorithms employed in simulating the
MPPT for wind energy systemwith clarifying themerits and defects
of each one. Brasil et al. [13] constructed a model of wind energy
system installed in the grid, moreover FLC for MPPT was installed
to maximize the system output power. Fathabadi et al. [14] pre-
sented a universal tracker for monitoring the peak power of hybrid
fuel cell (FC) /photovoltaic (PV)/wind energy to enhance its perfor-
mance. Three sensors are required for measuring the terminal volt-
ages of three power sources without requiring more expensive
sensors like anemometer and tachometer. Neural network with
radial basis functionwas presented as control strategy formaximiz-
ing the power generated from the wind energy generation system
[15]. Moreover, gradient descent algorithm was implemented for
training the network while a modified PSO was used for imple-
menting the learning process. Zhi et al. [16] used disturbance of
rotational speed of wind energy system to establish a maximum
power tracking approach of variable step size. Kadri et al. [17]
reviewed two approaches of MPPT for wind energy system which
are tip speed ratio and HCS. An approach based on field-oriented
control has been presented by Behjat et al. [18] as MPPT for small
scale wind energy generation system. An adaptive P&O basedMPPT
was usedwith variable speedwind energy system [19]. Youssef et al.
2

[20] presented a self-adaptive P&O approach forMPPT incorporated
with wind energy system to enhance its output power. A sensorless
MPPT installed with an improved small scale wind energy system
has been introduced in [21]. In such study, comparison with Fuzzy
logic, variable, and fixed step P&O has been conducted. Adaptive
P&O and hybrid P&O control methodologies for MPPT installedwith
wind energy system were presented in [22] to enhance the gener-
ated power. A variable step P&O basedMPPT was presented to vari-
able speed wind energy generation system [23]. Hu et al. [24]
selected a slide mode extremum seeking control as MPPT installed
with wind energy generation system. Moreover, an improved inva-
sive weed optimizer has been introduced to optimize the parame-
ters of the constructed controller. In [25], model predictive
control (MPC) based MPPT was introduced to extract the maximum
power of wind energy system.Mokhtari et al. [26] constructedMPPT
for wind energy system using PI controller optimized via ant colony
optimizer to enhance the tracking speed of the controller. A novel
control on the basis of MPPT pitch angle constructed via neural net-
work was employed to maximize the wind system output power
[27]. Two MPPT approaches, tip speed ratio and optimum torque
control, installed with wind energy system have been introduced
in [28]. Li et al. [29] presented a hybrid approach combining HCS
and power signal feedback control for simulating MPPT for wind
energy system. PI controller optimized via PSO was presented by
Bekakra et al. [30] as MPPT incorporated with doubly fed induction
generator driven by WT. An adapted step size of HCS based tracker
for wind energy system was conducted in [31]. Wei et al. [32] sim-
ulated MPPT for wind energy system using neural network with
reinforcement learning. Singaravel et al. [33] introduced solar/wind
energy connected to the grid with the aid of single boost converter
followed by inverter. MPPT based on dsPIC30F4011 controller for
extracting the maximum power from wind energy system was
introduced in [34]. Fathy et al. [35] presented an approach based
on grasshopper optimizer (GOA) for simulatingMPPT installedwith
wind energy generation system in Aljouf region, Saudi Arabia. The
GOA controlled the converter duty cycle such that the output power
is enhanced. Different locations in Aljouf region were studied and
the presented approach has been compared with other optimizers.

Despite the large number of reported methods used in simulat-
ing MPPT with wind energy system, the application of metaheuris-
tic algorithms is still limited and need more attention especially
after they confirmed great efficiency in obtaining the maximum
power point (MPP) of photovoltaic system [36–41] and also with
fuel cells [42–44]. Moreover, hill climbing search algorithms have
some limitations in tracking speed and efficiency, moreover they
may fail in extracting the MPP.

To cover the gap that exists due to the use of the previous meth-
ods, an efficient metaheuristic approach of Archimedes optimiza-
tion algorithm (AOA) is proposed to design MPPT installed with
PMSG driven by WT. AOA is characterized by its straightforward
implementation, it requires less controlling parameters (popula-
tion size and stopping criterion). Moreover, the convergence of
AOA can be controlled via assigning random and adaptive param-
eters. Furthermore, it achieves balance between the exploration
and exploitation phases that enables the approach to achieve the
global optima.

The following points summarize the contribution of this work,

� It is the first time to propose Archimedes optimization algo-
rithm (AOA) to design MPPT controller installed with wind
energy generation system operated at different locations in
Saudi Arabia.

� The proposed AOA is employed to tune the dc-dc boost con-
verter duty cycle to maximize the output power from the wind
energy system.
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� The proposed approach based MPPT is investigated at different
weather conditions at four regions in Saudi Arabia which are
Sakaka, Riyadh, Jeddah, and Jizan.

� Comparison to cuckoo search (CS), grasshopper optimization
algorithm (GOA), and electric charged particle optimization
(ECPO) is conducted.

� The robustness and competence of the proposed AOA-MPPT
controller is confirmed.

3. Wind energy system model

The construction of the wind energy generation system consid-
ered in this work is shown in Fig. 1. The system comprises WT con-
nected to PMSG, the AC output power from the generator is
converted to DC via 3-phase rectifier. The DC voltage and current
are fed to the boost converter which is controlled via the proposed
AOA-MPPT controller. Two inputs are fed to the proposed con-
troller which are mechanical speed of WT which is measured by
tachometer and the electrical power, the controller output is the
duty cycle. The model of each component of the constructed wind
energy generation system is explained as follows:

A. Wind turbine (WT) model

The wind turbine (WT) converts the wind power to mechanical
one, the wind power can be expressed as follows [45]:

Pw ¼ 1
2
qAV3

w ð1Þ

where q refers to the air density, A represents the cross-section area
of WT, and Vw is the wind speed.

The mathematical formula of the mechanical power generated
from WT can be written as follows [45]:

Pm ¼ Cp k;bð ÞPw ð2Þ
where Cp represents the power coefficient, b refers to the pitch
angle of WT, and k is the ratio of tip speed.

The formula of Cp can be written as follows:

Cp ¼ Cp k;0ð Þ ¼ Cp kð Þ ð3Þ
The variation of Cp with k at different WT pitch angles is shown

in Fig. 2. The maximum power of each curve is defined by kopt and
Cp
max.
The variation of WT mechanical power and the rotational speed

is shown in Fig. 3, the rotational speed at the maximum mechani-
cal power can be expressed as follows:

xopt
m ¼ koptVw

R
ð4Þ
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The WT maximum power is calculated as follows:

Pmax
m ¼ Cp kopt

� �
Pw ¼ 1

2
Cmax
p qAV3

w ð5Þ

B. Permanent magnet synchronous generator (PMSG) model

Many types of generators can be installed with WT like PMSG,
doubly fed induction generator (DFIG), dual-stator IG, and opti-
slip IG (OSIG) [46]. In the constructed system, PMSG is used as it
is efficient and it doesn’t require any gear box for connection
[47]. The dq voltages of PMSG can be calculated as follows:

vd ¼ Lqxeiq � Ld
did
dt

� Rsidvq

¼
ffiffiffi
3
2

r
Usfxe � Ldxeid � Lq

diq
dt

� Rsiq ð7Þ

where Ld is the inductance of d-coil, Lq is the inductance of q-coil, Rs
is the resistance of stator windings, id is the current in d-axis, iq is
the current in q-axis, xe is the angular frequency, and Usf is the flux
linkage produced by the permanent magnet of the rotor. The elec-
tromagnetic torque is given as follows:

TL ¼ P

ffiffiffi
3
2

r !
Usf iq þ Lq � Ld

� �
id � iq

" #
ð8Þ

where P is the pole pair number. The dynamic behavior of WT and
PMSG can be written as follows:

Tm � P

ffiffiffi
3
2

r
Usf iq þ Lq � Ld

� �
id � iq

" #
� f �xm ¼ J

dxm

dt
ð9Þ

where J is the inertia of the system, f is the friction coefficient, and
Tm is the mechanical torque.

C. Boost converter model

The equivalent circuit of boost converter is given in Fig. 4 [48],
the switch S1 represents the MOSFET with a constant switching
period. The transformer is an ideal type with primary inductance
of Llk1 and secondary inductance of Llk2 while the magnetizing
inductance is Lm. The capacitor Cin is low pass filter, it can be used
to reduce the inductor current to zero when the MOSFET is opened.

The voltage gain of the converter can be written as follows:

Vout

Vin
¼ n

1� DS1
ð10Þ
in

Boost converter

LoadCout +
Vout

-

Ioutin

idth 
ation

nergy generation system.
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where n is the turns ratio of transformer and Ds1 is the MOSFET duty
cycle. The equivalent input resistance of the converter can be calcu-
lated as follows:

Rin ¼ 1� DS1ð Þ2
n2 RL ð11Þ

where RL is the resistance of load, the converter duty cycle can con-
trol the converter input resistance and the converter input current.
In case of increasing the duty cycle, the input resistance of converter
is decreased, this action increases the converter input power. There-
fore, the output current is increased resulting in decreasing the WT
rotational speed. The converter duty cycle can be controlled via
5

MPPT controller to catch the peak power from the wind energy gen-
eration system.
4. Archimedes optimization algorithm overview

Archimedes optimization algorithm (AOA) was introduced by
Hashim et al. [49], the algorithm is motivated from the principle
of Archimedes which is considered as law of physics. The Archi-
medes principle is concerned with the object which partially or
completely immersed in the fluid. As there is an upward force
(called buoyancy) generated from the liquid on the body, this force
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is equal to the fluid weight displaced from the body. In AOA, the
immersed objects are considered as the population individuals
(candidate solutions). The approach begins with initializing a pop-
ulation with objects, moreover the position of each object is initial-
ized in random manner inside the problem search space. Then the
corresponding fitness function is calculated. During the iterative
process, AOA updates the objects’ densities and volumes while
their accelerations are updated on the basis of their collisions with
neighbor object. The initialization process of all objects is per-
formed using the following formula:

Oi ¼ li þ rand� ui � lið Þ; i ¼ 1;2; :::;N ð12Þ
Fig. 7. Simulink model of the pro

6

where li and ui are the lower and upper limits of ith object, and N is
the number of objects. The volume and density of each object can be
initialized as follows:

deni ¼ rand; voli ¼ rand ð13Þ

where rand is a vector of D-dimension with values in range of [0, 1].
The acceleration of each object can be calculated as follows:

acci ¼ lbi þ rand� ubi � lbið Þ ð14Þ
The initial fitness function is calculated and the object with the

best fitness is assigned as xbest, denbest, volbest, and accbest.
posed AOA-MPPT controller.



Table 1
Specifications of the wind energy system components.

WT Boost converter

Prated 250 W Cin 680 mF
Vcut-in 6 m/s Cout 220 lF
Vcut-out 13.2 m/s C2 18 mF
b 0� C1 1.2 nF
kopt 8.1 n 10/4
PMSG Lm 19.14 mH
Prated 1 kW Llk2 0.031 mH
Vrated(L-N) 24 V Llk1 0.011 mH
Rs 0.05 X RL 240 X
Ls 0.0085H Diode rectifier
J 0.011 kg.m2 Forward voltage of diode 0.8 V
Viscous damping 0.001889 N.m.s Snubber resistance 100 X
P 4 Snubber capacitance 0.1 lF
Static friction 0 N.m Ron 1 mX
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The updating process of ith object’s density and volume is per-
formed based on the following formula.:

dentþ1
i ¼ dent

i þ rand� denbest � dent
i

� � ð15aÞ

voltþ1
i ¼ volti þ rand� volbest � volti

� �
ð15bÞ

where t refers to the current iteration and rand is a random number.
At the beginning, there is a collision between the objects after
which the object tries to reach the equilibrium state. This action
is presented in AOA via transfer operator which helps in transfor-
mation from exploration phase to exploitation one.

The formula of transfer operator can be written as follows:
Table 2
The optimal results obtained via the proposed AOA and the others at V = 12 m/s.

CS GOA [35]

Pm (W) 80.5449 136.0344
xm (rad/s) 17.5481 29.3676
duty 0.2000 0.0975
Pmax (W) 63.5237 101.1967
VMPP (V) 123.5 155.8435
IMPP (A) 0.5145 0.6493
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TF ¼ exp
t � tmax

tmax

� �
ð16Þ

where tmax is the maximum number of iterations. Here, the value of
TF is increased gradually with iterations until it reaches to unity.
The density decreasing factor is another one that helps AOA for
transferring from global to local search, it can be formulated as
follows:

dtþ1 ¼ exp
t � tmax

tmax

� �
� t

tmax

� �
ð17Þ

The value of d t+1 decreases with time, moreover proper assign-
ing of this variable helps in achieving exploration/exploitation bal-
ance. The exploration phase is represented by collision between
the objects, this phase is considered when the transfer operator
is 0.5. The acceleration of ith object at iteration t + 1 is updated
by selecting a random material (mr) as follows:

acctþ1
i ¼ denmr þ volmr � accmr

dentþ1
i � voltþ1

i

ð18Þ

where denmr, volmr, and accmr are the density, volume, and acceler-
ation of random material (mr). The exploitation phase in AOA con-
siders no collision between the objects, this phase is implemented
when the value of transfer operator is greater than 0.5. The accel-
eration of ith object in exploitation phase can be computed as
follows:

acctþ1
i ¼ denbest þ volbest � accbest

dentþ1
i � voltþ1

i

ð19Þ
ECPO The proposed AOA

95.955450 136.0343
20.90399 29.3676
0.1576 0.0911
78.3044 102.2039
137.0878 156.6171
0.57119 0.6526

25 30 35 40 45 50
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The proposed AOA
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ower during iterative process.
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where denbest, volbest, and accbest are the best object density, volume,
and acceleration respectively. It is important to normalize the accel-
eration of each particle, this determines the step percentage that
each particle will change. The normalized acceleration can be writ-
ten as follows:

acctþ1
i�norm ¼ u� acctþ1

i �min accð Þ
max accð Þ �min accð Þ
� �

þ l ð20Þ

where l and u are the normalization range, they are assigned as 0.1
and 0.9 respectively. When the object is far away from the global
optima, the value of acceleration will be high, in this case explo-
ration phase is conducted else exploitation phase is presented.

The position of ith particle is updated in exploration phase using
the following formula:

xtþ1
i ¼ xti þ C1 � rand� acctþ1

i�norm � d� xrand � xti
� � ð21Þ
8

On the other hand, the updating process of particles’ positions
during the exploitation phase can be presented as follows:
xtþ1
i ¼ xti þ F � C2 � rand� acctþ1

i�norm � d� T � xbest � xti
� � ð22Þ
where C1 and C2 are constants defined by the user, T is a parameter
that depends on the transfer operator (T = C3 � TF), C3 is a constant
value, xbest is the position of the best particle, and F is the flag
employed to change the particle’s motion direction. The value of F

can be determined using the following formula: F ¼ þ1 P 6 0:5
�1 P > 0:5

	
(23)where the value of P is assigned randomly by the user. Finally,
the fitness function is computed at the updated particles’ positions
and then the best solution is recorded. Fig. 5 shows the flowchart of
AOA.



Table 3
The optimal results obtained via AOA in comparison to GOA in scenario (2).

Time interval (sec.) [0–0.5] [0.5–1.5] [1.5–3] [3–4.5] [4.5–6]

AOA GOA AOA GOA AOA GOA AOA GOA AOA GOA

Pm (W) 8.7363 8.603 131.3387 135.9 55.617 55.83 135.6637 136.5 28.2696 18.24
xm (rad/sec.) 7.6135 7.747 28.4347 29.3 18.9225 18.65 29.29498 29.45 13.6855 8.851
Pmax (W) 6.3819 6.217 102.136 101.7 41.2778 41.2 102.2028 102.2 18.8562 13.22
VMPP (V) 39.1364 37.68 156.2965 156 99.5323 99.44 156.765 156.6 67.2717 56.22
IMPP (A) 0.1631 0.159 0.6535 0.651 0.4147 0.414 0.6519 0.652 0.2803 0.233
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Fig. 11. Time response of variable wind speed considered in scenario (2).
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5. The proposed optimization formula

The designing methodology of MPPT installed with wind energy
system followed in this paper is implemented as optimization
problem, the considered fitness function to be maximized is the
electrical power extracted from the wind energy system. The
objective function is formulated as follows:

Maximize Pe tð Þ ¼ Vout tð Þ
n

� 1� DS1ð Þ � Iin tð Þ
� �

ð24Þ

where Vout(t) is the load terminal voltage at instant t and Iin(t) is the
input current to converter at instant t. The power extracted from
the wind energy system can be controlled via adapting the duty
cycle DS1. The corresponding constraint is related to the duty cycle
as follows:

Ds1;min 6 Ds1 6 Ds1;max ð25Þ
where Ds1,min and Ds1,max are the lower and upper bounds of the
MOSFET duty cycle, they are assigned as 0 and 1 respectively. The
authors selected a recent metaheurestic optimizer of Archimedes
optimization algorithm (AOA) to represent the MPPT installed with
the system. AOA is selected as it is simple and straightforward in
implementation, moreover it has less controlling parameters. Fur-
thermore, it has exploration/exploitation balance that helps the
algorithm to extract the global optima. Fig. 6 shows the proposed
steps followed in the proposed AOA to design the MPPT installed
with wind energy system. The proposed methodology incorporated
AOA begins by initializing a population with converter duty cycles
based on the upper and lower limits defined by the user. After that,
9

each duty cycle is fed to the converter MOSFET, the corresponding
electrical power is recorded as Pe

(t). The iterative process given in
Fig. 5 is implemented and the obtained power is recorded as
Pe
(t+1). The duty cycle is updated based on Eqs. (21) and (22) when

Pe
(t+1) is greater than Pe

(t). The iterative process is continued until
the error between the current power and that obtained in the pre-
vious iteration converges to zero. Finally, the global maximum
power is printed.
6. Results and discussions

The Simulink model of the proposed AOA-MPPT controller with
wind energy generation system is constructed as shown in Fig. 7.
AOA is programmed in Matlab function, the mechanical rotational
speed and electrical power are fed to the AOA-MPPT controller
while the duty cycle is the output. Three operating conditions are
studied in this work considering constant, variable, and real wind
speeds. The system specifications are given in Table 1, the popula-
tion size of AOA is selected as 4 and the maximum iteration is
assigned to 50. All optimizers utilized in this work are imple-
mented for 20 runs and the one with the best fitness function is
selected as the final solution.

A. Scenario (1): Constant wind speed

The first scenario studied in this work is conducted at fixed
wind speed with a value of 12 m/s. The proposed AOA is imple-
mented and the obtained results are compared with cuckoo search
(CS), grasshopper optimization algorithm (GOA) [35], and electric
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Fig. 12. The time responses of (a) WT speed, (b) WT mechanical power, (c) current, (d) voltage, and (e) electrical power at scenario (2).
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charged particle optimization (ECPO). The optimal results at such
case are given in Table 2.

The proposed AOA outperformed CS, GOA [35], and ECPO
achieving maxi mum electrical power of 102.2039 W at duty cycle
of 0.0911 fed to the converter MOSFET. GOA comes in the second
rank achieving a maximum power of 101.1967 W after feeding
the converter by duty cycle of 0.0975. CS and ECPO based algo-
rithms achieved maximum powers of 63.5237 W and 78.3044 W
at duty cycles of 0.2 and 0.1576 respectively. This confirms that,
both CS and ECPO fall in local optima. Fig. 8 shows the variation
of maximum power (fitness function) during iterative process of
all studied optimizers.

The time responses of WT rotational speed and mechanical
power obtained via all studied optimizers are given in Fig. 9 while
the variations of current, voltage, and electrical power with time
10
are given in Fig. 10. The obtained curves confirm the superiority
of the proposed AOA compared to CS, GOA, and ECPO.

B. Scenario (2): Variable wind speed

It is important to invetsigate the constructed MPPT vi the pro-
posed AOA under operating the wind turbine at variable wind
speed. Five variations are considered in the wind speed as shown
in Fig. 11.

The proposed AOA is implemented in this case and the obtained
results are tabulated in Table 3 in comparison with those obtained
via GOA [35]. As the reader see, in the second interval, the pro-
posed AOA-MPPT extracted power from the wind generation sys-
tem of 102.136 W while GOA achieved 101.7 W. The proposed
AOA outperformed GOA approach implemented by the authors in
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[35] for all time intervals. The time responses of rotational speed,
mechanical power, current, voltage, and electrical power obtained
from all optimizers are shown in Fig. 12.

The proposed AOA-MPPT controller achieved great performance
in catching the peak power from the wind generation system at
variable wind speed.

C. Scenario (3): Practical case study

It is important to investigate the proposed tracker for system
installed at different sites in the Kingdom of Saudi Arabia with
different weathers. The selected locations are Sakaka (29.878�lat-
itude and 40.1043� longitude) which is located at the northern
region of the kingdom, Riyadh (24.7742�latitude and 46.7385�lon-
gitude) which is the capital of Saudi Arabia, Jeddah (21.5433�lat-
itude and 39.17277�longitude) which is located in Hejaz region of
11
Saudi Arabia, and Jizan (16.90968�latitude and 42.5679�longitude)
at the south of the Kingdom. The real data of wind speed at these
locations are collected with the aid of NASA [50], the considered
time interval is selected as six months starting from the first of
August 2020 to 31 January 2021. The collected measured data
of wind speed for the selected locations are shown in Fig. 13.
The proposed AOA is implemented in comparison to ECPO, the
obtained results for Sakaka, Riyadh, Jeddah, and Jizan are
recorded in Table 4. For Sakaka city, the proposed approach suc-
ceeded in extracting maximum power of 12.7988 W and average
daily power of 0.927 W. while the ECPO based MPPT achieved
9.8654 W maximum power and 0.75029 W average daily power.
Similarly, the AOA-MPPT achieved the best results for Riyadh, Jed-
dah, and Jizan. The proposed MPPT achieved great performance
for operation under different weathers compared to ECPO based
tracker.
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Fig. 13. The measured wind speed for (a) Sakaka, (b) Riyadh, (c) Jeddah, and (d) Jizan.

Table 4
The optimal results obtained via AOA in comparison to ECPO in scenario (3).

Sakaka Riyadh Jeddah Jizan

ECPO AOA ECPO AOA ECPO AOA ECPO AOA

Pm (kW) 1.3395 1.6535 1.5084 1.8681 1.3032 1.6115 0.4394 0.5171
xm_av (rad/sec.) 2.7981 3.3675 2.9558 3.5826 2.6978 3.2304 1.9991 2.2799
Pmax (W) 9.8654 12.7988 5.6231 7.3911 10.8367 14.0281 2.8191 3.7161
Pav (W/day) 0.75029 0.9270 0.8553 1.0586 0.7451 0.9180 0.1838 0.2279

A. Fathy, A.G. Alharbi, S. Alshammari et al. Ain Shams Engineering Journal xxx (xxxx) xxx

12



(a)

(b)

0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

 M
ec

ha
ni

ca
l s

pe
ed

 (r
ad

/s
ec

.)

ECPO The proposed AOA

0 20 40 60 80 100 120 140 160
0

5

10

15

20

 M
ec

ha
ni

ca
l p

ow
er

 (W
)

0 20 40 60 80 100 120 140 160
0

0.1

0.2

 C
ur

re
nt

 (A
)

ECPO The proposed AOA

0 20 40 60 80 100 120 140 160
0

50

 V
ol

ta
ge

 (V
)

0 20 40 60 80 100 120 140 160
0

5

10

 P
ow

er
 (W

)

Fig. 14. Time responses of (a) rotational speed and mechanical power, (b) current, voltage, and power for wind generation system installed in Sakaka city.
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The time responses of the WT rotational speed, mechanical
power, current, voltage and electrical power obtained via the pro-
posed AOA and ECPO for Sakaka, Riadh, Jeddah, and Jizan are
shown in Figs. 14-17, respictevly. The curves confirm the superirity
of the proposed approach in all studied locations.
13
The constructed MPPT via AOA robustness is confirmed in
extracting the maximum power of wind generation system
installed in different locations in Saudi Arabia.

The obtained results in all studied scenarios confirmed the
superiority and reliability of the constructed tracker via the pro-
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Fig. 15. Time responses of (a) rotational speed and mechanical power, (b) current, voltage, and power for wind generation system installed in Riyadh city.
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posed AOA based approach. Therefore, the authors recommend the
installation of AOA-MPPT with wind energy generation system as it
is able to work in online mode.
7. Conclusion

This paper presented a novel application of Archimedes opti-
mization algorithm (AOA) to implement the MPPT installed with
14
wind energy generation system to improve its performance. The
presented generation system comprises WT connected to PMSG.
The generator output is converted to DC using 3-phase rectifier
which its terminals are connected to boost converter to control
the DC power required by the load. The proposed AOA controls
the duty cycle of the converter MOSFET such that the output power
from the wind energy generation system is maximized. The pro-
posed approach is investigated under operating the wind energy
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Fig. 16. Time responses of (a) rotational speed and mechanical power, (b) current, voltage, and power for wind generation system installed in Jeddah city.
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system at fixed, variable, and real recorded wind speeds. Real data
of wind speed are recorded at different regions in Saudi Arabia
which are Sakaka, Riyadh, Jeddah, and Jizan and the proposed
tracker is investigated. The results obtained via the proposed
15
approach are compared with those obtained via cuckoo search
(CS), grasshopper optimization algorithm (GOA), and electric
charged particle optimization (ECPO). Regarding to the scenario
of fixed wind speed operation, the AOA-MPPT controller succeeded
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Fig. 17. Time responses of (a) rotational speed and mechanical power, (b) current, voltage, and power for wind generation system installed in Jizan city.
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in extracting maximum power of 102.2039 W at duty cycle of
0.0911 while GOA achieved maximum power of 101.1967 W. For
operation under variable speed, 102.136 W is extracted via the
proposed AOA-MPPT controller and 101.7 W is obtained by GOA-
16
MPPT controller. In the practical case study, the proposed AOA
extracted 12.7988 W for Sakaka city while 9.8654 W is obtained
via ECPO. The results confirmed the robustness of the proposed
AOA-MPPT controller in achieving the best performance of wind
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energy generation system as it outperformed all considered opti-
mizers. The proposed algorithm shall be used to solve several opti-
mization problems for other renewable energy systems and smart
grid in the near future.
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