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Abstract

A new bio-inspired optimization algorithm called artificial hummingbird algorithm (AHA) is proposed in this work to solve
ptimization problems. The AHA algorithm simulates the special flight skills and intelligent foraging strategies of hummingbirds
n nature. Three kinds of flight skills utilized in foraging strategies, including axial, diagonal, and omnidirectional flights,
re modeled. In addition, guided foraging, territorial foraging, and migrating foraging are implemented, and a visit table is
onstructed to model the memory function of hummingbirds for food sources. AHA is validated using two sets of numerical test
unctions, and the results are compared with those obtained from various algorithms. The comparisons demonstrate that AHA
s more competitive than other meta-heuristic algorithms and determine high-quality solutions with fewer control parameters.
dditionally, the performance of AHA is validated on ten challenging engineering design cases studies. The results show the

uperior effectiveness of AHA in terms of computational burden and solution precision compared with the existing optimization
echniques in literature. The study also explores the application of AHA in hydropower operation design to further demonstrate
ts potential in practice. The source code of AHA is publicly available at https://seyedalimirjalili.com/aha and https://www.ma
hworks.com/matlabcentral/fileexchange/101133-artificial-hummingbird-algorithm?s_tid=srchtitle.
c 2021 Elsevier B.V. All rights reserved.

eywords: Artificial hummingbird algorithm; Engineering optimization; Swarm intelligence; Meta-heuristics; Bio-inspired computing; Algorithm;
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1. Introduction

During the past several decades, numerous optimization approaches have been designed to tackle a plurality of
ptimization problems. In recent years, however, the complexity of real-world optimization problems has emerged
ubstantially with the development of human society and modern industry processes, which poses an even increasing
hallenge for optimization techniques. Generally speaking, the existing optimization techniques can be categorized
nto deterministic and meta-heuristic algorithms. Deterministic algorithms are specific mathematical functions and
ork mechanically and iteratively without any random nature. On a given problem, a deterministic method always
btains the same output for a particular input. Gradient descent and Newton’s methods are two classic examples of
eterministic algorithms. Although such algorithms can effectively find the local optima in solving some nonlinear
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problems, they may require derivative information of problems and tend to be trapped into the locally optimal
solutions. Thus, these methods are powerless when dealing with highly constrained, complex problems with multiple
peaks.

In view of the above, meta-heuristic methods have emerged to become ideal alternatives to deterministic methods.
uch methods use different operators iteratively to explore and exploit the search space based on a minimum or
aximum function [1]. These algorithms can balance between exploitation and exploration [2]. In the past two

ecades, meta-heuristic methods have been explored immensely and can be used in various fields in economy and
rade, finance, energy, scheduling, image processing, optimal control, and engineering design applications [3–12].

eta-heuristic methods are particularly popular due to their randomness and black box consideration of problems.
andomness makes meta-heuristics less sensitive to initial conditions and easier to switch between exploration and
xploitation. The black box nature allows us to focus on the input and output rather than on the structural knowledge
f considered problems. These merits enable meta-heuristics to effectively find global optimal solutions to given
roblems that deterministic methods cannot solve because of a lack of derivative or other related information.

Among meta-heuristic methods, bio-inspired algorithms have gained the most momentum in development in
ecent years and are increasingly applied to different engineering dilemmas with great success [13–15]. Bio-inspired
lgorithms typically mimic biological activities of living organisms and transform them into mathematical models
n an optimized way. A great number of different living organisms exist in nature, some of which always offer us
nspiration for developing effective optimization algorithms.

Genetic algorithm (GA), one of the most classic evolutionary algorithms (EAs), is originated from biological
ystems of natural selection to solve complex optimization problems [16]. The basic version of GA imitates three
volutionary behaviors: selection, crossover, and mutation. GA operates based on a population of individuals, each
f which represents a candidate solution. The population evolves with these three operators over time, and the best
ndividual so far is employed to generate a new population following numerous iterations. Due to the selection of
ndividual proportional to their fitness values, GA converges to the global optimum. GA tends to be more powerful
han deterministic methods and requires no additional information about the problems in question. This algorithm
xhibits a good optimization capacity for solving complex problems, however, it readily suffers from premature
onvergence. Also, its optimization performance mostly depends on the election for the rates of crossover and
utation, the selection of objective functions, and population size [17].
Particle swarm optimization (PSO) is also one of the most popular bio-inspired methods [18] that imitates the

ocial behaviors of bird flocking. The process starts with a population of random individuals whose positions are
onsidered solutions to a problem. At each iteration, the position of each individual is stochastically updated based
n the best global position obtained for any individual and the best position for the individual itself. The function
tness value is employed to measure the quality of an individual. Although PSO has a good convergence rate, it
asily gets trapped into the local optima for some high-dimensional problems and is relatively sensitive to its control
arameters [19].

Ant colony optimization (ACO), another popular bio-inspired algorithm, models the social behavior of ants when
oraging [20]. When a population of ants explore the search space, they lay down pheromone trails to guide each
ther toward the targets. The goal of each ant is to search for the shortest path between the nest and the food source
ia pheromone trails. If any ant finds a shorter path, the rest of ants tend to follow this path until the positive feedback
uides all ants to follow a single route. ACO is successfully applied to solve vehicle routing problems and other
ynamic applications, but its theoretical analysis is difficult, and its convergence time is uncertain when solving
roblems [21].

Artificial bee colony (ABC), another well-regarded bio-inspired algorithm, models the intelligent foraging
ehaviors of honeybees [22]. In ABC, three groups of bees, including employed bees, onlooker bees, and scout
ees, are used to perform global optimization. An employed bee performs local search for food based on visual
nformation, and an onlooker bee chooses a food according to a probability proportional to the nectar amount. A
cout bee randomly chooses a food in the search space. According to these three different foraging behaviors, ABC
an balance exploration and exploitation and achieve fast convergence. Yet this algorithm may result in premature
onvergence in later iterations and the solution precision is sometimes unsatisfactory within an acceptable time
imit [23].

Cuckoo search (CS) [24], an interesting bio-inspired algorithm, is based on the obligate brood parasitism of

ome cuckoo species. CS models two behaviors of cuckoos: reproduction and Levy flight. Cuckoos perform their
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reproductive behaviors by laying eggs in the nest of host birds and then removing host birds’ eggs to increase the
hatching probabilities of their own eggs. Levy flight provides cuckoos with a special random walk characterized by
the Levy distribution that combines a small-scale local search with occasional long-distance travel. This method is
proved to be more efficient than PSO and GA in dealing with some complex optimization problems [25]. However,
CS shows some disadvantages, such as low convergence precision and relatively poor local search ability [26,27].

Other successful bio-inspired meta-heuristics include, but not limited to, bat algorithm (BA) [28], glowworm
warm optimization (GSO) [29], fruit fly optimization algorithm (FOA) [30], bacterial foraging optimization
BFO) [31], squirrel search algorithm (SSA) [32], artificial ecosystem-based optimization [33], dolphin echolocation
DE) algorithm [34], shark smell optimization (SSO) [35], whale optimization algorithm (WOA) [36], virus colony
earch (VCS) [37], tree growth algorithm (TGA) [38], emperor penguin optimizer (EPO) [39], invasive weed
ptimization (IWO) [40], butterfly optimization algorithm (BOA) [41], spotted hyena optimizer (SHO) [42], krill
erd (KH) [43], satin bowerbird optimizer (SBO) [44], runner-root algorithm (RRA) [45], bird mating optimization
BMA) [46], grasshopper optimization algorithm (GOA) [47], flower pollination algorithm (FPA) [48], crow search
lgorithm (CSA) [49], monkey king evolutionary (MKE) [50], and grey wolf optimizer (GWO) [51]. These meta-
euristics are based on the complex behaviors of living organisms to design different local and global search
trategies, providing a larger selection of algorithms for scholars to tackle optimization problems in various fields.

It is noted that many bio-inspired meta-heuristics, such as ACO, ABC and PSO, are also population-based
lgorithms that simulate the collective behaviors of a social swarm on earth. However, some bio-inspired meta-
euristics only mimic behavior patterns and characteristics of individuals. For example, FPA performs local search
y modeling biotic pollination, and performs a global search by modeling abiotic pollination [48,52].

It is worth mentioning that most bio-inspired meta-heuristics share common features, i.e., exploration and
xploitation, irrespective of whatever they are inspired from. Exploration is a process of leaving any local region and
ubsequently exploring unknown spaces, while exploitation is a process of probing a local region to find a promising
olution [53]. In general, exploration should be performed in early stages of algorithms, whereas exploitation is
erformed in later stages. A successful bio-inspired optimizer needs to first be equipped with effective mechanisms
f exploratory and exploitative searches inspired from living things. Then, it requires to properly balance the trade-
ff between exploration and exploitation when searching for the global optimum for a given problem. The success
f this model motivates us to develop an effective bio-inspired optimizer to tackle complex real-world problems.

One might be wondering why new bio-inspired optimizers are still being developed even though so many exist,
nd some of them perform well in solving complex problems. The answer can be found in No Free Lunch Theorem
f Optimization [54], which theorizes that an algorithm that can effectively solve all kinds of optimization problems
oes not and will never exist. Therefore, this theorem encourages us to raise new, more efficient bio-inspired
ptimizers from different aspects, which motivates this study. Additionally, most optimizers have several control
arameters. It is difficult to choose a set of different parameters well fitting different problems for a given optimizer.
ence, developing an algorithm with less control parameters is necessary, which is another motive of this study.
The algorithms mentioned above have been evaluated in the literature and the exploration and exploitation have

een discovered in these algorithms. In GA [16], the exploration happens in the crossover and mutation phases,
hile the exploitation occurs in the selection phase. In ABC [22], the scout bees are employed to globally explore the

earch space, and the employed and onlooker bees are employed to locally explore the search space. In CS [25], the
xploration is controlled by a Levy flight component and the exploitation is controlled by two individuals randomly
hosen in the population. In BA [28], two parameters, the loudness and the pulse rate, are employed to control
he exploration and exploitation, respectively. In AEO [33], the consumption factor encourages the algorithm to
erform a global search and the decomposition factor assists the algorithm to perform a local search. In WOA [36],
he shrinking encircling mechanism and spiral updating are used in the exploitation phase, while the searching for
rey is done in the exploration phase. In VCS [37], the virus diffusion strategy contributes to the exploitation while
he host cell infection strategy to the exploration. In BOA [41], the butterflies perform exploration by taking a step
oward the fittest butterfly and the butterflies performs exploitation with respect to two butterflies which belong to
he same swarm. In FPA [48], the flower pollens are carried by pollinators which enable flower pollens to move

long range, and this long-distance pollinator makes the exploration happen; different flowers of the same plant
pecies make flower pollens move a short range, and this flower consistency makes exploitation occur. In GWO [51],
he searching for prey of grey wolves improves the exploration ability of the algorithm, while the attacking prey of

rey wolves enhances the exploitation ability of the algorithm. There are many existing algorithms with different
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improved forms in the literature to strengthen the optimization ability of the algorithms. In the Gbest-guided ABC
(GABC) [55], the search strategy is improved to enhance the exploitation, in which the information of the global
optimum is incorporated into the solution search equation. In the enhanced WOA (EWOA) [56], the Levy flight
strategy is introduced to improve the exploration and the ranking-based mutation operator is incorporated to enhance
the exploitation. In the memory-based GWO (MGWO) [57], the search mechanism of the wolves is modified based
on the information of each individual wolf, the crossover and greedy selection are introduced to improve the global
and local search capacities.

AHA is quite different from the existing algorithms although it belongs to the category of meta-heuristics. The
ajor difference between AHA and them is its particular biology background. AHA is inspired by three foraging

trategies and three flight skills of hummingbirds in nature. Another important difference is the exploration and
xploitation. In AHA, the migration foraging strategy guarantees exploration of the search space and the territorial
oraging strategy promotes exploitation; meanwhile, the guided foraging strategy emphasizes exploration in the early
tage and highlights exploitation in the later stage. The third variation between AHA and the existing algorithms
s that AHA has a distinct memory update mechanism. Each hummingbird needs to know the last time to visit
very other hummingbird, this information is recorded in a visit table, by which each hummingbird can choose
ts desired food source. Therefore, considering these mentioned factors, there are significant differences in AHA
nd the existing algorithms. There is a good work in literature that has tried to model the search behaviors of
ummingbirds with Levy flight and the best individuals [58], but the proposed optimizer in this work is an attempt
o mimic not only the search behaviors of hummingbirds with three foraging strategies, but also their superior

emory and impressive flight skills.
This study introduces a new bio-inspired optimizer called artificial hummingbird algorithm (AHA). The

nspiration for this algorithm is based on the special flight skills and intelligent foraging strategies of hummingbirds.
HA mimics three kinds of flight patterns involving axial, diagonal, and omnidirectional flights, along with three

earch strategies, guided foraging, territorial foraging, and migrating. In addition, an important component called
isit table is introduced to implement the memory function of hummingbirds for seeking out and selecting food
ources. The AHA algorithm is evaluated with two sets of various numerical test functions and a set of ten
ngineering cases and is compared with those of several other meta-heuristic techniques. Eventually, an example of
ydropower operation design is considered in practice.

Section 2 describes the inspiration of AHA. The basic steps of the algorithm are introduced in detail in Section 3.
wo sets of different numerical experiments and a set of ten engineering cases are utilized to investigate the
erformance of AHA in Section 4. Section 5 discusses the application of AHA in the hydropower operation design
nd Section 6 provides some concluding remarks and several directions for future study.

. Inspiration

Hummingbirds are astounding animals and are considered to be the world’s smallest birds. If their intelligence
s measured by the brain-to-body ratio, hummingbirds would be the most intelligent animals on the earth, including
umans [59]. About 360 species of hummingbirds are found worldwide, most species have a body length of only 7.5
o 13 cm.1 Bee hummingbirds, the smallest hummingbirds, have an average length of 5.5 cm and a weight of 1.95
.2 Hummingbirds beat their wings with the highest frequency of all birds, up to 80 times per second. Generally,
ummingbirds feed on various insects, such as mosquitoes, weevils, and aphids [60]. To supply enough energy for
ying, hummingbirds also eat plenty of flower nectar and sweet liquid inside flowers every day. Fig. 1 shows a
oraging hummingbird.3

What is special about hummingbirds is their amazing memory for foraging. A hummingbird has a hippocampus
n its brain that plays a critical role in learning and memory, and is much larger than that of any other birds
xamined to date. Hummingbirds are tiny but extremely smart with a brain larger in relation to body size than
ny other birds, proving that hummingbirds have a prodigious memory [61]. In fact, each hummingbird can
emember specific information about individual flowers in a certain region, including the location, nectar quality
nd contents [62], nectar-refilling rate [63], and the last time they visited the flowers. The birds also remember

1 https://en.wikipedia.org/wiki/Hummingbird.
2 https://en.wikipedia.org/wiki/Bee hummingbird#cite note-ADW-4.
3 https://pixabay.com/zh/photos/hummingbird-bird-flowers-small-bird-5566297/.
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Fig. 1. A foraging hummingbird.

spatial–temporal information about food sources. With this information in mind, hummingbirds can actually plan
with some efficiency and avoid revisiting recently sampled flowers [61]. The employment and storage of memory
about individual experiences are referred to as episodic memory, which was previously often used to distinguish
animals from humans [64]. With this unique skill, hummingbirds become efficient foragers and tend to visit flowers
that they have not visited for a long time for a more rewarding episode.

Another special skill is the flight ability of hummingbirds. The tiny body and high-frequency wingbeats make
them the best flyers among bird species. With flexible shoulder joints, hummingbirds can rotate their wings 180
degrees and keep their wings moving in a figure-eight motion. This distinctive flight helps hummingbirds obtain
strength from both the downstroke and upstroke [65], while other birds simply flap their wings to gain lift strength
from the downstroke only. Hummingbirds can be considered the helicopters of the bird world since they often can
be observed to rise like a helicopter. A hummingbird can fly in any direction with precision. Aside from the flight
like other birds, hummingbirds can also fly at different attitudes, including forward and backward, up and down, and
left and right [66]. Diagonal flying is also a peculiar flight posture that hummingbirds master like no other birds.
They can fly in circles around a potential food resource when searching for food. Unbelievably, hummingbirds can
stay in one spot in the air for a period of time. Hummingbirds are strongly migratory; they generally migrate to
remote areas by flying thousands of miles on account of severe weather or food shortages.

The main inspirations behind AHA algorithm are the flight skills, memory capacity, and foraging strategies
of hummingbirds. In the next section, these behaviors are mathematically modeled and an artificial hummingbird
algorithm is proposed.

3. Artificial hummingbird algorithm (AHA)

A bio-inspired optimization algorithm, AHA, based on hummingbirds’ intelligent behaviors, is presented in this
section. The three main components of AHA are explained as follows.

Food sources: In reality, to select an appropriate source from a set of food sources, a hummingbird generally
evaluates the properties of sources, including the nectar quality and content of individual flowers, nectar-refilling
rate, and the last time to visit the flowers. For simplicity in AHA, it is assumed that each food source has the same
number and identical type of flowers; a food source is a solution vector and the nectar-refilling rate of a food source
is represented by function fitness value. The better the fitness value is, the higher the nectar-refilling rate of the food
source will be.

Hummingbirds: Each hummingbird is always assigned to a specific food source from which it can be fed, then
this hummingbird and the food source have the same position. A hummingbird can keep in mind the position and
nectar-refilling rate of this specific food source and share the information with other hummingbirds in a population.
In addition, for each hummingbird, it can also remember how long each food source is not visited by itself.

Visit table: The visit table records the visit level for each food source for different hummingbirds, which denotes
the amount of time since the same hummingbird last visited a certain food source so far. The food source with a

high visit level for a hummingbird will be given a priority visit for that hummingbird. To obtain more nectar, a

5
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Fig. 2. Three foraging behaviors of AHA.

hummingbird tends to visit the food source with the highest nectar-refilling rate among the food sources with the
same highest visit level. Each hummingbird is able to find its target food source via the visit table. The visit table
is generally updated during each iteration.

The AHA algorithm is a swarm-based meta-heuristic method designed to solve optimization problems. This
subsection provides three mathematical models simulating three foraging behaviors of hummingbirds: guided
foraging, territorial foraging, and migrating foraging. These three foraging behaviors are depicted in Fig. 2. Similarly
to most optimizers in swarm-based category, the structure of the proposed algorithm can be divided into three main
stages. The general structure of AHA is provided in Algorithm 1.

3.1. Mathematical model and algorithm

3.1.1. Initialization
A population of n hummingbirds are placed on n food sources, randomly initialized as follows [67]:

xi = Low + r · (U p − Low) i = 1, . . . , n (1)

where Low and U p are the upper and lower boundaries for a d-dimensional problem, respectively, r is a random
vector in [0, 1], and xi represents the position of the i th food source that is the solution of a given problem.

The visit table of food sources is initialized as follows:

V Ti, j =

{
0 i f i ̸= j

i = 1, . . . , n; j = 1, . . . , n (2)
null i = j
6
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Fig. 3. Three flight behaviors of hummingbirds, (a) axial fight, (b) diagonal flight, (c) omnidirectional flight.

here for i = j, VTi ,j = null indicates that a hummingbird is taking food at its specific food source; for i ̸= j,
VTi ,j = 0 indicates that the j th food source has just been visited by the ith hummingbird in the current iteration.

.1.2. Guided foraging
There is a natural tendency for each hummingbird to visit the food source with the maximum nectar volume,

hich signifies that a target source needs to have a high nectar-refilling rate and a long unvisited time by that
ummingbird. In AHA, therefore, a hummingbird is supposed to determine the food sources with the highest visit
evel for the guided foraging behavior, then it chooses the one with the highest nectar-refilling rate from them as
ts target food source. After the target food source is determined, this hummingbird can fly towards it for feeding.

During foraging, three flight skills, including omnidirectional, diagonal, and axial flights, are sufficiently used
nd modeled in the AHA algorithm by introducing a direction switch vector. This vector is used to control whether
ne or more directions in the d-dimension space are available. Fig. 3 shows the three flight behaviors in 3-D space.
t can be seen that the axial flight shows a hummingbird can fly along any coordinate axis; the diagonal flight allows
hummingbird to move from one corner of a rectangle across to the opposite corner, and is determined by any two

oordinate axes out of three. The omnidirectional flight shows that any flight direction can be projected to each of
he three coordinate axes. In other words, all birds use omnidirectional flight, but only hummingbirds master the
xial and diagonal flights.

These flight patterns can be extended to a d-D space, in which the axial flight is defined as follows:

D(i)
=

{
1 i f i = randi([1, d])
0 else i = 1, . . . , d (3)

he diagonal flight is defined as follows:

D(i)
=

{
1 i f i=P( j), j ∈ [1, k], P = randperm(k), k ∈ [2, ⌈r1 · (d − 2)⌉ + 1]
0 else i = 1, . . . , d (4)

The omnidirectional flight is defined as follows:

D(i)
= 1 i = 1, . . . , d (5)

here randi([1, d]) generates a random integer from 1 to d, randperm(k) creates a random permutation of integers
rom 1 to k, and r1 is a random number in (0, 1]. The diagonal flight in a d-D space is inside a hyperrectangle,
hich is bounded by any 2 to d-1 coordinate axes. The movement of a hummingbird in 3-D space using three flight

kills is illustrated in Fig. 4, in which the red lines represent the omnidirectional flight, the green lines represent the
iagonal flight, and the blue lines represent the axial flight. In the figure, a hummingbird is required to move from
4,4,4) to (0,0,0). After eight units of time, the hummingbird is capable of reaching the desired point by using three
ifferent flight skills. This shows that the mathematical models of the flight skills are able to mimic the searching
ehaviors of the hummingbirds in 3-D and multi-dimensional spaces.

With these flight abilities, a hummingbird visits its target food source, resulting in a candidate food source being
btained. As such, a food source is updated from the old one with respect to the target food source selected from
7
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Fig. 4. Movement of a hummingbird in a 3-D space using three flight skills.

all the existing sources. The mathematical equation simulating the guided foraging behavior and a candidate food
source is derived as follows:

vi (t + 1) = xi,tar (t) + a · D · (xi (t) − xi,tar (t)) (6)

a ∼ N (0, 1) (7)

where xi (t) is the position of the i th food source at time t, xi,tar (t) is the position of the target food source that
the i th hummingbird intends to visit and a is a guided factor, which is subject to the normal distribution N (0, 1)
with mean = 0 and standard deviation = 1. Eq. (6) enables each current food source to update its position in the
neighborhood of the target food source and models the guided foraging of hummingbirds via different flight patterns.
The position update of the i th food source is as follows:

xi (t + 1) =

{
xi (t) f (xi (t)) ≤ f (vi (t + 1))
vi (t + 1) f (xi (t)) > f (vi (t + 1)) (8)

where f (·) indicates the function fitness value. Eq. (8) shows that if the nectar-refilling rate of the candidate food
source is better than that of the current one, the hummingbird abandons the current food source and stays at the
candidate one resulted from Eq. (6) for feeding.

In the AHA algorithm, the visit table is an important component that stores the visit information of food
sources. Any hummingbird can find its target food source that it wants to visit according to the visit table at each
iteration. The visit table records how long each food source is not visited since last time it was visited by the same
hummingbird, and a long unvisited time indicates a high visit level. Each hummingbird desires to choose the food
source(s) with the highest visit level. If more than one source tie for the same highest visit level, the one with the
best nectar-refilling rate is chosen as the target food source that a hummingbird will visit. Each hummingbird in
the population visits its own target food source via Eq. (6). During each iteration, when a hummingbird performs
the guided foraging using Eq. (6) with respect to its target food source, the visit levels of the other food sources
for this hummingbird are incremented by 1 and the visit level of its target food source visited is initialized to 0.
After performing the guided foraging, the hummingbird will not change its food source if there is not a better
nectar-refilling rate (solution); the current source will be replaced by a new one if there is a better nectar-refilling
rate (solution), and then this hummingbird will stay at the new food source. The update of a food source at which the
corresponding hummingbird is resided indicates the visit level update of the food source for all other hummingbirds.

The visit level to be updated is set as the highest level of the other food sources incremented by 1.

8
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Fig. 5. Visit table of a population of six hummingbirds.

Fig. 5 shows a visit table of a set of six food sources on which six hummingbirds are placed. The number in
the visit table is the visit level signifying how long a hummingbird does not visit the food source. For example, the
number ‘8’ in blue indicates that the hummingbird x2 does not visit the food source at which the hummingbird x5
is resided for 8 time periods. The guided foraging strategy of AHA is shown in Algorithm 2.

The following example (a minimization problem) shows how the visit table is maintained and how the target
ood source is chosen for each hummingbird in the guided foraging strategy.

Given a population of four hummingbirds, and their positions and the visit table are initialized using Eqs. (1)
nd (2), respectively. The first hummingbird finds three food sources that have the same highest visit level, among

hich the food source of the hummingbird x4 has the highest nectar-refilling rate. Hence, this source is the target

9
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Fig. 6. Update of visit table and selection of the target food source during one iteration when performing guided foraging strategy.

ood source of the first hummingbird. After Eqs. (6) and (8) are performed for this hummingbird, the visit levels of
he food sources of the hummingbirds x2 and x3 are increased by 1 because neither are visited by the hummingbird

x1, and the target food source x4 is initialized to 0. The update of the visit level and the selection of the target food
ource for the first hummingbird are shown in Fig. 6(a).

The second hummingbird finds three food sources with the same highest visit level, with the food source of the
ummingbird x4 having the highest nectar-refilling rate. Hence, the food source of the hummingbird x4 is the target

food source of the second hummingbird. After Eqs. (6) and (8) are performed for the second hummingbird, the visit
levels of the sources of the hummingbirds x1 and x3 are increased by 1 and the target source x4 is initialized to 0.
The source of the hummingbird x2 is replaced with the candidate v2 since the nectar-refilling rate of the candidate

2 is better than that of the source x2, therefore, the visit level of the source x2 for each of the other hummingbirds
eeds to be changed to the highest visit level increased by 1 in every corresponding row. The update of the visit
evel and the selection of the target food source for the second hummingbird are shown in Fig. 6(b).

For the third hummingbird, the food source of the hummingbird x2 is the target food source owing to its highest
isit level, so the visit levels of the food sources of the hummingbirds x1 and x4 are increased by 1, and the visit
evel of the target source x2 is initialized to 0. The update of the visit level and the selection of the target food
ource for the third hummingbird are shown in Fig. 6(c).

For the fourth hummingbird, the food source of the hummingbird x2 with the highest visit level is its target food

ource, so the visit level of the source x2 is initialized to 0, and the visit levels of the sources of the hummingbirds

10
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x1 and x3 are increased by 1. Since the source x4 is replaced with its candidate v4, the visit level of the source x4 for
each of the other hummingbirds needs to be changed to the highest visit level increased by 1 in every corresponding
row. The update of the visit level and the selection of the target food source for the fourth hummingbird are shown
in Fig. 6(d). After one iteration, the updated visit table for the hummingbirds is shown in Fig. 7.

3.1.3. Territorial foraging
After visiting its target food source where the flower nectar has been eaten, a hummingbird is likely to search

for a new food source instead of visiting other existing food sources. Therefore, a hummingbird can readily move
to its neighboring region within its own territory, in which a new food source may be found as a candidate solution
that may be better than the current one. The mathematic equation simulating the local search of hummingbirds in
the territorial foraging strategy and a candidate food source is obtained as follows:

vi (t + 1) = xi (t) + b · D · xi (t) (9)

b ∼ N (0, 1) (10)

where b is a territorial factor, which is subject to the normal distribution N(0,1) with mean = 0 and standard deviation
= 1. Eq. (9) can allow any hummingbird to easily find a new food source in its local neighborhood according to its
personal position by means of its special flight skills. After the territorial foraging strategy is performed, the visit
table should be updated. The territorial foraging strategy of AHA is shown in Algorithm 3.

3.1.4. Migration foraging
When a region where a hummingbird frequently visits tends to be lack of food, this hummingbird usually migrates

o a more distant food source for feeding. In the AHA algorithm, a migration coefficient is defined. If the number
f iterations exceeds the predetermined value of the migration coefficient, the hummingbird locating at the food
ource with the worst nectar-refilling rate will migrate to a new food source produced randomly in the entire search

pace. At this time, this hummingbird will abandon the old source and stay at the new one for feeding, and then

11
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Fig. 7. Updated visit table of hummingbirds after one iteration.

the visit table is updated. The migration foraging of a hummingbird from the source with the worst nectar-refilling
rate to a new one produced randomly can be given as follows:

xwor (t + 1) = Low + r · (U p − Low) (11)

where xwor is the food source with the worst nectar-refilling rate in the population. The migration foraging strategy
of AHA is shown in Algorithm 4.

In the guided foraging strategy, when there is no food source whose position is adjusted, hummingbirds tend
o move towards different sources as their respective target food sources, leading to a higher exploration and a
ower probability of converging to the local optima. When there is a food source which is updated by a new
ne, this updated source more likely than the old one as the same target food source will guide hummingbirds
tationed at the other different food sources to move towards it, resulting in a higher exploitation. Considering
q. (6), in the early stage of iterations, exploration is emphasized on account of the long distance among food
ources, while the distance adaptively decreases with the increase of iterations, thus exploitation is highlighted.
n the territorial foraging strategy, a hummingbird carries out the exploitation process in its local neighborhood.
urther, the migration foraging of hummingbirds indicates that a hummingbird has implemented the exploration
rocess in the search space.

In AHA, in addition to two common parameters, the population size and maximum number of iterations, only
ne control parameter needs to be determined in considering whether the migration is performed. In the worst
12
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Fig. 8. Searching behaviors of AHA on Rosenbrock function.

case, if there is no replacement for all food sources when performing guided foraging and territorial foraging, a
hummingbird will visit every food source in turn as its target source according to the visit table at each iteration.
Assuming that there is a probability of 50% to choose between either the guided foraging or the territorial foraging,
and there is the same probability of visiting every other source in the guided foraging. Thus, a hummingbird may
visit the same food source as its target source after 2n iterations in the worst case. In this case, the migration
oraging strategy needs to be performed to improve the stagnation and explore the search space. Therefore, the
ollowing definition for the migration coefficient relative to the population size is recommended as follows:

M = 2n (12)

3.2. Pseudocode of AHA

AHA starts by initializing a set of random solutions and a visit table. At each iteration, there is a probability of
50% to perform either the guided foraging or the territorial foraging. The guided foraging allows hummingbirds to
move toward their respective target food sources determined by the visit table and nectar-refilling rate. The territorial
foraging forces hummingbirds to perturb their own local neighborhoods. With every 2n iterations, the migration
foraging is performed. These three foraging behaviors all use the three flight skills, including omnidirectional,
diagonal, and axial flights. All operations and calculations are carried out interactively until the stopping criterion
is reached. Eventually, the food source with the best nectar-refilling rate is returned as an approximation of the
global optimum. The pseudocode of AHA is given in Algorithm 5.

The computational complexity of the AHA algorithm is related to initialization, the fitness evaluation (c), the
position update of hummingbirds, the size of the hummingbird population (N), the maximum number of iterations
(T), and the dimension of variables (d). The overall computational complexity of AHA can be expressed as:

O(AH A) = O(problem de f ini tion) + O(ini tiali zation)
+O(t( f unction evaluation)) + O(t(guided f oraging))
+O(t(terri torial f oraging)) + O(t(migration f oraging))

= O(1 + nd + T cn +
1
2 T nd +

1
2 T nd +

T
2n nd)

∼= O(T cn + T nd +
T d
2 )

(13)

.3. Searching behaviors

The searching behaviors of AHA are demonstrated using two classic test functions. The first is Rosenbrock
unction, which is a unimodal function with its global optimum falling in a long and narrow valley as depicted in
ig. 8. So, it is hard for an optimizer to find the optimal solution in a short time. The optimal solution is x = (1, 1)
ith f (x)=0. Fig. 8 shows the searching behaviors of this function, including search history, variable trajectories, and

he convergence curve, meanwhile, the searching process of each of four hummingbirds for the global optimum is
escribed clearly. The four hummingbirds start at different positions randomly produced in the search space, during
13
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100 iterations, they can quickly approximate the optimum using three different flight skills. Obviously, AHA shows
an excellent exploitation for the optimal solution and convergence rate. The algorithm arrives at a best solution
x=(0.9724497, 0.9458298) with f (x)=7.6196E−4 using four hummingbirds after 100 iterations.

The second function is Rastrigin function, which is relatively difficult to be optimized because of multiple local
ptima. Its optimal solution is x = (0, 0) with f (x) = 0. The searching behaviors of AHA for this function are shown
n Fig. 9. Inspecting this figure, through the special flight skills in the optimization process, AHA can perform a
ood exploration for the entire search space and converge to the global optimum quickly. After 100 iterations, the
est solution found by the proposed algorithm using four hummingbirds is x=(−5.8377E−11, 2.7365E−10) with
(x) = 0.

.4. Conceptual comparison of AHA with ABC

AHA and ABC are a swarm-based, bio-inspired meta-heuristic algorithm, formally, though, they look similar,
HA has its characteristics. ABC models the foraging behaviors of three types of honey bees when seeking the food

ources, while AHA focuses more on modeling the memory ability and flight skills of hummingbirds in the foraging
rocess. The optimization process of ABC can be divided into three phases: the employed bee search phase, the
nlooker bee search phase, and the scout bee search phase. In the employed bee search phase, each individual in
he population updates its position with respect to a randomly chosen individual except itself. In the onlooker bee
earch phase, each individual in the population updates its position with respect to an individual chosen by a roulette

echanism based on the fitness value. The position updates of individuals in the two phases all adopt a random

14



W. Zhao, L. Wang and S. Mirjalili Computer Methods in Applied Mechanics and Engineering 388 (2022) 114194
Fig. 9. Searching behaviors of AHA on Rastrigin function.

walk. In the scout bee search phase, the position of the individual achieving a predefined limit value is replaced by
a new randomly produced position in the search space. In AHA, there are three phases in the optimization process,
including the guided foraging, territorial foraging, and migration foraging phases. In the guided foraging phase, each
individual in the population updates its position with respect to an individual chosen by a visit table and its fitness
value, a visit table keeps track of how long the positions of other individuals have not been visited by it, thus the
position of the individual who has not been visited for the longest time and has the better fitness value becomes its
visiting target. In the territorial foraging phase, each individual updates its position by adding a perturbation in its
neighboring region. The position updates of individuals in the two phases adopt three fight skills. In the migration
foraging phase, when the migration coefficient is satisfied in the iteration process, the position of the individual with
the worst fitness value is replaced by a new randomly produced position in the search space. Therefore, based on
the above-mentioned analysis, it can be found that ABC and AHA follow totally different approaches when solving
optimization problems.

The above description of the algorithm indicates:
• AHA is a bio-inspired meta-heuristic method motivated by the foraging and flights of hummingbirds for

solving global optimization problems.
• The algorithm models three foraging strategies of hummingbirds: guided foraging, territorial foraging, and

migrating foraging.
• The proposed three flight skills, including omnidirectional, diagonal, and axial flights, are integrated into the

strategies of guided foraging, territorial foraging to perform an effective search.
• The visit table records the visit level of each food source for different hummingbirds. AHA needs to maintain

the visit table by which each hummingbird may find its own target food source and visit that source.
• The visit table can improve the traverse visit of hummingbirds for all the food sources and reduce the repeated

visit to the same food source.
• In the guided foraging strategy, each hummingbird needs to determine its own target food source, which is

the food source with the best nectar-refilling rate among the food sources with the same highest visit level.
• The guided foraging strategy is devoted to exploration in the early stage of iterations but focuses on

exploitation in the later stage of iterations.
• The territorial foraging strategy contributes to exploitation and migration is dedicated to exploration.
• AHA is very simple to implement and requires that few parameters are adjusted.
In the next section, AHA will be tested on several case studies.

4. Experimental analysis and results

To effectively verify the performance of the AHA algorithm, three different sets of experiments are implemented,
and the optimization results provided by AHA are analyzed and compared with those provided by the other
optimizers. The first experiment comprises 50 numerical test functions with different kinds of characteristics that are
relatively comprehensive to assess the performance of optimizers from multiple perspectives. The second experiment
15
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Table 1
Parameter settings for each algorithm.

Algorithm Parameter Value

CS Mutation probability 0.25
DE Mutation factor, crossover rate 0.5, 0.5
PSO Cognitive coefficient, social coefficient,

inertia constant
2, 2, decrease from 0.9 to 0

GSA Gravitational constant, decreasing
coefficient

100, 20

ABC Limit n·d
TLBO Teaching factor [1, 2]
SHADE Pbest rate, arc rate 0.1, 2
CMA-ES Expected initial distance to optimum

per coordinate Coordist
5

WOA Convergence parameter Linear reduction from 2 to 0
SSA Leader position update probability 0.5
BOA Modular modality, power exponent,

switch probability
0.01, 0.1, 0.8

AHA Migration coefficient 2n

is the CEC 2014 test suite that is widely employed to test the performance of algorithms in terms of both exploration
and exploitation. The third experiment consists of 10 engineering design cases, which are employed to check the
effectiveness of the AHA algorithm.

4.1. Experiment 1: 50 benchmark functions

In this experiment, 50 test functions described in Appendix A are employed and their details can be found in [22].
his test set is reasonably large and covers functions with four characteristics: unimodal, multimodal, nonseparable,
nd separable. The unimodal functions have only one local extremum, while the multimodal functions have more
han one. The multimodal characteristic always makes algorithms easy to obtain the local optima. The separable
haracteristic indicates that the variables of the functions can be split into a product of functions of every variable,
ut the nonseparable characteristic cannot because of the interrelation among their variables. The nonseparable
haracteristic tends to lead to the global optimum being difficult to find. These functions are listed in Appendix A,
n which 17 functions are unimodal, 33 are multimodal, 36 are nonseparable, and 14 functions are separable.

The performance of AHA is compared with those of eleven different swarm-based algorithms, including CS,
E, PSO, GSA, ABC, TLBO, covariant matrix adaptation with evolution strategy (CMA-ES) [68], success-history
ased adaptive DE (SHADE) [69], WOA, salp swarm algorithm (SSA) [70], and BOA. The population size and
he number of function evaluations (FEs) are set as 50 and 50,000 for all considered optimizers, which are run 30
imes for each function. The parameter values of each algorithm are provided in Table 1.

The mean (‘Mean’) and standard deviations (’Std’) of the best-so-far solutions are used to compare all the
onsidered algorithms as two evaluation criteria in this experiment, which are formulated as follows:

Mean =
1
R

R∑
i=1

g∗

i (14)

Std =

√
1
R

(g∗

i − Mean)2 (15)

here g∗

i is the best-so-far solution obtained in the i th independent run and R is the number of independent runs. It
is obvious that the smaller the values of the two evaluation criteria, more stable and reliable solutions the algorithm
can offer. The standard solution (true value) is the globally optimal solution that means there exists no other feasible
solution with better objective function values. For a minimum problem, the standard solution is the feasible solution
where its function value reaches its minimum value. The smaller the function value of the feasible solution is, the
closer the feasible solution is to the standard solution [71].
16
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Table 2
Comparisons of optimization results for 50 test functions (F1–F17).

Fun. Index AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

F1
Mean −5 −1.66667 −4.966667 −5 −5 −1.7 −5 −0.46667 −4.23333 −5 −3.66667 -2
Std 0 0.660895 0.182574 0 0 0.466092 0 1.33218 2.9206 0 0.71116 1.94759

F2
Mean 0 0.066667 0 0.333333 36.3 0 4.966667 0 0 0 5.13333 0
Std 0 0.253721 0 0.844183 10.299481 0 1.449931 0 0 0 2.93297 0

F3
Mean 7.32E−292 9.89E−08 7.06E−87 3.38E−14 14.940417 2.23E−17 1.544734 8.13E−10 1.16E−06 2.48E−208 5.22E−09 2.94E−13
Std 0 4.88E−07 1.02E−86 5.01E−14 3.954443 5.97E−18 0.515346 4.52E−10 4.88E−07 0 8.73E−10 9.63E−14

F4
Mean 1.67E−288 3.10E−10 1.54E−87 5.82E−15 2.057293 1.71E−16 0.168377 1.43E−10 1.70E−07 3.01E−205 7.48E−04 1.46E−12
Std 0 6.36E−10 1.87E−87 9.24E−15 0.588976 3.88E−17 4.19E−02 7.36E−11 6.76E−08 0 1.47E−03 4.62E−13

F5
Mean 6.06E−05 4.12E−02 1.02E−03 2.05E−01 7.77E−02 2.06E−02 0.150642 6.40E−03 1.26E−01 3.67E−04 1.31E−02 7.92E−04
Std 4.83E−05 1.72E−02 2.96E−04 7.19E−02 1.94E−02 7.12E−03 3.93E−02 1.99E−03 4.07E−02 3.61E−04 5.21E−03 3.32E−04

F6
Mean 0 0 0 0 1.36E−17 4.94E−28 1.85E−14 0 1.13E−27 1.71E−14 4.00E−16 1.47E−05
Std 0 0 0 0 3.92E−17 1.90E−27 4.09E−14 0 4.30E−27 4.21E−14 3.48E−16 1.43E−05

F7
Mean −1 −1 −1 −1 −1 −0.96667 −1 -1 −0.20236 −1 −1 −0.99999
Std 0 0 0 0 1.75E−13 0.182574 6.31E−12 0 0.40574 1.02E−10 2.30E−13 4.69E−06

F8
Mean 7.66E−280 7.59E−94 9.91E−135 7.42E−255 5.50E−25 6.21E−22 1.01E−09 2.46E−315 8.29E−45 0 1.06E−16 4.19E−21
Std 0 2.76E−93 3.53E−134 0 1.94E−24 6.62E−22 1.27E−09 0 1.19E−44 0 1.49E−16 4.54E−21

F9
Mean 2.83E−24 7.63E−03 9.99E−06 3.84E−06 1.19E−02 0.697872 4.62E−02 5.81E−24 1.23E−06 0.15092 1.52E−10 9.11E−02
Std 2.52E−24 6.49E−03 2.26E−05 2.10E−05 2.04E−02 0.933509 5.35E−02 3.18E−24 1.69E−06 0.104465 2.06E−10 9.24E−02

F10
Mean −50 −50 −50 −50 −50 −50 −50 −50 −50 −50 −50 −49.98911
Std 6.53E−14 2.96E−14 2.47E−14 2.89E−14 2.67E−10 2.36E−14 1.73E−05 3.95E−14 5.72E−14 7.90E−08 3.94E−12 4.60E−03

F11
Mean −210 −209.9986 −210 −210 −209.999 −209.909 −206.2352 −210 −209.99999 −209.99989 −210 −205.28953
Std 2.98E−06 4.71E−03 1.47E−05 3.15E−13 6.21E−04 0.164415 1.851794 4.24E−13 9.38E−06 9.50E−05 1.53E−10 5.6689

F12
Mean 1.78E−262 2.50E−17 1.09E−51 5.28E−33 2.98E−03 4.30E−18 0.137357 4.54887 1.86E−06 3.46E−08 6.71E−12 1.12E−16
Std 0 6.22E−17 2.35E−51 7.02E−33 1.44E−03 1.76E−18 9.02E−02 11.90241 1.51E−06 1.26E−07 2.57E−12 5.04E−17

F13
Mean 4.25E−294 2.33E−03 8.13E−06 2.11E−04 0.321206 5.85E−03 4.385384 2.16E−03 1.56E−03 2.25E−07 2.38E−02 5.80E−18
Std 0 1.51E−03 1.74E−05 1.48E−04 0.126297 4.56E−03 2.310504 7.42E−04 8.84E−04 5.28E−07 1.08E−02 2.10E−18

F14
Mean 8.99E−150 7.79E−05 9.40E−44 5.45E−08 19.332082 2.37E−08 3.40E−02 4.58E−05 1.01E−03 3.90E−117 0.16395 3.51E−06
Std 3.87E−155 1.39E−04 6.87E−44 2.36E−08 4.292123 3.40E−09 6.27E−03 1.77E−05 2.77E−04 1.11E−116 0.33186 3.57E−07

F15
Mean 2.96E−278 1078.0941 2.16E−16 7.526372 3102.901 271.9731 11540.79 0.33573 144.87304 977.52989 5.49E−04 1.64E−13
Std 0 647.25346 6.13E−16 9.786907 582.7381 75.43658 1588.385 0.39314 29.2366 866.21494 8.73E−04 4.63E−14

F16
Mean 25.065057 49.164576 23.377421 38.588551 784.6473 26.09923 8717.4121 25.95412 26.06047 25.15995 48.64191 28.66781
Std 0.278139 30.081342 0.703925 23.616923 271.3126 0.201436 2787.6436 33.08219 0.32561 0.2677 48.27414 3.10E−02

F17
Mean 0.666667 1.369245 0.666667 0.692593 9.670616 0.676004 66.23423 0.66667 0.66668 0.66667 0.7314 0.72472
Std 8.50E−17 1.249854 1.11E−14 0.107241 2.772505 3.00E−02 22.11624 5.87E−06 1.03E−05 9.21E−06 0.1064675 1.36E−02

Table 3
Comparisons of optimization results for 50 test functions (F18–F34).

Fun. Index AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

F18
Mean 0.998003 0.998003 0.998003 0.998003 0.998004 3.638354 0.998138 3.00695 0.998003 0.998003 0.998003 0.998003
Std 0 0 0 0 2.19E−15 2.217956 5.61E−04 2.4873 0 1.36E−13 1.82E−16 5.42E−08

F19
Mean 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.397887 0.43609 0.397887 0.397887 0.39791
Std 0 0 0 0 2.65E−14 0 7.36E−09 0 9.18E−02 1.72E−09 2.88E−15 2.63E−05

F20
Mean 0 0 0 0 0 0 5.10E−10 0 61.90491 0 3.52E−12 0
Std 0 0 0 0 0 0 5.13E−10 0 102.66111 0 4.70E−12 0

F21
Mean 0 0 0 0 1.38E−23 1.79E−20 2.36E−10 0 0 4.19E−07 2.52E−15 5.59E−06
Std 0 0 0 0 2.71E−23 2.19E−20 3.25E−10 0 0 3.25E−07 3.27E−15 6.65E−06

F22
Mean 0 30.845624 12.679728 153.2381 109.4123 14.6259 188.6345 1.65E+02 1.15E+02 0 33.79541 5.79935
Std 0 7.6342136 5.5850898 32.147688 13.43076 3.265065 12.28813 8.99333 9.03763 0 14.36489 31.76315

F23
Mean −12409.83 −7414.212 −6967.84 −5410.479 −8240.78 −2799.41 −4669.02 −4.37E+03 −6.87E+03 −12373.69 −7.75E+03 −4.64E+03
Std 225.97788 703.19062 883.35773 626.77109 183.6841 401.8812 321.0048 206.39451 354.24722 477.69677 622.8568 346.07855

F24
Mean −1.801303 −1.801303 −1.801303 −1.801303 −1.801303 −1.801303 −1.801303 −1.80127 −1.801303 −1.801303 −1.801303 −1.801206
Std 9.03E−16 9.03E−16 9.03E−16 9.03E−16 9.03E−16 9.53E−16 2.82E−15 1.79E−04 9.03E−16 1.57E−10 7.49E−15 1.48E−04

F25
Mean −4.687658 −4.676521 −4.630384 −4.672345 −4.68747 −4.58342 −4.68325 −4.65679 −4.687658 −4.20252 −4.47196 −4.22945
Std 1.61E−15 1.88E−02 6.22E−02 2.05E−02 1.73E−04 7.45E−02 8.45E−03 6.42E−03 1.66E−14 0.47952 0.26152 0.13664

F26
Mean −9.659194 −9.436739 −9.3722 −9.350663 −8.32567 −9.29025 −8.39637 −6.408 −9.16678 −7.37496 −7.90679 −5.84003
Std 1.88E−02 0.164514 0.174254 0.377745 0.261795 0.196015 0.319772 0.757190 0.100900 0.93505 0.78449 0.27924

F27
Mean 0 0 0 0 6.40E−12 1.12E−02 3.99E−06 0 5.97E−03 0 1.41E−16 0
Std 0 0 0 0 2.56E−11 1.24E−02 5.31E−06 0 3.24E−02 0 2.57E−16 0

F28
Mean −1.031628 −1.031628 −1.031628 −1.031628 −1.031628 −1.031628 −1.031628 −1.03163 −1.03163 −1.03163 −1.03163 −1.03163
Std 6.65E−16 6.78E−16 6.78E−16 6.78E−16 5.13E−16 5.68E−16 7.78E−11 6.78E−16 6.71E−16 1.77E−14 1.56E−15 1.87E−06

F29
Mean 0 0 0 0 0 0 2.92E−09 3.91E−02 79.93775 0 2.63E−12 1.85E−17
Std 0 0 0 0 0 0 3.50E−09 0.21426 110.07691 0 2.95E−12 2.66E−17

F30
Mean 0 0 0 0 0 0 3.46E−07 0 0 0 1.18E−12 0
Std 0 0 0 0 0 0 3.63E−07 0 0 0 1.38E−12 0

F31
Mean −186.7309 −186.7309 −186.7309 −186.7309 −186.7309 −185.1421 −186.7161 −186.56881 −186.7309 −186.7309 −186.7309 −186.69803
Std 2.30E−14 4.26E−14 2.04E−14 3.12E−14 1.44E−07 1.482282 1.83E−02 0.6186 3.98E−05 1.96E−07 4.28E−12 2.95E−02

F32
Mean 3 3 3 3 3 3 3 3.00097 3 3 3 3.00009
Std 1.33E−15 2.24E−15 1.26E−15 1.91E−15 1.44E−15 2.37E−15 1.47E−10 5.30E−03 1.66E−15 1.88E−08 3.87E−14 8.05E−05

F33
Mean 3.07E−04 3.23E−04 3.08E−04 3.08E−04 4.01E−04 1.89E−03 5.61E−04 5.35E−04 3.08E−04 4.96E−04 4.82E−04 3.50E−04
Std 1.71E−19 3.33E−05 1.20E−14 1.13E−19 7.66E−05 5.82E−04 6.53E−05 3.21E−04 2.58E−12 2.81E−04 2.12E−04 2.81E−05

F34
Mean −10.1532 −8.387923 −10.1532 −9.816371 −10.1532 −6.51465 −10.04147 −7.19831 −10.1532 −10.1532 −9.98479 −10.07206
Std 7.17E−15 2.5745855 6.40E−15 1.281842 1.56E−07 3.584548 0.612238 3.50661 6.56E−15 2.50E−06 0.92244 5.29E−02

The evaluation results of the best-so-far solutions are provided on each function in Tables 2–4, in which AHA
ffers the best results of all the algorithms on 39 functions and is competitive as well on the other functions.
pecifically, although AHA is similar to DE, the performance of AHA, DE and its variant SHADE is quite different.
n 41 out of 50 benchmark functions the mean solutions provided by AHA are the best. On 25 out of 50 benchmark

unctions the mean solutions provided by DE are the best. On 17 out of 50 benchmark functions the mean solutions
rovided by SHADE are the best. Moreover, AHA, DE and SHADE provide the same best mean solutions on some
unctions such as F10, F18, F21, F24, F30, F31 and F32, whereas AHA performs significantly better than DE and
HADE on many functions such as F3, F4, F5, F9, F12, F13, F14, F15, F17, F22, F23, F26, F33, F41, F42 and
43. To effectively evaluate the overall performance of AHA, the Wilcoxon signed-rank test [72] is employed for
17
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Table 4
Comparisons of optimization results for 50 test functions (F35–F50).

Fun. Index AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

F35
Mean −10.40294 −9.87415 −10.22344 −10.40294 −10.40294 −10.40294 −10.40294 −7.41732 −10.40294 −10.40294 −9.82871 −10.29099
Std 1.44E−15 1.613482 0.983192 1.68E−15 1.39E−06 6.60E−16 1.27E−13 1.92462 9.90E−16 1.23E−05 1.76503 7.29E−02

F36
Mean −10.53641 −10.00033 −10.53641 −10.53641 −10.53641 −10.53641 −10.53641 −8.16297 −10.53641 −10.53617 −10.35772 −10.38754
Std 1.78E−15 1.635722 2.06E−15 1.78E−15 3.86E−06 1.75E−15 4.01E−13 3.69341 2.29E−15 1.30E−03 0.97874 0.10201

F37
Mean 4.94E−02 0.605883 2.18E−02 9.45E−03 8.47E−03 7.574478 0.379297 0.162175 0.13143 0.8788 3.57E−03 1.25213
Std 0.120376 0.739731 4.04E−02 2.29E−02 5.77E−03 5.159717 0.316325 3.92E−02 9.70E−02 1.23697 2.96E−03 0.93553

F38
Mean 1.45E−04 1.19E−03 1.88E−03 1.41E−04 7.55E−04 4.59E−02 1.60E−02 6.68E−04 9.70E−03 4.36E−01 1.33E−02 2.40E−02
Std 1.79E−04 2.91E−03 2.36E−03 1.35E−04 5.75E−04 4.65E−02 1.04E−02 9.74E−04 6.24E−03 4.07E−01 2.48E−02 1.45E−02

F39
Mean −3.862782 −3.862782 −3.862782 −3.862782 −3.862782 −3.862782 −3.862782 −3.862782 −3.862782 −3.86277 −3.86278 −3.86254
Std 2.71E−15 2.71E−15 2.71E−15 2.71E−15 2.32E−15 2.43E−15 2.03E−15 2.71E−15 2.71E−15 1.89E−05 4.82E−15 1.23E−04

F40
Mean −3.310106 −3.254622 −3.318032 −3.302181 −3.321997 −3.322 −3.322 −3.30989 −3.322 −3.2541 −3.27337 −3.30731
Std 3.63E−02 5.99E−02 2.17E−02 4.51E−02 4.69E−07 1.36E−15 4.80E−15 3.69E−02 1.36E−15 6.04E−02 6.06E−02 1.19E−02

F41
Mean 0 1.67E−02 0 3.70E−03 1.150341 4.289197 0.934173 4.65E−09 1.07E−05 1.74E−03 9.11E−03 0
Std 0 1.92E−02 0 9.72E−03 4.11E−02 2.066729 5.82E−02 2.09E−09 2.12E−05 4.60E−03 8.74E−03 0

F42
Mean 8.88E−16 9.97E−02 6.57E−15 3.99E−08 9.189665 3.38E−09 0.655145 8.86E−06 3.55E−04 2.90E−15 1.2144 3.63E−07
Std 0 0.380955 1.77E−15 1.85E−08 1.819592 4.02E−10 0.216113 2.60E−06 7.07E−05 2.22E−15 0.97792 7.41E−08

F43
Mean 4.15E−07 0.1774656 3.46E−03 1.04E−02 3.121021 4.32E−02 37.79774 4.19E−11 4.35E−07 4.35E−06 1.37761 7.44E−02
Std 5.63E−07 0.2800774 1.89E−02 3.16E−02 0.691772 6.97E−02 20.68029 2.50E−11 3.03E−08 1.61E−06 1.37411 2.72E−02

F44
Mean 0.669596 7.69E−03 4.26E−02 1.47E−03 7.714342 2.17E−18 5657.875 5.98E−10 4.91E−07 1.94E−03 2.93E−03 4.17E−01
Std 0.547843 1.45E−02 4.90E−02 3.80E−03 2.177475 5.70E−19 5582.683 4.54E−10 2.30E−07 8.19E−03 4.94E−03 1.40E−01

F45
Mean −1.080938 −1.080938 −1.080938 −1.080938 −1.080938 −1.060773 −1.080938 −1.08066 −1.080938 −1.080938 −1.080938 −1.08007
Std 4.52E−16 2.46E−11 4.52E−16 4.52E−16 6.45E−16 2.35E−02 1.38E−06 9.58E−04 4.52E−16 9.74E−16 1.96E−15 1.48E−03

F46
Mean −1.331229 −1.499999 −1.482166 −1.499999 −1.476211 −0.695269 −1.5 −1.26141 −1.5 −0.86853 −1.19567 −0.90248
Std 0.2871761 6.78E−16 9.77E−02 6.78E−16 9.74E−02 0.134028 2.71E−10 0.29157 3.14E−10 0.25593 0.35396 0.19274

F47
Mean −0.568135 −0.662263 −0.605597 −1.128604 −0.75937 −0.10345 −1.09223 −0.73411 −1.16257 −0.35923 −0.49452 −0.19268
Std 0.203332 0.181552 0.270130 0.405098 9.88E−02 0.111923 0.233308 0.3812 0.28561 0.15903 0.26391 9.87E−02

F48
Mean 0 0 0 0 2.30E−13 2.51E−17 3.80E−10 0.21623 17.16006 1.60E−11 8.10E−13 4.96E−03
Std 0 0 0 0 4.49E−13 2.15E−17 7.57E−10 0.69008 25.83799 5.57E−11 8.72E−13 5.06E−03

F49
Mean 1.99E−14 24.996503 6.30E−04 7.40E−29 0.172079 627.2041 0.206423 6.38E−04 1.32E−03 119.49457 3.30E−04 112.36312
Std 8.38E−14 38.797106 3.38E−03 9.90E−29 0.20066 1066.61 0.275318 2.38E−03 1.62E−03 432.23037 8.73E−04 54.99002

F50
Mean 26.091881 1532.5689 191.36318 3.02667 509.7585 8576.55 21.00176 1.15E+04 20.08336 5.27E+03 13.46566 5.55E+03
Std 40.154103 2755.4617 446.40356 14.34583 170.7582 9659.197 5.291822 1.82E+04 76.03819 6.89E+03 46.29551 1.57E+03

Table 5
Statistical results of Wilcoxon signed-rank test for AHA versus other algorithms.

Function
characteristics

AHA vs PSO
(+/=/−)

AHA vs TLBO
(+/=/−)

AHA vs DE
(+/=/−)

AHA vs CS
(+/=/−)

AHA vs GSA
(+/=/−)

AHA vs ABC
(+/=/−)

US 4/1/0 3/2/0 4/1/0 4/1/0 4/1/0 4/1/0
UN 9/3/0 8/3/1 8/2/2 12/0/0 10/2/0 12/0/0
MS 4/5/0 4/5/0 4/5/0 7/2/0 6/3/0 9/0/0
MN 11/12/1 5/17/2 5/15/4 16/7/1 15/8/1 21/2/1
Total 28/21/1 20/27/3 21/23/6 39/10/1 35/14/1 46/3/1

Function
characteristics

AHA vs
CMA-ES
(+/=/−)

AHA vs SHADE
(+/=/−)

AHA vs WOA
(+/=/−)

AHA vs SSA
(+/=/−)

AHA vs BOA
(+/=/−)

US 4/1/0 3/2/0 3/2/0 5/0/0 4/1/0
UN 5/2/5 12/0/0 10/1/1 11/0/1 12/0/0
MS 5/3/1 6/3/0 6/3/0 9/0/0 8/1/0
MN 7/12/5 13/8/3 19/4/1 21/1/2 20/4/0
Total 21/18/11 34/13/3 38/10/2 46/1/3 44/6/0

better comparison. With the results of 50 functions from 30 runs of each algorithm, the Wilcoxon signed-rank test
can check whether AHA is better than the other competitors with a significance level of a = 0.05. The statistical
esults of the significance difference using the Wilcoxon signed-rank test are summarized in Table 5. In Table 5, ’=’
enotes that there is no statistically significant difference between AHA and the comparative method, ’+’ means
hat the null hypothesis is rejected and AHA statistically outperforms another algorithm, and ’−’ is for the reverse.

As can be seen in Table 5, AHA displays superior performance to the other algorithms on the US (unimodal and
eparable) functions. AHA performs considerably better than the others on the UN (unimodal and nonseparable)
unctions. The results on the US and UN functions demonstrate the superior exploration ability of AHA. It is also
een that AHA performs better than the others on MS (multimodal and separable) functions; the results of all
N and MS functions provided by ABC algorithm are inferior to those provided by AHA. For MN (multimodal

nd nonseparable) functions, there is no significant difference between AHA and TLBO on 17 functions. TLBO
erforms better than AHA on two MN functions, while AHA is better than TLBO on five MN functions. There is
o significant difference between AHA and DE on 15 functions. AHA is better than DE on five MN functions and

s worse than DE on four MN functions. In addition, there is no significant difference between AHA and PSO on
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Table 6
Friedman test of all compared algorithms for 50 functions.

AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

Sum of ranks 155 321.5 206 224.5 365.5 373.5 457 343 301.5 342 392 418.5
Mean of ranks 3.1 6.43 4.12 4.49 7.31 7.47 9.14 6.86 6.03 6.84 7.84 8.37
Overall ranks 1 5 2 3 8 9 12 7 4 6 10 11

12 MN functions; AHA is superior to PSO on 11 MN functions and is inferior to PSO on only one MN function.
The results on MN functions suggest that AHA has a merit with respect to exploration and obviously surpasses all
the other algorithms.

To rank the performance of the considered algorithms, the Friedman test [73,74] is employed in this experiment.
his test not only answers whether there is a significant difference between AHA and the comparative optimizers
ut also ranks the value of each algorithm from the lowest to the highest. The better an algorithm is, the lower its
ank is. This test is carried out on the average solutions provided by AHA and other meta-heuristics, and the ranks
esulted from this test are obtained in Table 6. Inspecting this table, obviously, the AHA algorithm is highlighted
s the best method from the comparisons, with the mean ranks of 3.1 for Friedman test.

Most optimization algorithms have good optimization ability for low-dimensional problems. However, for
igh-dimensional problems, some algorithms become unsatisfactory since the size of the search space increases
xponentially with dimensionality. To verify the scalability of AHA to various high-dimensional functions, 14
ariable-dimensional functions out of 50, including functions F2 (Step), F3 (Sphere), F4 (SumSquares), F5 (Quartic),
14 (Schwefel 2.22), F15 (Schwefel 1.2), F16 (Rosenbrock), F17 (Dixon–Price), F22 (Rastrigin), F23 (Schwefel),
41 (Griewank), F42 (Ackley), F43 (Penalized), and F44 (Penalized2), are employed. The number of dimensions
f these employed functions is increased from 30 to 300 with a step of 15. The mean best-so-far solutions provided
y all the methods for each variable-dimensional function over 30 runs and 50,000 FEs are compared for each
imension.

The scalability comparisons of AHA versus the other algorithms in tackling these employed functions are
rovided in Fig. 10. Based on the figure, the results provided by AHA demonstrate much slower degrades than those
rovided by the other algorithms and remain consistently superior on most functions as the number of dimensions
rows. Even when the function dimensions are very high, the solution quality of AHA is considerably competitive.
lthough AHA performs slightly worse than TLBO with respect to lower dimensions on functions F43 and F44,
ith an increase of dimensions, AHA can achieve almost the same searching quality as TLBO, which is better than

hat of all the other optimizers. In addition, the convincing results suggest that the AHA algorithm is also able to
trike a fine balance between the exploratory and exploitative search, even on multimodal functions with multiple
imensions.

.2. Experiment 2: CEC 2014 test suite

In this experiment, a popular benchmark suite, i.e., CEC 2014 test suite [75], is employed to check whether AHA
s capable to provide more superior optimization performance than the peer algorithms. Because of space constraints,
nly one dimension case, i.e., D=30, is considered. The CEC 2014 test suite described in Appendix B consists of
unimodal functions (CF1–CF3), 13 multimodal functions (CF4–CF16), 6 hybrid functions (CF17–CF22), and 8

omposition functions (CF23–CF30). To maintain consistency, the 11 peer algorithms used in the first experiment
re also employed to this experiment. The maximum number of function evaluations and the population size for all
he considered algorithms are set to 25,000 and 50, respectively. Other parameter settings of these algorithms are
ummarized in Table 1. Every algorithm runs 30 times and the results are based on these 30 runs in average. The
esults obtained for AHA versus other optimizers from the CEC 2014 test suite are listed in Tables 7 and 8. From
he two tables, AHA can offer the best results compared to other optimizers on 11 functions, i.e., CF8, CF10, CF11,
F16, CF23–CF25, and CF27–CF30, in tackling 36.7% of the test suite, followed by SHADE who offers the best

esults on 8 functions, i.e., CF2–CF4, CF7, CF17, and CF19–CF21, in tackling 26.7% of the test suite. Furthermore,
LBO also displays the best performance on 6 functions, i.e., CF1, CF6, CF9, CF13, CF18, and CF22, in tackling
0.0% of the test suite. However, PSO, DE, CMA-ES, WOA and BOA do not show the best performance on any

unction.
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Fig. 10. Scalability comparisons of algorithms for unimodal and multimodal functions.

able 7
esults on unimodal and multimodal functions in CEC 2014.
Fun. Index AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

CF1
Mean 2.27E+07 2.14E+08 6.81E+06 1.10E+08 9.62E+07 4.20E+08 2.22E+08 1.89E+08 9.91E+06 2.00E+08 2.58E+07 3.24E+08
Std 1.22E+07 8.66E+07 3.43E+06 2.61E+07 2.40E+07 8.23E+07 4.81E+07 8.33E+07 2.82E+06 9.74E+07 1.33E+07 1.14E+08

CF2
Mean 9.42E+06 5.54E+09 9.85E+05 2.07E+05 3.46E+09 2.33E+10 3.07E+08 3.89E+09 1.01E+04 3.32E+09 1.03E+04 3.30E+10
Std 6.98E+06 4.17E+09 1.16E+06 6.28E+04 8.18E+08 3.26E+09 7.11E+07 2.27E+09 4.40E+03 1.65E+09 8.60E+03 7.10E+09

CF3
Mean 6.47E+03 2.55E+04 4.27E+04 1.91E+03 2.20E+04 8.73E+04 8.00E+04 2.66E+04 5.08E+02 9.81E+04 6.78E+04 6.80E+04
Std 3.59E+03 1.78E+04 6.45E+03 1.35E+03 4.00E+03 6.51E+03 1.36E+04 1.85E+04 1.26E+02 4.52E+04 1.65E+04 9.06E+03

CF4
Mean 5.67E+02 2.00E+03 5.63E+02 5.91E+02 8.05E+02 2.83E+03 7.95E+02 1.94E+03 5.01E+02 1.01E+03 5.60E+02 4.08E+03
Std 4.77E+01 5.46E+02 3.69E+01 1.98E+01 6.68E+01 3.37E+02 4.52E+01 3.64E+02 2.92E+01 1.90E+02 4.12E+01 1.04E+03

CF5
Mean 520.1335 521.0105 521.0691 520.8434 521.0028 519.9992 521.0542 520.9916 521.0091 520.7941 519.9999 521.0673
Std 9.33E−02 8.82E−02 4.66E−02 5.90E−02 6.84E−02 4.90E−04 5.95E−02 8.92E−02 4.54E−02 1.15E−01 1.11E−04 5.97E−02

CF6
Mean 6.17E+02 6.29E+02 6.15E+02 6.30E+02 6.33E+02 6.32E+02 6.32E+02 6.28E+02 6.19E+02 6.38E+02 6.20E+02 6.35E+02
Std 2.68E+00 3.82E+00 2.46E+00 1.19E+00 1.07E+00 2.74E+00 1.37E+00 4.93E+00 4.90E+00 2.78E+00 3.33E+00 1.36E+00

CF7
Mean 701.0583 787.3136 700.7527 700.2518 718.6952 956.9402 703.4847 790.1209 700.0042 716.6369 700.0133 1007.0856
Std 7.40E−02 3.23E+01 2.61E−01 5.45E−02 5.08E+00 3.35E+01 4.94E−01 3.47E+01 8.88E−03 4.60E+00 9.59E−03 6.95E+01

CF8
Mean 8.48E+02 9.10E+02 8.67E+02 8.81E+02 9.87E+02 9.45E+02 1.02E+03 9.17E+02 9.10E+02 1.03E+03 9.42E+02 1.11E+03
Std 1.75E+01 3.06E+01 1.39E+01 7.35E+00 1.62E+01 1.01E+01 1.15E+01 3.69E+01 1.01E+01 4.63E+01 3.04E+01 1.00E+01

CF9
Mean 1.05E+03 1.11E+03 1.01E+03 1.09E+03 1.14E+03 1.07E+03 1.15E+03 1.10E+03 1.06E+03 1.19E+03 1.05E+03 1.22E+03
Std 3.09E+01 4.59E+01 3.14E+01 8.33E+00 2.44E+01 1.44E+01 1.09E+01 4.51E+01 8.42E+00 4.42E+01 4.04E+01 1.64E+01

CF10
Mean 1.67E+03 3.03E+03 5.46E+03 3.56E+03 4.92E+03 4.91E+03 7.48E+03 3.56E+03 5.04E+03 5.76E+03 4.47E+03 8.30E+03
Std 3.96E+02 7.69E+02 1.32E+03 2.79E+02 1.98E+02 3.60E+02 2.55E+02 9.45E+02 5.22E+02 6.58E+02 6.58E+02 3.97E+02

CF11
Mean 3.89E+03 7.90E+03 8.42E+03 7.44E+03 5.99E+03 5.61E+03 8.63E+03 7.94E+03 7.43E+03 7.05E+03 4.88E+03 8.74E+03
Std 5.14E+02 7.72E+02 2.94E+02 2.34E+02 2.04E+02 5.07E+02 2.81E+02 8.24E+02 3.71E+02 7.58E+02 6.86E+02 3.11E+02

CF12
Mean 1200.2553 1202.5970 1203.1427 1201.8762 1201.6467 1200.0275 1203.0937 1202.7605 1202.4971 1202.3678 1200.6903 1203.1887
Std 1.45E−01 5.49E−01 3.75E−01 1.94E−01 2.00E−01 1.31E−02 4.56E−01 5.85E−01 3.14E−01 6.49E−01 3.74E−01 5.06E−01

CF13
Mean 1300.4547 1302.7626 1300.4339 1300.5226 1300.4463 1304.4934 1300.6252 1302.8761 1300.5450 1300.6350 1300.4914 1304.9885
Std 1.20E−01 5.83E−01 8.87E−02 6.11E−02 5.73E−02 3.90E−01 8.36E−02 4.65E−01 4.32E−02 3.54E−01 1.08E−01 6.66E−01

CF14
Mean 1400.3336 1447.0221 1400.2649 1400.3382 1401.0363 1504.4364 1400.2499 1445.3904 1400.2850 1405.0044 1400.3555 1521.5841
Std 1.51E−01 1.63E+01 4.84E−02 3.15E−02 8.93E−01 1.39E+01 6.97E−02 1.48E+01 3.86E−02 5.95E+00 1.53E−01 2.57E+01

CF15
Mean 1517.8706 1565.4433 1527.2681 1519.0095 1835.4771 6393.9443 1600.5196 1602.8043 1514.3350 1972.8089 1513.4816 16155.6062
Std 9.43E+00 6.82E+01 6.09E+00 9.51E−01 2.59E+02 2.61E+03 3.99E+01 2.98E+02 9.37E−01 4.83E+02 3.89E+00 1.60E+04

CF16
Mean 1610.9303 1612.9340 1612.7586 1612.6619 1613.1027 1613.7006 1613.0812 1612.9198 1612.8083 1613.1263 1612.4193 1613.0991
Std 5.95E−01 2.63E−01 3.01E−01 2.18E−01 1.80E−01 3.01E−01 2.12E−01 2.93E−01 2.66E−01 3.74E−01 4.07E−01 1.84E−01

To analyze the significant differences between the results of AHA and other competitors, the Wilcoxon signed-
ank test with 5% significance level is implemented here [72]. The results of the Wilcoxon signed-rank test with
% significance level of each algorithm for every function are described in Tables 9–11 in detail. The statistical
esults of the Wilcoxon signed-rank test are shown in Table 12. As shown in Table 12, the performance of AHA on
nimodal functions is inferior to that of TLBO, DE and SHADE, and, the performance of TLBO and SHADE is
etter than that of AHA on hybrid functions, followed by other algorithms. However, AHA achieves a remarkably
20
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Table 8
Results on hybrid and composition functions in CEC 2014.

Fun. Index AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

CF17
Mean 1.32E+06 7.64E+06 4.29E+05 5.70E+06 1.80E+06 3.44E+07 5.36E+06 6.70E+06 2.88E+05 1.94E+07 1.57E+06 5.39E+06
Std 9.18E+05 5.44E+06 2.67E+05 2.55E+06 6.49E+05 8.06E+06 1.42E+06 4.99E+06 1.72E+05 1.39E+07 1.41E+06 3.80E+06

CF18
Mean 3.32E+03 1.87E+06 2.79E+03 3.97E+05 4.74E+07 1.98E+05 1.30E+04 1.51E+06 1.00E+04 1.28E+06 6.67E+03 1.12E+08
Std 1.70E+03 5.71E+06 1.18E+03 3.31E+05 2.70E+07 1.07E+06 1.54E+04 5.49E+06 6.24E+03 1.49E+06 4.70E+03 1.43E+08

CF19
Mean 1.93E+03 1.97E+03 1.92E+03 1.92E+03 1.93E+03 2.10E+03 1.92E+03 1.97E+03 1.91E+03 1.99E+03 1.92E+03 2.05E+03
Std 2.83E+01 4.53E+01 2.41E+01 3.31E+00 8.47E+00 2.36E+01 1.31E+00 3.03E+01 7.83E−01 2.66E+01 1.59E+01 4.57E+01

CF20
Mean 1.85E+04 3.20E+04 2.00E+04 9.54E+03 1.48E+04 2.80E+05 4.25E+04 3.61E+04 3.47E+03 1.14E+05 2.86E+04 9.98E+04
Std 7.19E+03 1.93E+04 5.94E+03 3.02E+03 5.56E+03 1.28E+05 1.51E+04 2.41E+04 2.02E+03 7.68E+04 1.39E+04 5.02E+04

CF21
Mean 2.91E+05 6.57E+05 1.71E+05 1.02E+06 1.73E+05 1.63E+07 1.06E+06 1.06E+06 4.95E+04 6.48E+06 3.05E+05 2.22E+06
Std 2.17E+05 4.94E+05 1.09E+05 5.32E+05 5.86E+04 4.06E+06 5.06E+05 1.36E+06 4.13E+04 3.91E+06 2.27E+05 1.07E+06

CF22
Mean 2.85E+03 3.03E+03 2.60E+03 2.70E+03 2.71E+03 3.70E+03 2.89E+03 3.04E+03 2.65E+03 3.12E+03 2.67E+03 3.63E+03
Std 1.94E+02 2.09E+02 1.40E+02 1.36E+02 8.68E+01 5.65E+02 1.41E+02 2.64E+02 8.48E+01 2.95E+02 2.20E+02 2.02E+02

CF23
Mean 2500.0000 2657.4232 2615.3530 2615.6592 2632.8243 2573.1800 2621.9003 2663.2842 2615.2475 2694.1986 2633.2248 2500.0001
Std 0.00E+00 1.73E+01 1.48E−01 1.30E−01 3.88E+00 1.15E+02 1.33E+00 1.65E+01 2.65E−03 1.90E+01 8.08E+00 2.01E−04

CF24
Mean 2600.0000 2639.1036 2600.0800 2628.1350 2661.0747 2620.0005 2648.2497 2636.3027 2624.9547 2609.0670 2639.0200 2600.0001
Std 0.00E+00 8.11E+00 1.32E−02 6.18E−01 2.78E+00 5.73E+00 3.37E+00 6.10E+00 9.92E−01 4.80E+00 8.32E+00 1.87E−05

CF25
Mean 2700.0000 2727.5068 2700.0159 2727.0606 2720.8028 2705.6276 2732.6953 2723.8740 2711.2547 2721.1338 2715.0444 2700.0001
Std 0.00E+00 9.40E+00 8.70E−02 3.31E+00 2.10E+00 2.69E+00 3.65E+00 6.90E+00 1.29E+00 2.40E+01 3.05E+00 3.03E−06

CF26
Mean 2763.5233 2713.5203 2713.7514 2700.6477 2700.4765 2793.1042 2707.7046 2703.2826 2700.8536 2736.6828 2700.5293 2740.4396
Std 4.88E+01 3.09E+01 3.44E+01 1.17E−01 7.02E−02 2.16E+01 1.96E+01 1.08E+00 6.37E−02 7.95E+01 1.46E−01 4.61E+01

CF27
Mean 2900.0000 3546.1570 3271.3167 3366.2782 3256.9408 4557.5228 3502.8503 3470.9875 3108.8516 3893.3813 3194.4532 3273.4932
Std 0.00E+00 2.37E+02 1.25E+02 8.35E+01 3.82E+01 3.96E+02 1.22E+02 2.29E+02 8.07E+01 3.00E+02 1.64E+02 4.82E+01

CF28
Mean 3000.0000 7302.5264 3938.6520 4007.9786 3990.5678 5215.9261 4357.7299 7445.9885 3929.0812 5687.5834 4653.9440 6575.4332
Std 0.00E+00 6.43E+02 1.42E+02 7.00E+01 7.45E+01 8.98E+02 1.18E+02 5.62E+02 7.64E+01 6.58E+02 5.52E+02 6.00E+02

CF29
Mean 3.10E+03 2.34E+07 4.69E+03 3.14E+04 6.27E+05 6.25E+06 3.78E+05 2.85E+07 1.26E+04 1.16E+07 1.35E+04 1.55E+06
Std 0.00E+00 2.69E+07 9.96E+02 7.35E+03 4.08E+05 2.02E+07 1.97E+05 3.16E+07 2.41E+03 7.58E+06 5.47E+03 3.95E+06

CF30
Mean 4.45E+03 1.90E+05 6.98E+03 2.21E+04 3.78E+04 2.57E+06 4.70E+04 1.01E+05 8.44E+03 3.23E+05 6.39E+04 4.92E+05
Std 3.53E+03 1.87E+05 1.52E+03 4.48E+03 1.05E+04 6.84E+05 1.32E+04 6.05E+04 9.29E+02 2.02E+05 6.13E+04 2.02E+05

Fig. 11. Mean ranks of the algorithms.

superior performance in dealing with multimodal and composition functions accounting for 70% of the test suite
compared to all other optimizers. The results of the Wilcoxon signed-rank test demonstrate that AHA offers the
superior performance in terms of solution quality when tackling the CEC test suite.

To further illustrate the overall performance among all 12 competitors, the Friedman test is carried out in this
part [73]. The Friedman test can rank the algorithms based on their performance for each problem separately. The
performance rank of each algorithm for each function is achieved in Table 13. Inspecting Table 13, among 30
benchmark functions, AHA ranks first for 11 functions and ranks second for 3 functions. Fig. 11 illustrates that the
mean ranks of all the algorithms for the CEC test suite. From Fig. 11, the mean rank of AHA is 2.90 which indicates
AHA has the best overall performance in dealing with these complicated problems. The results of Friedman test
again prove the superiority of AHA over the other considered optimizers.

4.3. Experiment 3: 10 engineering cases

In this subsection, AHA is evaluated with ten constrained engineering design cases, which provide diverse
combination of difficulties: constraints, mixed integer, etc. The characteristics of these engineering cases are
21
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Table 9
Wilcoxon signed rank test results for PSO, TLBO, DE and CS versus AHA.

Fun. PSO vs AHA TLBO vs AHA DE vs AHA CS vs AHA

p-value T+ T− Winner p-value T+ T− Winner p-value T+ T− Winner p-value T+ T− Winner

CF1 1.73E−06 0 465 + 2.88E−06 460 5 − 1.73E−06 0 465 + 1.73E−06 0 465 +

CF2 1.73E−06 0 465 + 1.92E−06 464 1 − 1.73E−06 465 0 − 1.73E−06 0 465 +

CF3 1.92E−06 1 464 + 1.73E−06 0 465 + 3.88E−06 457 8 − 1.73E−06 0 465 +

CF4 1.73E−06 0 465 + 8.29E−01 243 222 = 4.39E−03 94 371 + 1.73E−06 0 465 +

CF5 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF6 1.73E−06 0 465 + 1.31E−03 353 112 − 1.73E−06 0 465 + 1.73E−06 0 465 +

CF7 1.73E−06 0 465 + 1.80E−05 441 24 − 1.73E−06 465 0 − 1.73E−06 0 465 +

CF8 1.92E−06 1 464 + 4.20E−04 61 404 + 3.18E−06 6 459 + 1.73E−06 0 465 +

CF9 3.41E−05 31 434 + 1.36E−04 418 47 − 4.45E−05 34 431 + 1.73E−06 0 465 +

CF10 1.92E−06 1 464 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF11 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF12 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF13 1.73E−06 0 465 + 2.89E−01 181 284 = 9.27E−03 106 359 + 7.34E−01 249 216 =
CF14 1.73E−06 0 465 + 2.18E−02 344 121 − 2.07E−02 120 345 + 1.24E−05 20 445 +

CF15 5.22E−06 11 454 + 1.36E−04 47 418 + 3.33E−02 129 336 + 1.73E−06 0 465 +

CF16 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF17 5.22E−06 11 454 + 3.18E−06 459 6 − 4.73E−06 10 455 + 6.03E−02 99 366 +

CF18 3.85E−03 92 373 + 2.06E−01 294 171 = 1.73E−06 0 465 + 1.73E−06 0 465 +

CF19 6.89E−05 39 426 + 5.44E−01 262 203 = 0.4652 268 197 = 7.50E−01 217 248 =
CF20 1.25E−04 46 419 + 4.39E−03 94 371 + 1.49E−05 443 22 − 7.19E−02 320 145 =
CF21 7.71E−04 69 396 + 4.11E−03 372 93 − 6.34E−06 13 452 + 1.40E−02 352 113 −

CF22 6.84E−03 101 364 + 4.07E−05 432 33 − 7.73E−03 362 103 − 2.77E−03 378 87 −

CF23 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF24 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF25 1.73E−06 0 465 + 2.50E−01 0 465 = 1.73E−06 0 465 + 1.73E−06 0 465 +

CF26 1.48E−02 351 114 − 6.16E−04 399 66 − 2.61E−04 410 55 − 2.84E−05 436 29 −

CF27 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF28 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF29 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF30 1.73E−06 0 465 + 1.48E−03 78 387 + 1.73E−06 0 465 + 1.73E−06 0 465 +

described in Table 14 [76–78]. A constraint-handling approach needs to be implemented owing to various constraints
in different problems. There are multiple methods which can deal with constraint problems, among which the penalty
function method is the simplest and is utilized in this experiment [79,80]. Typically, the constrained engineering
optimization problems of minimization are expressed as follows:

Minimize f (x⃗), x⃗ ∈ Rd (16)

Subject to
{

gi (x⃗) ≤ 0 i = 1, . . . , p
h j (x⃗) = 0 j = 1, . . . , q (17)

here gi and hi are the inequality and equality constraints, respectively, and Rd is an n-dimensional vector space
ver the field of real numbers. AHA needs to find the best feasible solution x⃗ = {x1, . . . , xd} which minimizes the

objective function f (x⃗) subject to the constraints.
Therefore, the constrained engineering optimization problems of minimization through the penalty function

method are redefined as [79,81]:

Minimize F(x⃗) =

{
f (x⃗) x⃗ ∈ S
f (x⃗) + λ(

∑p
i=1 g2

i (x⃗) +
∑q

j=1 h2
j (x⃗)) x⃗ /∈ S (18)

here S is the feasible search space. According to Eq. (18), the function will be assigned a big function value when
he solution violates any constraint with any level, hence, the algorithm will automatically remove the infeasible

olutions during the optimization process. The engineering cases are described mathematically in Appendix C.
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Table 10
Wilcoxon signed rank test results for GSA, ABC, CMA-ES and SHADE versus AHA.

Fun. GSA vs AHA ABC vs AHA CMA-ES vs AHA SHADE vs AHA

p-value T+ T− Winner p-value T+ T− Winner p-value T+ T− Winner p-value T+ T− Winner

CF1 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.02E−05 447 18 −

CF2 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 465 0 −

CF3 1.73E−06 0 465 + 1.73E−06 0 465 + 1.92E−06 1 464 + 1.73E−06 465 0 −

CF4 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 8.47E−06 449 16 −

CF5 1.73E−06 465 0 − 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF6 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 4.07E−02 133 332 +

CF7 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 465 0 −

CF8 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF9 9.27E−03 106 359 + 1.73E−06 0 465 + 7.71E−04 69 396 + 5.72E−01 205 260 =
CF10 1.73E−06 0 465 + 1.73E−06 0 465 + 1.92E−06 1 464 + 1.73E−06 0 465 +

CF11 1.92E−06 1 464 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF12 1.73E−06 465 0 − 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF13 1.73E−06 0 465 + 1.24E−05 20 445 + 1.73E−06 0 465 + 3.06E−04 408 57 −

CF14 1.73E−06 0 465 + 4.90E−04 63 402 + 1.73E−06 0 465 + 1.41E−01 304 161 =
CF15 1.73E−06 0 465 + 1.73E−06 0 465 + 1.24E−05 20 445 + 1.78E−01 298 167 =
CF16 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF17 1.73E−06 0 465 + 1.92E−06 1 464 + 2.60E−06 4 461 + 3.52E−06 458 7 −

CF18 1.56E−02 350 115 − 3.32E−04 58 407 + 1.25E−02 111 354 + 1.49E−05 22 443 +

CF19 1.73E−06 0 465 + 6.14E−01 257 208 = 2.83E−04 56 409 + 1.73E−06 465 0 −

CF20 1.73E−06 0 465 + 1.92E−06 1 464 + 2.05E−04 52 413 + 1.73E−06 465 0 −

CF21 1.73E−06 0 465 + 3.88E−06 8 457 + 3.61E−03 91 374 + 7.69E−06 450 15 −

CF22 1.92E−06 1 464 + 3.49E−01 187 278 = 4.99E−03 96 369 + 5.31E−05 429 36 −

CF23 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF24 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF25 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF26 2.41E−04 54 411 + 1.48E−03 387 78 − 6.16E−04 399 66 − 2.13E−06 463 2 −

CF27 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF28 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF29 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF30 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 + 2.41E−04 54 411 +

4.3.1. Three-bar truss design
The task of this case study is to minimize the weight of a statically loaded three-bar truss and it has three

onstraints [82]. From the structure of this truss and its forces in Fig. 12, two parameters need to be determined to
djust the sectional areas.

AHA is used for this case and runs 30 times with 50 hummingbirds and 15,000 evaluations. The results offered
y AHA are compared with those offered by these reported optimizers, such as SC [82], PSO-DE [83], DEDS [11],
EAA [84], and CS [85] in previous studies. Table 15 provides the comparison results between AHA and the other
ethods. As observed in this table, although PSO-DE and AHA achieve the best results in terms of the ‘Worst’,

Mean’ and ‘Best’ metrics, AHA requires less FEs. In addition, with the same FEs, AHA exhibits a significant
dvantage over DEDS, HEAA, and CS. The values of the objective function, variables and constraints, and number
f FEs for this best design obtained by AHA are given in Table 16.

.3.2. Cantilever beam design
For this well-known case [86], Fig. 13 shows the shape of the cantilever beam, which is supported at the leftmost

lock and the other blocks are left free. The beam’s fixed end has a vertical force. Thus, the objective of this design
s to minimize the weight of the beam. This case has five decision variables representing the lengths of different
locks and one constraint.

Some previous algorithms, including SOS [87], CS [85], MMA [86] GCA-I [86], GCA-II [86], MFO [88], and
SO-DE, were applied to this case. The results of AHA are compared with those of the above approaches in
able 17. From this table, although the ‘Mean’ metric of AHA is slightly inferior to that of SOS, while in terms
f the ‘Best’ metric, AHA finds the better solution. Besides, AHA performs better than PSO-DE in terms of the
23
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Table 11
Wilcoxon signed rank test results for WOA, SSA and BOA versus AHA.

Fun. WOA vs AHA SSA vs AHA BOA vs AHA

p-value T+ T− Winner p-value T+ T− Winner p-value T+ T− Winner

CF1 1.73E−06 0 465 + 3.60E−01 188 277 = 1.73E−06 0 465 +

CF2 1.73E−06 0 465 + 1.73E−06 465 0 − 1.73E−06 0 465 +

CF3 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF4 1.73E−06 0 465 + 4.17E−01 272 193 = 1.73E−06 0 465 +

CF5 1.73E−06 0 465 + 1.73E−06 465 0 − 1.73E−06 0 465 +

CF6 1.73E−06 0 465 + 4.45E−05 34 431 + 1.73E−06 0 465 +

CF7 1.73E−06 0 465 + 1.73E−06 465 0 − 1.73E−06 0 465 +

CF8 1.73E−06 0 465 + 1.92E−06 1 464 + 1.73E−06 0 465 +

CF9 1.73E−06 0 465 + 7.19E−01 250 215 = 1.73E−06 0 465 +

CF10 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF11 1.73E−06 0 465 + 1.24E−05 20 445 + 1.73E−06 0 465 +

CF12 1.73E−06 0 465 + 1.13E−05 19 446 + 1.73E−06 0 465 +

CF13 8.22E−03 104 361 + 8.59E−02 149 316 = 1.73E−06 0 465 +

CF14 8.73E−03 105 360 + 2.06E−01 171 294 = 1.73E−06 0 465 +

CF15 1.73E−06 0 465 + 4.68E−03 370 95 − 1.73E−06 0 465 +

CF16 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF17 1.73E−06 0 465 + 7.66E−01 218 247 = 4.73E−06 10 455 +

CF18 1.73E−06 0 465 + 2.41E−04 54 411 + 1.73E−06 0 465 +

CF19 2.35E−06 3 462 + 9.92E−01 232 233 = 1.73E−06 0 465 +

CF20 1.73E−06 0 465 + 1.29E−03 76 389 + 2.35E−06 3 462 +

CF21 1.73E−06 0 465 + 9.75E−01 234 231 = 1.73E−06 0 465 +

CF22 1.48E−04 48 417 + 7.27E−03 363 102 − 1.73E−06 0 465 +

CF23 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF24 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF25 4.38E−04 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF26 7.52E−02 319 146 = 1.49E−05 443 22 − 7.81E−01 246 219 =
CF27 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF28 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF29 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

CF30 1.73E−06 0 465 + 1.73E−06 0 465 + 1.73E−06 0 465 +

Table 12
Statistical results of Wilcoxon signed-rank test.

Function
characteristics

PSO vs AHA
(+/=/−)

TLBO vs AHA
(+/=/−)

DE vs AHA
(+/=/−)

CS vs AHA
(+/=/−)

GSA vs AHA
(+/=/−)

ABC vs AHA
(+/=/−)

Unimodal 3/0/0 1/0/2 1/0/2 3/0/0 3/0/0 3/0/0
Multimodal 13/0/0 7/2/4 12/0/1 12/1/0 11/0/2 13/0/0
Hybrid 6/0/0 1/2/3 3/1/2 2/2/2 5/0/1 4/2/0
Composition 7/0/1 6/1/1 7/0/1 7/0/1 8/0/0 7/0/1
Total 29/0/1 15/5/10 23/1/6 24/3/3 27/0/3 27/2/1

Function
characteristics

CMA-ES vs
AHA (+/=/−)

SHADE vs AHA
(+/=/−)

WOA vs AHA
(+/=/−)

SSA vs AHA
(+/=/−)

BOA vs AHA
(+/=/−)

Unimodal 3/0/0 0/0/3 3/0/0 1/1/1 3/0/0
Multimodal 13/0/0 7/3/3 13/0/0 6/4/3 13/0/0
Hybrid 6/0/0 1/0/5 6/0/0 2/3/1 6/0/0
Composition 7/0/1 7/0/1 7/1/0 7/0/1 7/1/0
Total 29/0/1 15/3/12 29/1/0 16/8/6 29/1/0

‘Mean’ metric with the same FEs. It can be seen that AHA achieves the high-quality solution for this case. The

comparative results show that our method can effectively solve this case and reveal better design.
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Table 13
Performance rank of each algorithm for each function.

Fun. AHA PSO TLBO DE CS GSA ABC CMA-ES SHADE WOA SSA BOA

CF1 3 9 1 6 5 12 10 7 2 8 4 11
CF2 5 10 4 3 8 11 6 9 1 7 2 12
CF3 3 5 7 2 4 11 10 6 1 12 8 9
CF4 4 10 3 5 7 11 6 9 1 8 2 12
CF5 3 9 12 5 7 1 10 6 8 4 2 11
CF6 2 6 1 7 10 8.5 8.5 5 3 12 4 11
CF7 5 9 4 3 8 11 6 10 1 7 2 12
CF8 1 4.5 2 3 9 8 10 6 4.5 11 7 12
CF9 2.5 8 1 6 9 5 10 7 4 11 2.5 12
CF10 1 2 9 4 7 6 11 3.5 8 10 5 12
CF11 1 8 10 7 4 3 11 9 6 5 2 12
CF12 2 8 11 5 4 1 10 9 7 6 3 12
CF13 3 9 1 5 2 11 7 10 6 8 4 12
CF14 4 10 2 5 7 11 1 9 3 8 6 12
CF15 3 6 5 4 9 11 7 8 2 10 1 12
CF16 1 7 4 3 10 12 8 6 5 11 2 9
CF17 3 10 2 8 5 12 6 9 1 11 4 7
CF18 2 10 1 7 11 6 5 9 4 8 3 12
CF19 6.5 8.5 3.5 4 6.5 12 3.5 8.5 1 10 3.5 11
CF20 4 7 5 2 3 12 9 8 1 11 6 10
CF21 4 6 2 7 3 12 8.5 8.5 1 11 5 10
CF22 6 8 1 4 5 12 7 9 2 10 3 11
CF23 1 10 5 6 8 3 7 11 4 12 9 2
CF24 1 10 3 7 12 5 11 8 6 4 9 2
CF25 1 11 3 10 7 4 12 9 5 8 6 2
CF26 11 7 8 3 1 12 6 5 4 9 2 10
CF27 1 10 5 7 4 12 9 8 2 11 3 6
CF28 1 11 3 5 4 8 6 12 2 9 7 10
CF29 1 11 2 5 7 9 6 12 3 10 4 8
CF30 1 9 2 4 5 12 6 8 3 10 7 11

Table 14
Characteristics of 10 constrained engineering cases. NV: number of variables, NCV: number of continuous variables, NDV: number of discrete
variables, NC: number of constraints, NIC: number of inequality constraints, NAC: number of active constraints, F/S: ratio between the
feasible solutions in the search space (F) and the entire search space (S), DO: design objective.

No. Case name NV NCV NDV NC NIC NAC F/S DO

1 Three-bar truss 2 2 0 3 3 – – Minimum weight
2 Cantilever beam 5 5 0 1 1 – – Minimum weight
3 Tension/compression spring 3 3 0 4 4 2 0.1 Minimum weight
4 Rolling element bearing 10 9 1 9 9 4 0.015 Maximum weight
5 Belleville spring 4 3 1 7 7 4 0.004 Minimum weight
6 Hydrostatic thrust bearing 4 4 0 7 7 3 0.003 Minimum power loss
7 Pressure vessel 4 2 2 4 4 2 0.40 Minimum cost
8 Welded beam 4 4 0 7 7 2 0.035 Minimum cost
9 Speed reducer 7 6 1 11 11 3 0.004 Minimum weight
10 Multiple disc clutch brake 5 0 5 8 8 1 0.700 Minimum mass

4.3.3. Tension/compression spring design
The intention of this engineering case [87] is to minimize the weight of a spring to satisfy four constraints with

hree geometric parameters. Fig. 14 describes the geometric structure of the spring. This case has three geometric
ariables and four constraints considered.

The results of AHA versus those previous techniques, including GA2 [89], GA3 [90], CA [91], CPSO [92],
PSO [93], PSO2 [94], QPSO [94], UPSO [95], CDE [96], SSB [82], PSO-DE [83], and (µ+λ)ES [97], are listed
in Table 18 to make a clear comparison. It can be observed that with less computational burden, AHA is superior to
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Table 15
Results of different methods for three-bar truss design.

Methods Worst Mean Best Std FEs

SC 263.969756 263.903356 263.895846 1.3E−02 17,610
PSO-DE 263.895843 263.895843 263.895843 1.2E−10 17,600
DEDS 263.895849 263.895843 263.895843 9.7E−07 15,000
HEAA 263.896099 263.895865 263.895843 4.9E−05 15,000
CS – 264.0669 263.97156 9.0E−05 15,000
AHA 263.895843 263.895843 263.895843 1.09E−07 15,000

Fig. 12. Three-bar truss design problem.

Table 16
Best results offered by AHA for three-bar truss design, cantilever beam design, tension/compression spring design, rolling element bearing
design, as well as Belleville spring design cases.

Three-bar truss
design

Cantilever beam
design

Tension/compression
spring design

Rolling element
bearing design

Belleville spring
design

f (x) 263.895843 1.3399650 0.0126660 85547.49822 1.979675
x1 0.788683 6.01380 0.051897 125.718411 0.20414
x2 0.4082246 5.302425 0.361748 21.425350 0.200000
x3 – 4.496347 10.689283 10.527979 10.030467
x4 – 3.508429 – 0.515000 12.009995
x5 – 2.152705 – 0.515155 –
x6 – – – 0.470216 –
x7 – – – 0.640818 –
x8 – – – 0.300012 –
x9 – – – 0.095122 –
x10 – – – 0.682241 –
g1 −2.4166E−09 −6.2594E−06 −4.8700E−08 3.893956 0.003332
g2 −1.464128 – −7.9213E−09 9.935546 1.0848E−4
g3 −0.535871 – −4.063608 2.006616 2.7588E−08
g4 – – −0.724235 24.498935 1.595856
g5 – – – 23.062112 4.4988E−06
g6 – – – 0.718411 1.979528
g7 – – – 2.54117E−4 0.198965
g8 – – – −0.958104 –
g9 – – – 2.8565E−09 –
g10 – – – 1.5475E−4 –
FEs 15,000 15,000 25,000 15,000 24,000

others for finding the best optimal results in terms of the ‘Mean’ and ‘Best’ metrics. From Table 18, with less FEs,
AHA provides the similar results as those of PSO-DE in terms of the ‘Worst’, ‘Mean’ and ‘Best’ metrics. Even in
terms of the ‘Worst’ metric, AHA is superior to 10 out of 12 algorithms. These satisfactory results assure us that
AHA can offer the best geometric variables with the minimum weight of the spring compared with its competitors.
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Fig. 13. Cantilever beam design problem.

Table 17
Results of different methods for cantilever beam design.

Methods Worst Mean Best Std FEs

SOS – 1.33997 1.33996 1.1E−05 15,000
CS – – 1.33999 – 125,000
MMA – – 1.3400 – –
GCA-I – – 1.3400 – –
GCA-II – – 1.3400 – –
MFO – – 3.399880 – –
PSO-DE 1.340191 1.340219 1.339957 6.61E−05 15,000
AHA 1.343036 1.340146 1.339957 7.912E−05 15,000

Table 18
Results of different methods for tension/compression spring design.

Methods Worst Mean Best Std FEs

GA2 0.0128221 0.0127690 0.0127047 3.9390 E-05 900,000
GA3 0.0129730 0.0127420 0.0126810 5.9000 E-05 80,000
CA 0.0151156 0.0135681 0.0127210 8.4215 E-04 50,000
CPSO 0.0129240 0.0127300 0.0126747 5.1985 E-04 200,000
HPSO 0.0127191 0.0127072 0.0126652 1.5824 E-05 75,000
PSO2 0.0718020 0.0195550 0.0128570 0.0116620 2000
QPSO 0.0181270 0.0138540 0.0126690 1.3410E−03 2000
UPSO 0.0503651 0.0229478 0.0131200 7.2057E−03 10,000
CDE 0.0127900 0.0127030 0.0126702 2.7000E−05 240,000
SSB 0.0167173 0.0129227 0.0126692 5.9000E−04 25,167
(µ+λ)ES – 0.0131650 0.0126890 3.9000E−04 30,000
PSO-DE 0.0126652 0.0126652 0.0126652 4.9E–09 42,100
AHA 0.0127271 0.0126976 0.0126660 1.5660E−05 25,000

Fig. 14. Tension/compression spring design.
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Fig. 15. Rolling element bearing design.

Table 19
Results of different methods for rolling element bearing design.

Methods Worst Mean Best Std FEs

GA4 – – 81843.3000 – 225,000
ABC 78897.8100 81496.0000 81859.7416 – 10,000
TLBO 80807.8551 81438.9870 81859.7400 – 10,000
MBA 84440.1948 85321.4030 85535.9611 211.5200 15,100
PVS 78897.81 80803.57 81859.59 – 10,000
PVS 79834.79 81550 81859.74 – 20,000
MDDE 81701.18 81848.7 81858.83 – 10,000
HHO – – 83011.88329 – 15,000
PSO-DE 85411.62816 84511.63285 85521.6172 2641.62 15,000
AHA 77385.6122 84635.8129 85547.49822 2111.211 15,000

4.3.4. Rolling element bearing design
For this study [98,99] depicted in Fig. 15, the load-carrying capacity of the bearing needs to be maximized. This

ase includes ten constraints and ten geometric variables.
This case was solved by a number of works in the literature such as GA4 [98], TLBO [100], ABC [100],

BA [101], PVS [77], MDDE [102], PSO-DE, and HHO [78]. The comparisons between the results of AHA and the
ther considered methods are given in Table 19. This engineering case is more difficult because of so many variables
nd constraints, as well as a low rate of the feasible solution space to the entire search space. From Table 19, most
f the compared methods cannot provide desirable results in terms of the ‘Best’ metric with acceptable number of
Es. With the same number of evaluations, our method can provide the best geometric variables with the maximum

oad-carrying capacity for this case. Although AHA is inferior to PSO-DE in terms of the ‘Worst’ metric, AHA is
uperior to PSO-DE in terms of the ‘Mean’, ‘Best’ and ‘Std’ metrics.

.3.5. Belleville spring design
This case requires to minimize the weight of the spring with seven constraints and its structure is depicted in

ig. 16 [103]. As this figure shows, we need to tackle four decision variables regarding this design.
The case was solved by some meta-heuristic methods, including GA5 [103], GeneAS I [104], ABC, TLBO,

SO-DE, and GeneAS II [104]. The results of these methods are compared to those of AHA in Table 20. As seen
n this table, AHA provides the same best results as TLBO in terms of the ‘Best’ metric. But in terms of the
Worst’, ‘Mean’, and ‘Std’ metrics, our algorithm displays its superiority over all the other methods with the same
umber of FEs for this case. Remarkably, our method is superior to other algorithms in terms of solution quality

nd robustness.
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Table 20
Results of different methods for Belleville spring design.

Methods Worst Mean Best Std FEs

ABC 2.291062 2.2134251 1.988257 0.0452 24,000
TLBO 2.1149819 1.9886513 1.979675 0.0267 24,000
GA5 – – 2.121964 – 24,000
GeneAS I – – 2.01807 – 24,000
GeneAS II – – 2.16256 – 24,000
PSO-DE 2.1134295 2.0028367 1.9882629 0.0539 24000
AHA 2.1041923 1.9860209 1.979675 0.0228 24,000

Fig. 16. Belleville spring design problem.

Table 21
Results of different methods for hydrostatic thrust bearing design.

Methods Worst Mean Best Std FEs

IPSO – 1757.376840 1632.2149 16.8510 90,000
GASO – – 1950.2860 – 16,000
TLBO 2096.80127 1797.7079 1625.443 – 50,000
ABC 2144.8360 1861.5540 1625.443 – 50,000
Gene AS – – 2161.6 – –
BGA – – 2295.1 – –
PSO-DE 2196.8219 1952.8137 1636.6281 216.32 50,000
AHA 1850.3812 1680.7812 1625. 4498 57 50,000

4.3.6. Hydrostatic thrust bearing design
The case requires minimizing the power loss by considering seven constraints [105]. Fig. 17 depicts the

ross-section of the hydrostatic thrust bearing with four variables to be optimized.
This case was tackled by AHA using 50 hummingbirds with the number of evaluations at 50,000. This case was

lso solved by the previous methods, including IPSO [106], GASO [103], TLBO [100], ABC [100], GeneAS [104],
SO-DE, and BGA [104]. The results of these methods are compared with those of AHA in Table 21. Inspecting

his table, AHA outperforms PSO-DE in terms of the ‘Worst’, ‘Mean’, ‘Best’ and ‘Std’ metrics with the same
Es; the ‘Best’ metric obtained by AHA matches those obtained by ABC and TLBO. However, in terms of the
Mean’ and ‘Worst’ metrics, our method is more successful than all the comparative counterparts. The values of
he objective function, variables, and constraints and number of FEs for this best design obtained so far are given
n Table 22.

.3.7. Pressure vessel design
The objective is to minimize the fabrication cost of a pressure vessel, which is depicted in Fig. 18 [107]. The

ase includes four design variables and four constraints.
This case study was previously tackled by many heuristic techniques, including GA2 [89], GA3 [90], CPSO [92],

PSO [93], PSO-DE [83], PSO2 [94], CDE [96], ABC [100], QPSO [94], (µ + λ)ES [97], and CSA [49]. AHA
29



W. Zhao, L. Wang and S. Mirjalili Computer Methods in Applied Mechanics and Engineering 388 (2022) 114194

v

Fig. 17. Hydrostatic thrust bearing design.

Table 22
Best results offered by AHA for hydrostatic thrust bearing design, pressure vessel design, multiple disc clutch brake design, welded beam
design, and speed reducer design.

Hydrostatic thrust
bearing design

Pressure vessel design Welded beam design Speed reducer design Multiple disc clutch
brake design

f (x) 1625. 4498 58853.5369 1.724853 2994.471158 0.3136566
x1 5.955782 0.778171 0.205730 3.500000 70
x2 5.389014 0.384653 3.470492 0.7000000 90
x3 5.358745 40.319674 9.036624 17.000000 1
x4 2.269694 199.999262 0.205730 7.300001 840
x5 – – – 7.7153201 3
x6 – – – 3.350212 –
x7 – – – 5.286655 –
x8 – – – – –
x9 – – – – –
x10 – – – – –
g1 0.041272 −1.0887E−06 −2.5843E−03 −0.073915 0
g2 1.8107E−4 −3.6397E−06 −3.5352E−03 −0.197999 24
g3 7.6288E−4 −0.162464 −1.27535E−07 −0.499172 0.916444
g4 3.2437E−4 −40.000737 −3.432983 −0.904644 9.824089
g5 0.566768 – −0.080730 −2.4087E−08 7.894696
g6 9.96361E−4 – −0.235540 −1.0358E−09 1.197971
g7 4.6461E−3 – −1.8003E−05 −0.702500 41.32500
g8 – – – −2.4311E−08 13.802029
g9 – – – −0.795833 –
g10 – – – −0.051326 –
g11 – – – −1.7760E−08 –
FEs 50,000 30,000 30,000 30,000 600

is applied to this case study with the number of evaluations at 30,000. The statistical results provided by these
employed methods are depicted in Table 23. AHA provides a better solution than the other considered optimizers
in terms of the ‘Worst’, ‘Mean’ and ‘Best’ metrics. This result shows that our optimizer can obtain the solution
with the minimum fabrication cost under less computational efforts.

4.3.8. Welded beam design
The aim of this case is to find the minimum cost of a welded beam to satisfy two constraints with four control

ariables. The structure of the beam is depicted in Fig. 19.
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Table 23
Results of different methods for pressure vessel design.

Methods Worst Mean Best Std FEs

GA2 6308.4970 6293.8432 6288.7445 7.4133 900,000
GA3 6469.3220 6177.2533 6059.9463 130.9297 80,000
CPSO 6363.8041 6147.1332 6061.0777 86.4500 240,000
HPSO 6288.6770 6099.9323 6059.7143 86.2000 81,000
PSO-DE 6059.7143 6059.7143 6059.7143 1.0E−10 42,100
PSO2 14076.3240 8756.6803 6693.7212 1492.5670 8000
QPSO 8017.2816 6440.3786 6059.7209 479.2671 8000
CDE 6371.0455 6085.2303 6059.7340 43.0130 204,800
ABC – 6245.3080 6059.714339 205.0000 30,000
(µ+λ)ES 6820.397461 6379.938037 6059.701610 210.0000 30,000
CSA 7332.8410 6342.4990 6059.7140 384.9450 250,000
AHA 5885.85190 5885.53823 5885.35369 0.1378 30,000

Fig. 18. Pressure vessel design problem.

Fig. 19. Welded beam design problem.

This case is solved by AHA and the reported methods, including GA2 [84], GA3 [85], CPSO [92], HPSO [93],
CDE [96], NM-PSO [108], HS [109], EPSO [110], CAEP [91], ABC [100], WCA [111], (µ + λ)ES [97], PSO-
DE [83], and SC [82]. The results provided by different methods are listed in Table 24. AHA performs more
successfully than those reported methods with a lower number of FEs. Although the best best-so-far solutions
provided by NM-PSO is slightly superior to AHA, for NM-PSO to reach this solution requires two times the number
of evaluations larger than that AHA requires. Moreover, it can be seen that AHA using 30,000 FEs provides better
performance than PSO-DE using 33,000 FEs in terms of the ‘Worst’, ‘Mean’ and ‘Best’ metrics. These results

imply that our method can effectively search and find the optimal geometric variables of the welded beam.
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Table 24
Results of different methods for welded beam design.

Methods Worst Mean Best Std FEs

GA2 1.785835 1.771973 1.748309 1.1200E−02 900,000
GA3 1.993408 1.792654 1.728226 7.4700E−02 80,000
CPSO 1.782143 1.748831 1.728024 1.2900E−02 240,000
HPSO 1.814295 1.749040 1.724852 4.0100E−02 81,000
CDE 1.824105 1.768158 1.733462 2.2194E−02 204,800
NM-PSO 1.733393 1.726373 1.724717 3.50E−03 80,000
EPSO 1.7472200 1.728219 1.724853 5.6200E−03 50,000
HS – – 2.38 – 110,000
CAEP 3.179709 1.971809 1.724852 0.443131 50,000
ABC – 1.741913 1.724852 3.100E−02 30,000
WCA 1.801127 1.735940 1.724857 1.89E−02 30,000
(µ+λ)ES – 1.777692 1.724852 8.800E−02 30,000
SC 6.3996780 3.0025883 2.3854347 9.600E−01 33,095
PSO-DE 1.7248811 1.7248579 1.7248531 4.1E−06 33,000
AHA 1.7248528 1.7248524 1.7248523 1.34E−7 30,000

Table 25
Comparisons of statistical results using reported optimizers in literature for speed reducer design.

Methods Worst Mean Best Std FEs

SC 3009.9647360 3001.7582640 2994.7442410 – 54,456
HEAA 2994.7523110 2994.6133680 2994.4991070 7.0E−02 40,000
ABC – – 2997.058412 – 30,000
PSO-DE 2996.348166 2996.348165 2996.348165 1.0E−07 70,100
PVS 2996.348165 2996.348165 2996.348165 – 54,350
FFA 2996.669 2996.51 2996.37 – 50,000
CSA 30090 3007.1997 3000.98 – 5,000
(µ+λ)ES – 2996.3480940 2996.3480940 0 30,000
MDE – 2996.3672200 2996.3566890 8.2E−03 24,000
AHA 2994.473229 2994.471652 2994.471158 4.2512E−4 30,000

Fig. 20. Speed reducer design.

4.3.9. Speed reducer design
The task in this case is to design a speed reducer to minimize its weigh [97]. The six geometric variables of the

speed reducer are described in Fig. 20, and obtaining the minimum weight requires satisfying 11 constraints.
This case was previously tackled by many scholars using various heuristic methods, including SC [82],

HEAA [84], ABC [100], PSO-DE [83], (µ + λ)ES [97], MDE [112], PVS [77], FFA [76] and CSA [49]. The
esults of these methods are compared to those of AHA. The comparisons of the results obtained by these various
ptimizers including AHA are shown in Table 25 for this case. As it can be seen in Table 25, among the algorithms
sing more than or equal to 30,000 evaluations, AHA performs the best with a lower number of evaluations in
erms of the ‘Worst’, ‘Best’ and ‘Mean’ metrics. It also can be found that although AHA employs more evaluations
han MDE, our method can find better geometric variables for this case.
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Fig. 21. Multiple disc clutch brake design.

Table 26
Comparisons of statistical results using reported optimizers in literature for multiple disc clutch brake design.

Methods Worst Mean Best Std FEs

ABC 0.352864 0.324751 0.313657 0.54 600
TLBO 0.392071 0.3271662 0.313657 0.67 600
PVS 0.352864 0.333652 0.313657 – 600
PSO-DE 0.3379216 0.3236821 0.313657 0.0091 600
AHA 0.3332601 0.3216842 0.3136566 0.0076 600

4.3.10. Multiple disc clutch brake design
This engineering case requires designing a multiple disc clutch brake for the minimum mass [113]. Fig. 21 depicts

he structure of such a brake and the discrete geotropic variables. This design has five related discrete variables and
ight complex constraints.

The case was handled using the reported heuristic techniques involving ABC [100], TLBO [100], PSO-DE, and
VS [77]. Our method is also run to search for the global optimal solution of the case with the same number of
Es. Table 26 summarizes the obtained results of different methods. In terms of different metrics, AHA detects the
est results with the same computational burden compared to the other methods. The convincing results provide
he evidence of AHA’s competitiveness in dealing with this case.

The results and analyses of Section 4 strongly show the merits of the proposed AHA algorithm in solving
ptimization problems. In the next section, a very challenging, real-world problem in the area of hydropower
peration design will be used to further demonstrate the efficiency and applicability of this algorithm.

. Hydropower operation design using AHA

Hydropower, as a renewable and clean energy source, has accounted for a considerably large proportion in
he electric power, which is not able to meet the growing demands of people owing to social and economic
evelopment [114,115]. Therefore, generating more power by hydropower plants and enhancing their utility are
ecoming increasingly important. The operations of reservoir and hydropower systems are very complicated due
o the uncertainty of inflow and other factors, so how to perform the optimal operation of a hydropower plant is

task of top priority. Fig. 22 shows the sketch of hydropower operation [116]. We optimize the operation of a

ydropower plant to maximize its gross power generation in a scheduling period, in which the optimal water levels
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Fig. 22. Sketch of hydropower operation.

can be determined. Thus, the hydropower operation design problem can be considered as a maximization problem
with constraints as follows [117,118]:

Consider variable L⃗ = [L1, L2, L3, L4, L5, L6, L7, L8, L9, L10, L11, L12] (19)

Maximize E(L⃗) =

T =12∑
t=1

a Rt Ht Mt (20)

Variable range L tmin ≤ L t ≤ L tmax , t = 1, . . . , 12 (21)

here L t is the water level in the t th time interval, E is the gross energy of a hydropower plant over T months,
is the power efficiency of hydropower units, Rt is the generating flow in the t th time interval, Ht is the average

ead in the t th time interval, Mt is the time length in the t th time interval, and L tmin and L tmax are the minimal
and maximal water levels in the t th time interval, respectively. The constraints are as follows.

(1) Water balance constraint:

St+1 = St + It − Rt − Pt (22)

here St is the storage in the t th time interval, It is the inflow in the t th time interval, Rt is the power discharge
n the t th time interval, and Pt is the spill in the t th time interval.

(2) Reservoir storage capacity constraint:

Stmin ≤ St ≤ Stmax (23)

here Stmin and Stmax are the minimal and maximal operational storages in the t th time interval, respectively.
(3) Power discharge constraint:

Rtmin ≤ Rt ≤ Rtmax (24)

here Rtmin and Rtmax are the minimal and maximal power discharges in the t th time interval, respectively.
(4) Hydropower plant power constraint:

Etmin ≤ a Rt Ht ≤ Etmax (25)

here Etmin and Etmax are the minimal and maximal energy generations in the t th time interval, respectively. The
elationship between water level and the storage is:

St = U (L t ) (26)

Three tests are implemented: the low flow year, the medium flow year, and the high flow year. Each test employs
0 individuals over 9000 FEs. Figs. 23–25 provide the convergence curves and the obtained optimal head levels over
2 months in each test, respectively. The maximal obtained gross power generations of the low water year, medium

9 9 9
ater year, and high water year are 4.458 × 10 kW·h, 4.787 × 10 kW·h, and 5.107 × 10 kW·h, respectively.
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Fig. 23. Convergence curve of low water year and its water levels over 12 months.

Fig. 24. Convergence curve of medium water year and its water levels over 12 months.

Observing these figures, it can be found that AHA can easily detect the optimal water level of every month which
maximizes the gross power generation and shows a good convergence rate. Additionally, from these figures, it can
be observed that the infeasible water levels are obtained in the initial stage which make the gross power generation
unreasonable, while the gross power generation increases as the iterations proceed and the best feasible water levels
are found in the last iteration.

It should be noted that there is an obvious difference among the optimal water levels offered by AHA for the
same months in different flow years. This is because the inflows in the upstream are different during the same period
in different flow years, causing the change of the discharge and capacity of reservoir in the objective functions and
constraints. This change generally forces the optimal water levels to shift from a position to another according to

the flow years with various flow levels. These results on the hydropower operation design suggest that our algorithm
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Fig. 25. Convergence curve of high water year and its water levels over 12 months.

is able to effectively offer the optimal water levels to improve the generation efficiency of the hydropower plant. It
further reveals the potential of AHA in tackling the challenging real-world problems with unknown and constrained
variable space.

6. Conclusions

A novel bio-inspired optimization technique called the AHA algorithm, inspired from the flight skills and foraging
behaviors of hummingbirds, is proposed for dealing with different optimization tasks in this work. Three foraging
behaviors, along with the memory function for food sources, and three flight patterns, are jointly simulated for
solving global optimization. Two sets of different benchmark functions are employed to investigate the optimization
performance of AHA, the results obtained demonstrate that AHA can find the global optimum compared to other
well-regarded algorithms. Additionally, ten well-known engineering cases studies are employed to further check the
performance of AHA. The results display its success and competitiveness in terms of computational burden and
solution precision. Eventually, AHA is employed to tackle the hydropower operation design, the experimental results
justify the applicability and potential of the proposed optimizer in practice. In designing a standard version of AHA,
we try to keep it simple. Thus, there are several research directions to follow to improve the algorithm in future
work. This original version can be promoted using various strategies. On the one hand, some stochastic operators
can be integrated into AHA to develop an improved version, including useful heuristics, such as deterministic
operators, chaotic maps, and local searching behaviors. On the other hand, AHA may be equipped with some
search components from other optimization techniques to design a hybridized version. Besides, other variants of
AHA can be developed to tackle binary or multi-objective problems.
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Appendix A. 50 benchmark functions used in experiment 1

A.1. Benchmark functions, D: Dimensions, C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N:
Non-separable

Name C Function D Range fopt

Stepint US f1(x) = 25 +
∑n

i=1 ⌊xi⌋ 5 [−5.12, 5.12] 0
Step US f2(x) =

∑n
i=1 (⌊xi + 0.5⌋)2 30 [−100, 100] 0

Sphere US f3(x) =
∑n

i=1 x2
i 30 [−100, 100] 0

SumSquares US f4(x) =
∑n

i=1 i x2
i 30 [−10, 10] 0

Quartic US f5(x) =
∑n

i=1 i x4
i + random [0, 1) 30 [−1.28, 1.28] 0

Beale UN
f6(x) = (1.5 − x1 + x1x2)2

+ (2.25 − x1 + x1x2
2 )2

+(2.625 − x1 + x1x3
2 )2 5 [−4.5, 4.5] 0

Easom UN f7(x) = − cos(x1) cos(x2)e−(x1−π )2
−(x2−π )2

2 [−100, 100] -1
Matyas UN f8(x) = 0.26(x2

1 + x2
2 ) − 0.48x1x2 2 [−10, 10] 0

Colville UN
f9(x) = 100(x1 − x2)2

+ (x1 − 1)2
+ (x4 − 1)2

+90(x2
3 − x4)2

+ 10.1((x2 − 1)2
+ (x4 − 1)2)

+19.8(x2 − 1)(x4 − 1)
4 [−10, 10] 0

Trid6 UN f10(x) =
∑n

i=1 (xi − 1)2
+

∑n
i=2 xi xi−1 6 [-D2, D2] −50

Trid10 UN f11(x) =
∑n

i=1 (xi − 1)2
+

∑n
i=2 xi xi−1 10 [-D2, D2] −210

Zakharov UN f12(x) =
∑n

i=1 x2
i + (

∑n
i=1 0.5i xi )2

+ (
∑n

i=1 0.5i xi )4 10 [−5, 10] 0

Powell UN f13(x) =
∑n/k

i=1(x4i−3 + 10x4i−2)2
+ 5(x4i−1 − x4i )2

+5(x4i−2 − x4i−1)4
+ 10(x4i−1 − x4i )4 24 [−4, 5] 0

Schwefel 2.22 UN f14(x) =
∑n

i=1 |xi | +
∏n

i=1 |xi | 30 [−10, 10] 0

Schwefel 1.2 UN f15(x) =
∑n

i=1 (
∑i

j=1 x j )
2

30 [−100, 100] 0
Rosenbrock UN f16(x) =

∑n−1
i=1 (100(xi+1 − xi )2) + (xi − 1)2 30 [−30, 30] 0

Dixon–Price UN f17(x) = (x1 − 1)2
+

∑n
i=2 i(2x2

i − xi−1)2 30 [−10, 10] 0

Foxholes MS f18(x) =

[
1

500 +
∑25

j=1
1

j+
∑2

j=1 (xi −ai j )6

]−1

2 [−65.536, 65.536] 0.998

Branin MS f19(x) =

(x2 −
5.1
4π2 x2

1 +
5
π

x1 − 6)2
+ 10(1 −

1
8π

) cos x1 + 10
2 [−5, 10] × [0, 15] 0.398

Bohachevsky1 MS f20(x) = x2
1+2x2

2−0.3 cos(3πx1)−0.4 cos(4πx2)+0.7 2 [−100, 100] 0

A.2. Benchmark functions, D: Dimensions, C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N:
Non-separable

Name C Function D Range fopt

Booth MS f21(x) = (x1 + 2x2 − 7)2
+ (2x1 + x2 − 5)2 2 [−10, 10] 0

Rastrigin MS f22(x) = −
∑n

i=1 [x2
i − 10 cos(2πxi ) + 10] 30 [−5.12, 5.12] 0

Schwefel MS f23(x) = −
∑n

i=1 (xi sin(
√

|xi |)) 30 [−500, 500] -12569.5
Michalewicz2 MS f24(x) = −

∑n
i=1 sin(xi )(sin(i x2

i /π ))20 2 [0, π ] −1.8013
Michalewicz5 MS f25(x) = −

∑n
i=1 sin(xi )(sin(i x2

i /π ))20 5 [0, π ] −4.6877
Michalewicz10 MS f26(x) = −

∑n
i=1 sin(xi )(sin(i x2

i /π ))20 10 [0, π ] −9.6602

Schaffer MN f27(x) = 0.5 +
sin2(

√
x2

1+x2
2 )−0.5

(1+0.001(x2
1+x2

2 ))
2 2 [−100,100] 0

Six Hump Camel Back MN f28(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5,5] −1.03163
Bohachevsky2 MN f29(x) = x2

1 + 2x2
2 − 0.3 cos(3πx1)(4πx3) + 0.3 2 [−100,100] 0

Bohachevsky3 MN f30(x) = x2
1 + 2x2

2 − 0.3 cos(3πx1 + 4πx3) + 0.3 2 [−100,100] 0
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Shubert MN
f31(x) = (

∑5
i=1 i cos((i + 1)x1 + i))

(
∑5

i=1 i cos((i + 1)x2 + i))
2 [−10,10] -186.7309

GoldStein–Price MN

f32(x) =
[
1 + (x1 + x2 + 1)2(19 − 14x1

+ 3x2
1 − 14x2 + 6x1x2 + 3x2

2 )
]

×
[
30 + (2x1 + 1 − 3x2)2(18 − 32x1

+12x2
1 + 48x2 − 36x1x2 + 27x2

2 )
] 2 [−2,2] 3

Kowalik MN f33(x) =
∑11

i=1

⏐⏐⏐⏐ai −
x1(b2

i +bi x2)

b2
i +bi x3+x4

⏐⏐⏐⏐2

4 [−5,5] 0.00031

Shekel5 MN f34(x) = −
∑5

i=1

⏐⏐(xi − ai )(xi − ai )T
+ ci

⏐⏐−1
4 [0,10] −10.1532

Shekel7 MN f35(x) = −
∑7

i=1

⏐⏐(xi − ai )(xi − ai )T
+ ci

⏐⏐−1
4 [0,10] −10.4028

Shekel10 MN f36(x) = −
∑10

i=1

⏐⏐(xi − ai )(xi − ai )T
+ ci

⏐⏐−1
4 [0,10] −10.5363

Perm MN f37(x) =
∑n

k=1(
∑n

i=1(i k
+ β)((xi/ i)k

− 1))2 4 [−D,D] 0
PowerSum MN f38(x) =

∑n
k=1((

∑n
i=1 xk

i ) − bk)2 4 [0,D] 0

Hartman3 MN f39(x) = −
∑4

i=1 exp
[
−

∑3
j=1 ai j (x j − pi j )2

]
3 [0,1] −3.86

Hartman6 MN f40(x) = −
∑4

i=1 exp
[
−

∑6
j=1 ai j (x j − pi j )2

]
6 [0,1] −3.32

A.3. Benchmark functions, D: Dimensions, C: Characteristics, U: Unimodal, M: Multimodal, S: Separable, N:
Non-separable

Name C Function D Range fopt

Griewank MN
f41(x) =

1
4000

∑n
i=1 (xi − 100)2

−
∏n

i=1 cos( xi −100
√

i
) + 1

30 [−600,600] 0

Ackley MN f42(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i )
− exp( 1

n

∑n
i=1 cos 2πxi ) + 20 + e

30 [−32,32] 0

Penalized MN
f43(x) =

π
n {10sin2(π y1) +

∑n−1
i=1 (yi − 1)2

× [1 + 10sin2(π yi + 1)]
+(yn − 1)2

} +
∑30

i=1 u(xi , 10, 100, 4)
30 [−50,50] 0

Penalized2 MN

f44(x) = 0.1{sin2(3πx1) +
∑29

i=1 (xi − 1)2 p
[1 + sin2(3πxi+1)]
+(xn − 1)2[1 + sin2(2πx30)]}
+

∑30
i=1 u(xi , 5, 100, 4)

30 [−50,50] 0

Langerman2 MN
f45(x) = −ci (exp(− 1

π

∑n
j=1 (x j − ai j )2)

× cos(π
∑n

j=1 (x j − ai j )2))
2 [0,10] 1.08

Langerman5 MN
f46(x) = −ci (exp(− 1

π

∑n
j=1 (x j − ai j )2)

× cos(π
∑n

j=1 (x j − ai j )2))
5 [0,10] 1.5

Langerman10 MN
f47(x) = −ci (exp(− 1

π

∑n
j=1 (x j − ai j )2)

× cos(π
∑n

j=1 (x j − ai j )2))
10 [0,10] –

FletcherPowell2 MN
f48(x) =

∑n
i=1 (Ai − Bi )2

Ai =
∑n

j=1 (ai j sin α j + bi j cos α j )
Bi =

∑n
j=1 (ai j sin x j + bi j cos x j )

2 [−π , π ] 0

FletcherPowell5 MN
f49(x) =

∑n
i=1 (Ai − Bi )2

Ai =
∑n

j=1 (ai j sin α j + bi j cos α j )
Bi =

∑n
j=1 (ai j sin x j + bi j cos x j )

5 [−π , π ] 0

FletcherPowell0 MN
f50(x) =

∑n
i=1 (Ai − Bi )2

Ai =
∑n

j=1 (ai j sin α j + bi j cos α j )
Bi =

∑n
j=1 (ai j sin x j + bi j cos x j )

10 [−π , π ] 0
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Appendix B. CEC 2014 test suite used in experiment 2

B.1. CEC 2014 test functions

Name Function D Range fopt

CF1 Rotated High Conditioned Elliptic Function 30 [−100,100] 100
CF2 Rotated Bent Cigar Function 30 [−100,100] 200
CF3 Rotated Discus Function 30 [−100,100] 300
CF4 Shifted and Rotated Rosenbrock’s Function 30 [−100,100] 400
CF5 Shifted and Rotated Ackley’s Function 30 [−100,100] 500
CF6 Shifted and Rotated Weierstrass Function 30 [−100,100] 600
CF7 Shifted and Rotated Griewank’s Function 30 [−100,100] 700
CF8 Shifted Rastrigin’s Function 30 [−100,100] 800
CF9 Shifted and Rotated Rastrigin’s Function 30 [−100,100] 900
CF10 Shifted Schwefel’s Function 30 [−100,100] 1000
CF11 Shifted and Rotated Schwefel’s Function 30 [−100,100] 1100
CF12 Shifted and Rotated Katsuura Function 30 [−100,100] 1200
CF13 Shifted and Rotated HappyCat Function 30 [−100,100] 1300
CF14 Shifted and Rotated HGBat Function 30 [−100,100] 1400
CF15 Shifted and Rotated Expanded Griewank’s plus Rosenbrock’s Function 30 [−100,100] 1500
CF16 Shifted and Rotated Expanded Scaffer’s F6 Function 30 [−100,100] 1600
CF17 Hybrid Function 1 (N=3) 30 [−100,100] 1700
CF18 Hybrid Function 2 (N=3) 30 [−100,100] 1800
CF19 Hybrid Function 3 (N=4) 30 [−100,100] 1900
CF20 Hybrid Function 4 (N=4) 30 [−100,100] 2000
CF21 Hybrid Function 5 (N=5) 30 [−100,100] 2100
CF22 Hybrid Function 6 (N=5) 30 [−100,100] 2200
CF23 Composition Function 1 (N=5) 30 [−100,100] 2300
CF24 Composition Function 2 (N=3) 30 [−100,100] 2400
CF25 Composition Function 3 (N=3) 30 [−100,100] 2500
CF26 Composition Function 4 (N=5) 30 [−100,100] 2600
CF27 Composition Function 5 (p=5) 30 [−100,100] 2700
CF28 Composition Function 6 (N=5) 30 [−100,100] 2800
CF29 Composition Function 7 (N=3) 30 [−100,100] 2900
CF30 Composition Function 8 (N=3) 30 [−100,100] 3000

Appendix C. 10 engineering design cases in experiment 3

C.1. Three-bar truss design

Consider variable x⃗ = [x1, x2].
Minimize f1(x⃗) = (2

√
2x2 + x2) × l.

Subject to g1(x⃗) =

√
2x1+x2√

2x2
1+2x2x1

P − σ ≤ 0, g2(x⃗) =
x2√

2x2
1+2x2x1

P − σ ≤ 0 ≤ 0, g3(x⃗) =
x2

x1+
√

2x2
P − σ ≤ 0.

Where l = 10 cm, P = 2 KN/cm2, σ = 2 KN/cm2.
Variable range 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 1.

C.2. Cantilever beam design

Consider variable x⃗ = [x1, x2].
Minimize f (x⃗) = 0.0624(x + x + x + x + x ).
2 1 2 3 4 5
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C

r

0
0

C

Table C.27
Variation of f (a) with a.

a ≤ 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 ≥ 2.8

f (a) 1 0.85 0.77 0.71 0.66 0.63 0.6 0.58 0.56 0.55 0.53 0.52 0.51 0.51 0.5

Subject to g1(x⃗) =
61
x3

1
+

37
x3

2
+

19
x3

3
+

7
x3

4
+

1
x3

5
− 1 ≤ 0.

Variable range 0.01 ≤ xi ≤ 100, i = 1, . . . , 5.

C.3. Tension/compression spring design

Consider variable x⃗ = [x1, x2, x3] = [d, D, N ].
Minimize f3(x⃗) = (x3 + 2)x2x2

1 .

Subject to g1(x⃗) = 1 −
x3x3

2
71785x4

1
≤ 0, g2(x⃗) =

4x2
2−x1x2

12566(x2x3
1−x4

1 )
+

1
5108x2

1
− 1 ≤ 0, g3(x⃗) = 1 −

140.45x1
x2

2 x3
≤ 0,

g4(x⃗) =
x1+x2

1.5 − 1 ≤ 0.
Variable range 0.05 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

.4. Rolling element bearing design

Consider variable x⃗ = [Dm, Db, Z , fi , fo, K Dmin, K Dmax , ε, e, ζ ].

Maximize
{

f4(x⃗) = fc Z2/3 D1.8
b i f Db ≤ 25.4 mm

f4(x⃗) = 3.647 fc Z2/3 D1.4
b i f Db > 25.4 mm

.

Subject to g1(x⃗) =
φo

2sin−1(Db/Dm )
−Z+1 ≥ 0, g2(x⃗) = 2Db−K Dmin(D−d) ≥ 0, g3(x⃗) = K Dmax (D−d)−2Db ≥ 0,

g4(x⃗) = Dm − (0.5 − e)(D + d) ≥ 0, g5(x⃗) = (0.5 + e)(D + d) − Dm ≥ 0, g6(x⃗) = Dm − 0.5(D + d) ≥ 0,
g7(x⃗) = 0.5(D − Dm − Db) − εDb ≥ 0, g8(x⃗) = ζ Bw − Db ≤ 0, g9(x⃗) = fi ≥ 0.515, g10(x⃗) = fo ≥ 0.515.

Where fc = 37.91

[
1 +

{
1.04

(
1−γ

1+γ

)1.72( fi (2 fo−1)
fo(2 fi −1)

)0.4
}10/3

]−0.3 (
γ 0.3(1−γ )1.39

fo(1+γ )
1
3

) (
2 fi

2 fi −1

)0.41
, γ =

Db cos α

Dm
, fi =

ri
Db

, φo = 2π − 2cos−1 {(D−d)/2−3(T/4)}2
+{D/2−(T/4)−Db}2

−{d/2+(T/4)}2

2{(D−d)/2−3(T/4)}{D/2−(T/4)−Db}
, T = D − d − 2Db, D = 160, d = 90, Bw = 30,

i = ro = 11.033.
Variable range 0.5 (D + d) ≤ Dm ≤ 0.6 (D + d), 0.15 (D − d) ≤ Db ≤ 0.45 (D − d), 4 ≤ Z ≤ 50,

.515 ≤ fi ≤ 0.6, 0.515 ≤ fo ≤ 0.6, 0.4 ≤ K Dmin ≤ 0.5, 0.6 ≤ K Dmax ≤ 0.7, 0.3 ≤ ε ≤ 0.4, 0.02 ≤ e ≤ 0.1,

.6 ≤ ζ ≤ 0.85.

.5. Belleville spring design

Consider variable x⃗ = [t, h, Di , De].
Minimize f5(x⃗) = 0.07075π

(
D2

e − D2
i

)
t .

Subject to g1(x⃗) = S−
4Eδmax

(1−µ2)αD2
e

[
β(h −

δmax
2 ) + γ t

]
≥ 0, g2(x⃗) =

(
4Eδmax

(1−µ2)αD2
e

[
(h −

δ
2 )((h − δ) t + t3)

])
δ=δmax

−

Pmax ≥ 0, g3(x⃗) = δ1 − δmax ≥ 0, g4(x⃗) = H − h − t ≥ 0, g5(x⃗) = Dmax − De ≥ 0, g6(x⃗) = De − Di ≥ 0,
g7(x⃗) = 0.3 −

h
De−Di

≥ 0.

Where α =
6

π ln K

( K−1
K

)2
, β =

6
π ln K

( K−1
ln K − 1

)
, γ =

6
π ln K

( K−1
2

)
, Pmax = 5400 lb, δmax= 0.2 in, S = 200000 Psi,

E = 30 × 106 psi, µ = 0.3, H= 2 in, Dmax = 12.01 in, K = De/Di , δl = f (a) h, a = h/t .
Values of f (a) vary as shown in Table C.27.
Variable range 0.01 ≤ t ≤ 6, 0.05 ≤ h ≤ 0.5, 5 ≤ Di ≤ 15, 5 ≤ Do ≤ 15.

C.6. Hydrostatic thrust bearing design

Consider variable x⃗ = [R, Ro, µ, Q].
Minimize f (x⃗) =

Q Po + E .
6 0.7 f
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C

C

5

C

v

Subject to g1(x⃗) = W − Ws ≥ 0, g2(x⃗) = Pmax − Po ≥ 0, g3(x⃗) = ∆Tmax − ∆T ≥ 0, g4(x⃗) = h − hmin ≥ 0,
g5(x⃗) = R − Ro ≥ 0, g6(x⃗) = 0.001 −

γ

g Po
( Q

2π Rh ) ≥ 0, g7(x⃗) = 5000 −
W

π (R2−R2
o )

≥ 0.

Where W =
π Po

2
R2

−R2
o

ln(R/Ro) , Po =
6µQ
πh3 ln(R/Ro), E f = 9336Qγ C∆T , ∆T = 2(10P

− 560), P =

log10log10(8.122×106µ+0.8)−C1
n , h = ( 2π N

60 )2 2πµ

E f
( R4

4 −
R4

o
4 ), γ = 0.0307, C = 0.5, n = −3.55, C1 = 10.04, Ws = 101000,

Pmax = 1000, hmin = 0.001, ∆Tmax = 50, g = 386.4, N = 750.
Variable range 1 ≤ R ≤ 16, 1 ≤ Ro ≤ 16, 10−6

≤ µ ≤ 16 × 10−6, 1 ≤ Q ≤ 16.

.7. Pressure vessel design

Consider variable x⃗ = [x1, x2, x3, x4] = [Ts, Th, R, L].
Minimize f7(x⃗) = 0.6224x1x3x4 + 1.7781x2x2

3 + 3.1661x2
1 x4 + 19.84x2

1 x3.
Subject to g1(x⃗) = −x1 +0.0193x3 ≤ 0, g2(x⃗) = −x2 +0.00954x3 ≤ 0, g3(x⃗) = −πx2

3 x4 −
4
3πx3

3 +1296000 ≤ 0,
g4(x⃗) = x4 − 240 ≤ 0.

Variable range 0 ≤ x1 ≤ 99, 0 ≤ x2 ≤ 99, 10 ≤ x3 ≤ 200, 10 ≤ x4 ≤ 200.

C.8. Welded beam design

Consider variable x⃗ = [x1, x2, x3, x4] = [h, l, t, b].
Minimize f8(x⃗) = 1.10471x2

1 x2 + 0.04811x3x4(14 + x2).
Subject to g1(x⃗) = τ (x⃗) + τmax ≤ 0, g2(x⃗) = σ (x⃗) + σmax ≤ 0, g3(x⃗) = δ(x⃗) + δmax ≤ 0, g4(x⃗) = x1 − x4 ≤ 0,

g5(x⃗) = P − Pc(x⃗) ≤ 0, g6(x⃗) = 0.125 − x1 ≤ 0, g7(x⃗) = 0.10471x2
1 + 0.04811x3x4(14 + x2) − 5 ≤ 0.

Where τ (x⃗) =

√
(τ ′)2

+ 2τ ′τ ′′ x2
2R + (τ ′′)2, τ ′

=
P

√
2x1x2

, τ ′′
=

M R
J , M = P(L +

x2
2 ), R =

√
x2

2
4 + ( x1+x3

2 )
2
,

J = 2
{
√

2x1x2

[
x3

2
4 + ( x1+x3

2 )
2
]}

, σ (x⃗) =
6P L
x4x2

3
, δ(x⃗) =

4P L3

Ex4x3
3

, Pc(x⃗) =
4.013E

√
x2
3 x6

4
36

L2

(
1 −

x3
2L

√
E

4G

)
, P = 6000 lb,

L = 14 in, E = 30 × 106 psi, G = 12 × 106 psi, τmax = 13600 psi, σmax = 30000 psi, δmax = 0.25 in.
Variable range 0.1 ≤ x1 ≤ 2, 0.1 ≤ x2 ≤ 10, 0.1 ≤ x3 ≤ 10, 0.1 ≤ x4 ≤ 2.

.9. Speed reducer design

Consider variable x⃗ = [x1, x2, x3, x4, x5, x6, x7] = [b, m, z, l1, l2, d1, d2].

Minimize
f9(x⃗) = 0.7854x1x2

2 (3.3333x2
3 + 14.9334x3 − 43.0934)

−1.508x1(x2
6 + x2

7 ) + 0.7854x1(x4x2
6 − x5x2

7 ) .

Subject to g1(x⃗) =
27

x1x2
2 x3

− 1 ≤ 0, g2(x⃗) =
397.5

x1x2
2 x2

3
− 1 ≤ 0, g3(x⃗) =

1.93x2
4

x2x4
6 x3

− 1 ≤ 0, g4(x⃗) =
1.93x2

5
x2x4

7 x3
− 1 ≤ 0,

g5(x⃗) =
(( 745x4

x2x3
)
2
+16.9×106)

0.5

110x3
6

−1 ≤ 0, g6(x⃗) =
(( 745x5

x2x3
)
2
+157.5×106)

0.5

85x3
7

−1 ≤ 0, g7(x⃗) =
x2x3
40 −1 ≤ 0, g8(x⃗) =

5x2
x1

−1 ≤ 0,

g9(x⃗) =
x1

12x2
− 1 ≤ 0, g10(x⃗) =

1.5x6+1.9
x4

− 1 ≤ 0, g11(x⃗) =
1.1x7+1.9

x5
− 1 ≤ 0.

Variable range 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28, 7.3 ≤ x4 ≤ 8.3, 7.3 ≤ x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9,
.0 ≤ x7 ≤ 5.5.

.10. Multiple disc clutch brake design

Consider variable x⃗ = [ri , ro, t, F, Z ].
Minimize f10(x̄) = π (r2

0 − r2
i )t(Z + 1)ρ.

Subject to g1(x⃗) = ro − ri − ∆r ≥ 0, g2(x⃗) = lmax − (Z + 1)(t + δ) ≥ 0, g3(x⃗) = pmax − pr z ≥ 0,
g4(x⃗) = pmaxvsrmax − pr zvsr ≥ 0, g5(x⃗) = vsrmax − vsr ≥ 0, g6(x⃗) = Tmax − T ≥ 0, g7(x⃗) = Mh − s Ms ≥ 0,
g8(x⃗) = T ≥ 0.

Where Mh =
2
3µF Z

r3
o −r3

i
r2
o −r2

i
, pr z =

F
π (r2

o −r2
i )

, vsr =
2πn(r3

o −r3
i )

90(r2
o −r2

i )
, T =

Izπn
30(Mh+M f ) , ∆r = 20 mm, lmax = 30 mm,

srmax= 10 m/s, δ = 0.5, s = 1.5, Ms = 40 Nm, M f = 3 Nm, n = 250 rpm, pmax = 1 MPa, Iz = 55 kg mm2,
Tmax = 15 s, Fmax = 1000 N, rimin = 60 mm, rimax = 80 mm, romin = 90 mm, romax = 110 mm, tmin = 1 mm,
t = 3 mm, F = 600, F = 1100, Z = 2, Z = 9.
max min max min max
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Appendix D. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2021.114194.
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