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Abstract: In recent years, various metaheuristic optimization methods have been proposed in scientific 

and engineering fields. In this study, a novel physics-inspired metaheuristic optimization algorithm, atom 

search optimization (ASO), inspired by basic molecular dynamics, is developed to address a diverse set of 

optimization problems. ASO mathematically models and mimics the atomic motion model in nature, where 

atoms interact through interaction forces resulting from the Lennard-Jones potential and constraint forces 

resulting from the bond-length potential. The proposed algorithm is simple and easy to implement. ASO is 

tested on a range of benchmark functions to verify its validity, qualitatively and quantitatively, and then 

applied to a hydrogeologic parameter estimation problem with success. The results demonstrate that ASO 

is superior to some classic and newly emerging algorithms in the literature and is a promising solution to 

real-world engineering problems.  

 

Keywords: Optimization algorithm; Heuristic algorithm; Benchmark functions; Atom search optimization; 

Global optimization; Metaheuristic; Parameter estimation 

 

 

1. Introduction 

Metaheuristic optimization algorithms are increasingly popular in intelligent computing and widely 

applied to a large number of real-world engineering problems. Their popularity derives from the following 

aspects. Firstly, all of these optimization techniques have some fundamental theories and mathematical 

models proven to be reasonable, which come from the real world and are inspired by all kinds of physical 

phenomena or biological behaviors [1,2]. The theories are simple and easy to understand. Secondly, these 

optimization algorithms can be considered as a black box. It means that given a set of inputs, these 

algorithms can easily provide a set of outputs for any optimization problem. They are very flexible and 

versatile since one can change the structures and parameters of algorithms to obtain better solutions. 

Thirdly, metaheuristic algorithms can effectively avoid local optima, which is very valuable for addressing 

engineering problems as many engineering problems are considered as multimodal functions. In addition, 

one can develop their variants by absorbing the merits of other algorithms to improve the accuracy of 

solutions within a reasonable time. Fourthly, metaheuristic optimization algorithms can tackle different 

types of problems including, but not limited to, single-objective and multi-objective problems, 
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low-dimensional and high-dimensional problems, unimodal and multimodal problems, and discrete and 

continuous problems [3-5]. 

Many metaheuristic algorithms with different inspiration have been proposed and successfully used in 

a variety of fields, which are roughly classified into three classes [6]: evolution-inspired [7-9], 

physics-inspired [10], and swarm-inspired [11] methods. 

Evolution-inspired algorithms are a stochastic, population-based approach, thus protecting a 

population’s diversity is very important for the sustainable development of the algorithms iteratively. So 

Many evolution-inspired algorithms maintain a population’s diversity by mimicking basic genetic rules, 

including reproduction, mutation, selection, chemotaxis, elimination, and migration [12,13]. These 

algorithms randomly initialize a population evolved from subsequent iterations and evaluate the individual 

quality using a fitness function. Genetic algorithm (GA), originally presented by Holland [14], is a 

well-known classic evolutionary algorithm (EA). As GA can generally obtain high-quality solutions using 

mutation, crossover, and selection steps, the original version and its variants are widely applied to many 

real-world problems [15]. Since its emergence, a series of schemes aiming to enhance GA have been 

developed. With increasing popularity of GA, quite a number of other evolution-based algorithms in the 

literature, including evolutionary strategies (ES) [16], differential evolution (DE) [17], evolutionary 

programming (EP) [18], memetic algorithm (MA) [19], and so on, are proposed. Besides, all sorts of new 

EAs have been proposed recently, such as bacterial foraging optimization (BFO) [12], bat algorithm (BA) 

[20], fruit fly optimization algorithm (FOA) [21], monkey king evolutionary (MKE) [22], artificial algae 

algorithm (AAA) [23], biogeography-based optimization (BBO) [24], yin-yang-pair optimization (YYPO) 

[25], invasive weed optimization (IWO) [26], and dynamic virtual bats algorithm (DVBA) [27]. 

Physics-inspired algorithms simulate physical laws in the universe, among which, simulated annealing 

(SA) [1] is one of the most well-known algorithms. SA is inspired from the annealing process used in 

physical material in which a heated metal cools and freezes into a crystal texture with the minimum energy. 

Recently, many novel physics-inspired algorithms have been proposed, such as gravitational search 

algorithm (GSA) [28], electromagnetism-like mechanism (EM) algorithm [29], particle collision algorithm 

(PCA) [30], vortex search algorithm (VSA) [31], water evaporation optimization (WEO) [32], space 

gravitational algorithm (SGA) [33], big bang-big crunch algorithm (BB-BC) [34], galaxy based algorithm 

(GBA) [35], big crunch algorithm (BCA) [36], integrated radiation algorithm (IRA) [37], water drops 

algorithm (WDA) [38], charged system search (CSS) [39], magnetic optimization algorithm (MOA) [40], 

gravitation field algorithm (GFA) [41], ions motion algorithm (IMA) [42], water wave optimization 

(WWO) [43], gravitational interactions optimization (GIO) [44], teaching-learning-based optimization 

(TLBO) [45], hysteretic optimization (HO) [46], thermal exchange optimization (TEO) [47], light ray 

optimization (LRO) [48], heat transfer search (HTS) [49], spiral optimization algorithm (SOA) [50], water 

cycle algorithm (WCA) [51], and curved space optimization (CSO) [52]. 

Swarm-inspired algorithms mimic the collective behaviors of self-organization and shape-formation, 

natural or artificial [53]. There are two most classic swarm-inspired algorithms. One is particle swarm 

optimization (PSO) [2], which mimics bird flocking behaviors. In PSO, every agent moves around the 

search space to improve its solution, and their personal best positions and the globally best position found 

so far are reserved, by which their positions are updated locally and socially. The other is ant colony 

optimization (ACO) [54], which follows the foraging process of an ant colony. Essentially, ants 

communicate with each other by pheromone trails through path formations, which assist them in finding 

the shortest path between the nest and food source. There are many newly developed swarm-inspired 

algorithms, such as artificial bee colony (ABC) [55], salp swarm algorithm (SSA) [56], krill herd 
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algorithm (KH) [57], tree-seed algorithm (TSA) [58], social spider optimization (SSO) [59], bird mating 

optimizer (BMO) [60], cuckoo search (CS) [61], grasshopper optimization algorithm (GOA) [62], sine 

cosine algorithm (SCA) [63], moth swarm algorithm (MSA) [64], dolphin echolocation (DE) algorithm 

[65], hunting search (HS) algorithm [66], migrating birds optimization (MBO) [67], firefly algorithm (FA) 

[68], monkey search (MS) algorithm [69], and squirrel search algorithm (SSA) [70]. 

Compared with evolution-inspired or physics-inspired algorithms, swarm-inspired algorithms have 

some distinctive characteristics. On the one hand, part or all of the historical information about the 

population needs to be preserved, because every agent depends on the information to determine a new 

position in the search space over subsequent iterations. However, evolution-inspired algorithms require 

more operators. Swarm-inspired algorithms generally update positions of the population by interaction 

rules as standard formulas. On the other hand, swarm-inspired algorithms generally have two behaviors: 

exploration and exploitation [71,72]. Exploration means the ability of the algorithm to search for new 

solutions far from the current solution in the entire search space. Exploitation means the ability of the 

algorithm to search for the best solution near a new solution it has already found. In such algorithms, the 

range of every agent in the search space is scaled to a consensus in its neighborhood, and agents randomly 

explore the whole search space. If an agent or its neighbors find a good region, this region will be 

intensively exploited. Otherwise, they still extensively explore other regions, thus indicating their better 

self-adaptation in searching the global optima. From these perspectives, swarm-inspired algorithms have 

many advantages over other algorithms. Many evolution-inspired or physics-inspired algorithms have 

swarm-inspired characteristics, such as PSO, ACO, CS, BFO, GSA, and so on. These algorithms not only 

reflect the nature of biological phenomena or physical laws, but also share a common characteristic of 

exploration and exploitation. Thus they are more competitive than those without swarm-inspired 

characteristics. However, providing a proper balance between exploration and exploitation will lead to an 

optimal performance of the algorithm, so it is one of the most important tasks in the development of any 

stochastic optimization algorithm. 

With the development of economy, society and technology, a great number of complex and challenging 

optimization problems have accordingly arisen in different fields. As an illustration, the emergence of 

ride-sharing companies that offer transportation on demand at a large scale, together with the increasing 

availability of corresponding demand datasets, develops a new complex optimization problem of effective 

handling of routing network [73]. Another challenging optimization problem is the identification of 

pollutant sources for river pollution incidents, which are caused by accident or illegal emissions [74]. 

Although a number types of optimization algorithms have introduced so far, new optimization algorithms 

are still being developed to tackle emerging complex optimization problems to obtain a better scheme. 

Furthermore, according to the No Free Lunch Theorem of Optimization [75], there is no optimization 

algorithm performing the best over all different types of problems. This theorem keeps this research field 

active and encourages relevant scholars to develop new algorithms for better optimization. Based on the 

above, a novel physics-inspired algorithm with swarm-inspired characteristics is proposed for global 

optimization in this study. The proposed algorithm, named atom search optimization (ASO), is inspired by 

basic molecular dynamics and is also a population-based heuristic algorithm. As far as the authors know, 

there are no related studies found in the literature. ASO mimics the atomic motion controlled by interaction 

and constraint forces to design an effective search mechanism for global optimization problems. The 

efficiency of ASO proposed is validated on a diverse set of mathematical optimization problems, and the 

results show its superiority to some classic and emerging algorithms. Additionally, ASO is successfully 
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applied to a hydrogeologic parameter estimation problem, thus demonstrating its feasibility and 

effectiveness in real-world problems. 

This paper is organized as follows. Section 2 provides a brief review of basic molecular dynamics. 

Section 3 presents the inspiration and the novel ASO algorithm in detail. Section 4 gives a comparative 

study and discussion on the benchmark functions, and section 5 describes the application of ASO to a 

hydrogeologic parameter estimation problem. Finally, section 6 presents some conclusions and suggests a 

few future research directions. 

 

2. Basic molecular dynamics 

ASO is inspired by basic molecular dynamics. From the micro perspective, a definition of "matter", 

based on its physical and chemical structure, is thus: matter is made up of molecules [76]. A molecule is 

the smallest unit of a chemical compound, and it exhibits the same chemical properties as those of that 

specific compound. A molecule is composed of atoms held together by covalent bonds that vary greatly in 

terms of complexity and size. So all substances are made of atoms and all atoms have mass and volume 

[77,78]. Fig. 1 shows the composition of water molecules, each of which is made up of two hydrogen 

atoms and one oxygen atom, jointly held by two covalent bonds. For an atomic system, all the atoms 

interact and are in constant motion, whether in the state of gas, liquid or solid. They are very complex in 

terms of their structure and microscopic interactions. Because an atomic system is typically composed of 

numerous atoms, it is analytically impossible to determine their properties that are affected by factors such 

as temperature, pressure, and so on. With the development of computer technology, molecular dynamics 

(MD) has rapidly developed in recent years. It circumvents this problem with the use of a computer 

simulation method to examine the physical movements of atoms and molecules. 

 

 

Fig. 1 Water molecules and their composition. 

MD was initially conceived in the field of theoretical physics [79,80] but its use has been extended to 

computational chemistry, materials science, and biology. Atomic motion follows the classical mechanics 

[81]. The interaction force among the atoms has two principal characteristics in an atom system. The first 

is the repulsion to compression, which repels at a close range of crowdedness. The second is the attraction 

that binds atoms together such as in solid and liquid states. Atoms attract each other over a further range of 

separation [82]. The potential energy of atoms can well account for these two characteristics, and there are 

a wide variety of pair-wise formulas in the literature used to express the potential energy [83,84]. The 

Lennard-Jones (L-J) potential [85,86], initially proposed for liquid, is a simple mathematical model that 

approximates the interaction force between a pair of atoms. The L-J potential between the ith and the jth 

atoms is commonly expressed as  
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where   is the depth of the potential well that represents the strength of the interaction,   is the length 

scale that denotes the collision diameter, ij j i r x x , and 1 2 3( , , )i i i ix x xx  is the position of the ith 

atom in a 3-D space, so the Euclidian distance between the ith and jth atoms is 
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In equation (1), (σ/r)
12

 and (σ/r)
6
 represent the repulsive and attractive interactions, respectively. The L-J 

potential curve is illustrated in Fig. 2, in which the attraction and repulsion regions are shown. In the 

repulsion region, the repulsion of the atoms rapidly increases as the distance between two atoms decreases. 

In the attraction region, as the distance between two atoms increases towards a certain further separation, 

the attraction gradually drops to zero. When two atoms reach an equilibration distance (r=1.12σ), their 

minimum bonding potential energy is reached. At this point, the interaction force between the atoms is 

equal to zero. 
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Fig. 2 L-J potential curve. 

Having specified the potential energy function, the interaction force that the jth atom exerts on the ith 

atom is 
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So the total interaction force exerted on the ith atom is simply given as 

1

N
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                                           (4) 

where N is the total number of atoms in an atomic system. 

To study more complex molecules, a molecular dynamics method with geometric constraints is proposed 

in [87], in which a combination of geometrical constraints and internal motion of atoms is considered. In 

polyatomic molecules, the highest-frequency internal vibrations are usually decoupled from rotational and 

translational motions. Thus a certain number of rigid bonds are introduced in the skeleton of the molecules. 

Consider the case in which the structure of a molecule is subject to one or more geometries. A constraint 

needs to be introduced to fix the distance between any two atoms with covalent bonds, and the mode can 
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be expressed as 

2 2| |i i ijb x x                                         (5) 

where ijb  is the fixed bond length between the ith and jth atoms. Suppose that there are a total of l 

constraints influencing a particular molecule, and if the kth constraint for a bond works between the ikth 

and jkth atoms, then the kth constraint is  

2 2| | 0k ik ki ijb    x x ,  1, 2, ,k l                        (6) 

Hence, the constraint force Gi from the stretch of a covalent bond between two atoms acted on the ith 

atom can be written as 

1 1

2 ( )
l l

i k i k k ik jk

k k

G   
 

       x x                     (7) 

where k is the Lagrangian multiplier associated with k . Hence, the motion equation of atoms with the 

constraint can be modified as 

i i i iF G m a                                          (8) 

For equation (8), the forces exerted on the atoms include not only all non-constraint interaction forces 

among molecules, but also the constraint force(s) within each molecule, thus embodying the essence of 

atomic motion. 

In summary, basic molecular dynamics describes the movement principles of atoms, including the 

characteristics of the potential function, the motion mode of atoms with a non-constraint interaction force, 

and a geometric constraint force. Despite the simplicity of the analytical model, the physics-based study of 

molecular dynamics can be used to determine thermodynamic properties of the system, and indeed 

presents opportunities for many theoretical studies and practical applications [88-91]. 

 

3. Atom search optimization (ASO) 

In this section, a novel optimization algorithm named atom search optimization (ASO) that is inspired 

by molecular dynamics is introduced. In ASO, the position of each atom within the search space represents 

a solution measured by its mass, with a better solution indicating a heavier mass, and vice versa. All atoms 

in the population will attract or repel each other according to the distance among them, encouraging the 

lighter atoms to move towards the heavier ones. Heavier atoms have smaller acceleration, which makes 

them seek intensively for better solutions in local spaces. Lighter atoms have greater acceleration, which 

makes them search extensively to find new promising regions in the entire search space. 

The general unconstrained optimization problems can be defined as 

1Minimize  ( ),      =( , , )Df x xx x                   (9) 

for 

1 1 ,  [ , , ], [ , , ]D DLb Ub Lb lb lb Ub ub ub   x                  (10) 

Where dx (d=1,…,D) is the dth component of the search space, Dlb  and Dub  are the dth components of 

the lower and upper limits, respectively, and D is the dimension of the search space. 
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In order to solve this unconstrained optimization, suppose an atom population with N atoms. The 

position of the ith atom is expressed as 

1 [ , , ],       1, ,D

i i ix x i N x                                (11) 

where 
d

ix (d=1,…,D) is the dth position component of the ith atom in a D-dimension space. In the initial 

iterations of ASO, each atom interacts with others by the attraction or the repulsion among them, and the 

repulsion can avoid the over-concentration of atoms and the premature convergence of the algorithm, thus 

enhancing the exploration ability in the entire search space. As iterations pass, the repulsion gradually 

weakens and the attraction gradually strengthens, which signifies that the exploration decreases and the 

exploitation increases. In the final iterations, each atom interacts with others just by the attraction, which 

ensures that the algorithm has a good exploitation capability. 

3.1 Mathematical representation of interaction force 

The interaction force resulting from the L-J potential is the priming power of atomic motion. The 

interaction force acted on the ith atom from the jth atom at the tth iteration in equation (3) can be rewritten 

as 
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Fig. 3 Force curve of atoms. 

The force curve of atoms is shown in Fig. 3. As shown, the atoms keep a relative distance, varying in a 

certain range all the time from the repulsion or attraction, and the change amplitude of the repulsion 

relative to the equilibration distance (r=1.12σ) is much greater than that of the attraction. However, this 

model cannot be used directly to handle optimization problems, mainly because ASO needs to obtain more 

positive attraction and less negative repulsion as iterations increase, as shown in Fig. 3, equation (13) 

cannot satisfy this point. Accordingly, a revised version of this equation is developed, as follows, to solve 

optimization problems 

' 13 7( ) ( ) 2( ( )) ( ( ))ij ij ijF t t h t h t                                 (14) 
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where ( )t  is the depth function to adjust the repulsion region or attraction region, which can be defined 

as 
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20
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where a is the depth weight and T is the maximum number of iterations. The function behaviors of 
'F , 

with different   corresponding to h  ranging from 0.9 to 2, are illustrated in Fig. 4. From the figure, the 

repulsion occurs when h  ranges from 0.9 to 1.12, the attraction occurs when h  is between 1.12 and 2, 

and the equilibration occurs when 1.12h  . The attraction gradually increases with the increase of h  

from the equilibration ( 1.12h  ), reaches a maximum ( 1.24h  ) and then begins to decrease. The 

attraction is approximately equal to zero when h  is greater than or equal to 2. Therefore, in ASO, to 

improve the exploration, a lower limit of the repulsion with a smaller function value is set to 1.1h   and 

an upper limit of attraction with a larger function value is set to 1.24h  . Therefore, h  is defined as 
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where minh and maxh are the lower and the upper limits of h , respectively, and the length scale ( )t  is 

defined as 
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where Kbest, which is a subset of an atom population, is made up of the first K atoms with the best 

function fitness values. As a drift factor, g can make the algorithm drift from the exploration to the 

exploitation and is given as 

( )=0.1 sin( )
2

t
g t

T


                                     (19) 

Then the sum of components with random weights acted on the ith atom from the other atoms can be 

considered a total force, which is expressed as 

 ( ) ( )d d

i j ij

j Kbest

F t rand F t


                                  (20) 

where jrand  is a random number in [0,1].  

3.2 Mathematical representation of geometric constraint 

The geometric constraint in molecular dynamics plays an important role in atomic motion. For 

simplicity, suppose each atom in ASO has a covalence bond with the best atom. Thus each atom is acted on 

by a constraint force from the best atom, so the constraint of the ith atom can be rewritten as 

2 2

,( ) | ( ) ( ) |i i best i bestt t t b     x x                                   (21) 

where ( )bestx t  is the position of the best atom at the tth iteration, and ,i bestb  is a fixed bond length 

between the ith atom and the best atom. Hence the constraint force can be obtained as 

( ) ( ) ( ) 2 ( )( ( ) ( ))d d d d

i i i bestG t t t t x t x t                                  (22) 

where ( )t  is the Lagrangian multiplier. Then, making the substitution of 2  , the constraint force 

can be redefined as  

( ) ( )( ( ) ( ))d d d

i best iG t t x t x t                                    (23) 

The Lagrangian multiplier is defined as 

20

( )
t

Tt e 


                                               (24) 

where   is the multiplier weight.  

3.3 Mathematical representation of atomic motion 
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With the interaction force and the geometric constraint, the acceleration of the ith atom at time t can be 

written as  
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where ( )im t  is the mass of the ith atom at the tth iteration, which can be measured at the simplest level 

by its function fitness value. The mass of the ith atom can be calculated as 
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where ( )bestFit t  and ( )worstFit t  are the atoms with the minimum fitness value and the maximum fitness 

value at the tth iteration, respectively. ( )iFit t  is the function fitness value of the ith atom at the tth 

iteration. ( )bestFit t  and ( )worstFit t  are expressed as  

{1,2, , }

(t)= ( )minbest i
i N

Fit Fit t


                                 (28) 

 

{1,2, , }

(t)= ( )maxworst i
i N

Fit Fit t


                              (29) 

To simplify the algorithm, the position and velocity of the ith atom at the (t+1)th iteration can be 

denoted as follows 

( 1)= ( ) ( )d d d d

i i i iv t rand v t a t                              (30) 

( 1)= ( ) ( 1)d d d

i i ix t x t v t                                 (31) 

In ASO algorithm, to enhance the exploration in the first stage of iterations, each atom needs to interact 

with as many atoms with better fitness values as its K neighbors. To enhance the exploitation in the final 

stage of iterations, the atoms need to interact with as few atoms with better fitness values as its K 

neighbors. Therefore, as a function of time, K gradually decreases with the lapse of iterations. K can be 

calculated as 

( ) ( 2)
t

K t N N
T

                                  (32) 

The forces of an atom population are shown in Fig. 5, in which the first 5 atoms with the best fitness 

values are regarded as the KBest. As shown in the figure, A1, A2, A3 and A4 compose the KBest. A5, A6 and 



11 

 

A7 attract or repel each atom in the KBest, and A1, A2, A3 and A4 attract or repel each other. Each atom in 

the population except for A1 (xbest) has a constraint force from the best atom A1. 
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Fig. 5 Forces of an atom system with KBest for K=5. 

A simulation is conducted to examine how atoms move with this mathematical model. The swarm 

motion of 5 atoms around a target in a 3-D space is illustrated in Fig. 6, in which 5 different colored balls 

represent 5 different atoms, and the red point represents the desired target that every atom wants to reach. 

Initially, the positions of the 5 atoms are randomly generated in the search space. With the lapse of time t, 

all the atoms gradually approach the target using the mathematical mode and form a swarm. Finally, all the 

atoms converge to the target. Additionally, it can be found that, although the green atom is far away from 

the swarm when t=20, the other atoms also pull it back by the attraction in the subsequent iterations, and 

all the atoms do not become too concentrated because of the repulsion. The motion histories of the 5 atoms 

during 50 iterations are illustrated in Fig. 7. It is apparent that the atoms grow denser when they are closer 

to the target, and the distribution of atoms in the search space is sufficient to demonstrate that the model 

proposed can achieve the transition from the exploration for the entire search space to the exploration for a 

focused region. It is obvious that this search characteristic can be extended to a n-D space. 
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Fig. 6 Swarm motion of 5 atoms around a target in a 3-D space. 

 

Fig. 7 Motion histories of 5 atoms during 50 iterations. 

3.4 Framework of ASO algorithm 

ASO starts the optimization by generating a set of random solutions. The atoms update their positions 

and velocities in each iteration, and the position of the best atom found so far is also updated in each 

iteration. In addition, the acceleration of atoms comes from two parts. One is the interaction force caused 

by the L-J potential, which actually is the vector sum of the attraction and the repulsion exerted from other 

atoms.  Another is the constraint force caused by the bond-length potential, which is the weighted 

position difference between each atom and the best atom. All the updating and the calculation are 

performed interactively until the stop criterion is satisfied. Finally, the position and the fitness value of the 

best atom are returned as an approximation to the global optimum. The pseudo code of ASO algorithm is 

provided in Fig. 8. 
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 . Randomly initialize a set of atoms X (solutions) and their velocity v, and FitBest=Inf. 

While the stop criterion is not satisfied do 

For each atom Xi do 

Calculate the fitness value Fiti; 

If Fiti< FitBest then  

FitBest= Fiti; 

XBest= Xi; 

End If. 

Calculate the mass using equations (26) and (27); 

Determine its K neighbors using equation (32); 

Calculate the intraction force Fi and the constraint force Gi using equations (20) 

and (23), respectively; 

Calculate the acceleration using equation (25); 

Update the velocity using equation (30); 

Update the position using equation (31); 

End For. 

End While. 

Find the best solution so far XBest.  

Fig. 8 Pseudo code of ASO algorithm. 

ASO algorithm is very simple to implement and does not require many parameters except for the 

maximum number of iterations, the number of the atom population, and the dimension of problems to be 

solved, which are common parameters to all optimization algorithms. Moreover, the upper limit and the 

starting point of the lower limit can be selected as fixed values by the analysis of Fig. 4. In equation (18), 

when the starting point of function 'F  is fixed at 0 1.1g  , ASO algorithm performs well. The upper 

limit should be set as  =1.24u , which is the maximum value of function 'F . Therefore, the only 

parameters to be determined are the depth and multiplier weights. Empirically, it is recommended to set 

them in the range from 0 to 100 and from 0 to 1, respectively. The values of these parameters can be 

properly selected by four different benchmark functions, namely the Sphere, Rosenbrock, Ackley, and 

Griewank functions. For each test function, all combinations of the following sets of parameter values 

are adopted 

α=[10; 20; 30; 40; 50; 60; 70; 80; 90; 100] 

β=[0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9; 1]. 

Through testing these functions, it can be found that their valley bottom with the optimum can be 

obtained for parameter ranges of 40≤α≤60 and 0.1≤β≤0.3. Nevertheless, different problems may require 

a single value for each parameter, so the parameters of ASO are set as α=50 and β=0.2 in the following 

experiments. 

With the above formulation of ASO, the following remarks are made: 

(1) ASO inherits the innate stochastic motion of atoms in the real world, hence it intrinsically has the 

high exploration ability in the search space and thus can well avoid being trapped into the local optima 

compared to its competitors. 

(2) ASO is also a population-based optimization algorithm where the interaction forces include 

attraction and repulsion. The constraint force is an important media for delivering information within the 
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population. 

(3) The attraction and repulsion can guarantee the exploration and exploitation, respectively, with the 

lapse of iterations. The drift factor can enable the interaction forces exerted on the atoms to gradually 

switch from the combination of attraction and repulsion to the repulsion alone, thus indicating the switch 

from the exploration to the exploitation. 

(4) In the former phase of ASO, whether the interaction forces exerted on the atoms show the attraction 

or the repulsion depends on the function value of the ratio of ( )ijr t  to ( )i t , and ( )i t  can adaptively 

adjust the category (attraction or repulsion) of the interaction forces acted on the atoms. 

(5) The atoms with better fitness values have a larger mass, which leads to a smaller acceleration, thus 

signifying the local search. Atoms with worse fitness values have the lighter mass, thus signifying the 

global search. 

(6) Each atom in the population interacts only with its neighbors KBest by the interaction force. The 

number of KBest gradually decreases with the lapse of iterations. Meanwhile, each atom and the best one 

always generate the constraint force at each iteration. 

 

4. Experimental results 

4.1 Benchmark functions 

To test the performance of ASO algorithm extensively, it is employed to solve 37 well-known 

benchmark functions. These functions can be divided into five various types, including unimodal, 

multimodal, low-dimensional, hybrid, and composite functions, by which the performance of many 

different optimization algorithms can be efficiently measured. These benchmark functions [92-94] are 

summarized in Tables 1 and Table 2. Functions f1-f7 are unimodal functions and each has only one global 

optimum and no local optimum, so the convergence rate and exploitation of algorithms can be verified. 

Functions f8-f13 are multimodal functions with a considerable number of local optimum. Functions f14-f23 

are low-dimensional functions, each of which has fewer local optimum. These multimodal and 

low-dimensional functions with local optima are highly suitable for test avoidance of local optima and 

exploration capacity of the algorithms. Functions f24-f29 are hybrid functions, in which their variables are 

randomly separated into different subdivisions. These subdivisions are replaced by using either unimodal 

or multimodal functions. Additionally, functions f30-f37 are composition functions, their variables are also 

randomly separated into different subdivisions. These subdivisions are constructed by using the basic and 

hybrid functions. Each composition function has different properties for different subdivisions. The global 

optimum is shifted from a specific position to a random position before each iteration, and occasionally the 

optimum is relocated on the boundary of search space [95]. Hybrid and composition test functions are 

more complex and challenging than the basic unimodal and multimodal test functions, thus resulting in 

more difficult optimization. Accordingly, they are especially suitable for testing the potential performance 

of the algorithms for solving real-world problems. A detailed description of these functions is available in 

[28]. 

 

Table 1 Unimodal, multimodal and low-dimensional test functions. 

Name Function n Range Optimum 

Sphere 
2

1 1
( )

n

ii
f x x


  30 [-100,100]

n
 0 
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Name Function n Range Optimum 

Schwefel 2.22 2 1 1
( )

nn

i ii i
f x x x

 
    30 [-10,10]

n
 0 

Schwefel 1.2 
2

3 1 1
( ) ( )

n i

ji j
f x x

 
   30 [-100,100]

n
 0 

Schwefel 2.21  4 ( ) max ,1i if x x i n    30 [-100,100]
n
 0 

Rosenbrock 
1 2 2

5 11
( ) (100( ) ) ( 1) )

n

i i ii
f x x x x




     30 [-30,30]

n
 0 

Step 
2

6 1
( ) ( 0.5)

n

ii
f x x


   30 [-100,100]

n
 0 

Quartic  4

7 1
( ) 0,1

n

ii
f x ix random


   30 [-1.28,1.28]

n
 0 

Schwefel 
8 1
( ) ( sin( ))

n

i ii
f x x x


   30 [-500,500]

n
 -12569.5 

Rastrigin 2 2

9 1
( ) ( 10cos(2 ) 10)

n

i ii
f x x x


    30 [-5.12,5.12]

n
 0 

Ackley 
2

10 1 1

1 1
( ) 20exp( 0.2 ) exp( cos 2 ) 20

n n

i ii i
f x x x e

n n


 
        30 [-32,32]

n
 0 

Griewank 2

11 1 1

1001
( ) ( 100) cos( ) 1

4000

nn i
ii i

x
f x x

i 


      

30 [-600,600]
n
 0 

Penalized 12 2 2

12 1 1

302

1

( ) {10sin ( ) ( 1) [1 10sin ( 1)]

( 1) } ( ,10,100,4)

n

i ii

n ii

f x y y y
n

y u x


 







    

  





 
30 [-50,50]

n
 0 

Penalized2 292 2 2

13 1 11

302 2

30 1

( ) 0.1{sin (3 ) ( 1) [1 sin (3 )]

( 1) [1 sin (2 )]} ( ,5,10, 4)

i ii

n ii

f x x x p x

x x u x

 







   

   





 
30 [-50,50]

n
 0 

Foxholes 1

25

14 21 6

1

1 1
( )

500 ( )
j

i ijj

f x
j x a







 
  
  
 




 
2 

[-65.536, 

65.536]
 n

 
0.998 

Kowalik 2
2

11 1 2
15 21

3 4

( )
( ) i i

ii
i i

x b b x
f x a

b b x x


 

 
  4 [-5, 5]

n
 3.075×10

-4
 

Six Hump Camel  2 4 6 2 4

16 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
f x x x x x x x x       2 [-5, 5]

n
 -1.0316 

Branin 
2 2

17 2 1 1 12

5.1 5 1
( ) ( 6) 10(1 )cos 10

4 8
f x x x x x

  
        2 

[-5, 10] × [0, 

15] 
0.398 

Goldstein-Price 
2 2 2

18 1 2 1 1 2 1 2 2

2 2 2

1 2 1 1 2 1 2 2

( ) 1 ( 1) (19 14 3 14 6 3 )

30 (2 1 3 ) (18 32 12 48 36 27 )

f x x x x x x x x x

x x x x x x x x

          

          

 
2 [-2, 2]

 n
 3 

Hartman 3 4 3 2

19 1 1
( ) exp ( )ij j iji j

f x a x p
 

    
    3 [0, 1]

n
 -3.86 

Hartman 6 4 6 2

20 1 1
( ) exp ( )ij j iji j

f x a x p
 

    
    6 [0, 1]

n
 -3.322 
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Name Function n Range Optimum 

Shekel 5 15

21 1
( ) ( )( )T

i i i i ii
f x x a x a c




      4 [0, 10]

n
 -10.1532 

Shekel 7 17

22 1
( ) ( )( )T

i i i i ii
f x x a x a c




      4 [0, 10]

n
 -10.4028 

Shekel 10 110

23 1
( ) ( )( )T

i i i i ii
f x x a x a c




      4 [0, 10]

n
 -10.5363 

 

Table 2 Hybrid and composition test functions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 Experimental setup and comparative algorithms 

For these test functions, the proposed algorithm is compared with five stochastic optimization 

algorithms, including three classic and popular algorithms, PSO, GA and SA, and two recently proposed 

algorithms, GSA and WDO. Although a number of variants based on these algorithms have been 

developed, the comparisons of standard versions can be used to interpret the results of larger groups. 

PSO [2] mimics behaviors of birds flocking in the sky. It updates velocities and positions of a population 

by using social group learning and individual learning to seek expected goals. PSO has a good local search 

ability. 

GA [14], an evolutionary algorithm, is inspired from the biology evolutionary theory. It uses mutation, 

crossover and selection operations to generate high-quality solutions. GA tends to be excellent in finding 

good global solutions. 

SA [1] takes inspiration from annealing in metallurgy by heating material and cooling it at a certain rate. 

It is a probabilistic algorithm for seeking the global optimum in the search space and in a fixed amount of 

time. 

GSA [28], based on the law of gravity, makes agents interact according to the law of motion and is a 

competitive search algorithm. This interaction can generate an attractive force that facilitates all agents 

globally moving to the agent with the heavier mass. 

WDO [96] is based on the earth’s atmosphere motion wherein each small air parcel moves following 

Newton’s second law. It updates the velocity and position of each parcel by the sum of a gradient force, 

Function Name n Range Optimum 

f24(x) Hybrid Function 1 (N=3) 30 [-100,100]
n
 1700 

f25(x) Hybrid Function 2 (N=3) 30 [-100,100]
n
 1800 

f26(x) Hybrid Function 3 (N=4) 30 [-100,100]
n
 1900 

f27(x) Hybrid Function 4 (N=4) 30 [-100,100]
n
 2000 

f28(x) Hybrid Function 5 (N=5) 30 [-100,100]
n
 2100 

f29(x) Hybrid Function 6 (N=5) 30 [-100,100]
n
 2200 

f30(x) Composition Function 1 (N=5) 30 [-100,100]
n
 2300 

f31(x) Composition Function 2 (N=3) 30 [-100,100]
n
 2400 

f132(x) Composition Function 3 (N=3) 30 [-100,100]
n
 2500 

f33(x) Composition Function 4 (N=5) 30 [-100,100]
n
 2600 

F34(x) Composition Function 5 (N=5) 30 [-100,100]
n
 2700 

f35(x) Composition Function 6 (N=5) 30 [-100,100]
n
 2800 

F36(x) Composition Function 7 (N=3) 30 [-100,100]
n
 2900 

f37(x) Composition Function 8 (N=3) 30 [-100,100]
n
 3000 
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Coriolis force, gravitational force, and friction force to approximate the global optimum. WDO has a good 

global search ability. 

It should be noted that, for each benchmark function, it is time-consuming and difficult for each 

algorithm to search for a set of appropriate parameters to enhance its optimization performance. Hence, for 

the sake of fairness, a set of fixed parameters are adopted for each algorithm to evaluate the entire 

performance of all the test functions. The initial parameters used in all algorithms are provided in Table 3. 

In this experiment, the size of the population and the maximum number of iterations are set to 50 and 1000, 

respectively, for all the algorithms. In addition, every algorithm runs 50 times for each function, and the 

results are based on the average performance of the 50 runs.  

Table 3 Parameter settings for all algorithms. 

Algorithm Parameter Value 

ASO 
Depth weight 50 

Multiplier weight 0.2 

WDO 

RT coefficient 3 

Gravitational constant 0.2 

Constant in the update equations 0.4 

Coriolis effect 0.4 

Maximum allowable speed 0.3 

SA 

Initial temperature 0.1 

Temperature reduction rate 0.98 

Mutation rate 0.5 

PSO 

Cognitive constant 2 

Social constant 2 

Inertia constant Linearly decrease from 0.8 to 0.2 

GSA 
Initial gravitational constant 100 

Decreasing coefficient 20 

GA 

Selection Roulette wheel 

Crossover 0.8 

Mutation 0.4 

 

4.3 Results and discussion 

4.3.1 Qualitative results of ASO 

First, five different functions are randomly chosen from five types of benchmark functions and 

simulated to see the effects of the proposed ASO algorithm qualitatively. The functions chosen are f5, f11, 

f15, f25 and f32 with D=2, whose shapes are presented in Figs. 9-13, respectively. ASO is used for their 

minimization using four atoms during 150 iterations. The diversity of the benchmark functions makes for 

comprehensive and easy observations of the algorithm performance from different views. 

Four qualitative metrics used to describe the performance of ASO include search history, trajectory 

curve, convergence curve, and interaction force. All history positions of the four atoms during the 

iterations are clearly depicted in the figures, and the distribution density of atoms in the search space can 

indicate how ASO performs the explorative and exploitative search. Apparently, the low distribution 

density indicates the explorative search for the global space, and the high distribution density indicates the 

exploitative search for the local space. It is evident that the distribution of atoms is sparse in the region 

farther from the global optimum and is dense in the region closer to the global optimum. 
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The trajectory curve is one of the most important metrics that can effectively depict exploration and 

exploitation of the algorithm. It can trace positions of all atoms in different dimensions during iterations. 

Figs. 9-13 illustrate the trajectory curves when the five functions are optimized using the ASO algorithm. 

In the figures, the trajectory curves of four atoms in the first and the second dimensions are depicted. All 

trajectory curves show frequent large-scale fluctuations in the early iterations. With the lapse of iterations, 

such variation decreases in amplitude or frequency, and the positions of atoms become monotonous and 

gradually tend to stabilize to the global optimum in the later iterations. Evidently, the large-scale 

fluctuations in the former iterations indicate the explorative search for the global space, and the small-scale 

fluctuations in the latter iterations indicate the exploitative search for the local space. These two behaviors 

are consistent with what is shown in the search histories. What’s more, it can be observed that ASO 

performs the exploration before the exploitation in the trajectory curves. Therefore, the trajectory curves 

together with the search histories reveal how well ASO conducts the explorative and exploitative search. 

For all optimization algorithms, their final goal is to find the approximation to the global optimum 

quickly and precisely, so how to show this behavior is of great importance. But there is nothing the 

trajectory curves and search histories can do about it. The convergence curve is the most often used 

qualitative metric in evaluating the convergence performance of the algorithms. It is apparent from the 

figures that the convergence curves can clearly depict the convergence rate and the approximation to the 

global optimum. As shown in the figures, the convergence curve of function f5 is very smooth and drops 

rapidly, demonstrating that the exploitation contributes more to ASO than the exploration. In contrast, for 

functions f11, f15, f25 and f32, their convergence curves are very rough and drop slowly, which indicates that 

the exploration contributes more to ASO than the exploitation. Finally, their convergence curves can all 

accurately approximate the global optimum in the final iterations. 

A large number of real-world problems can be considered multimodal functions with a considerable 

number of local optima [97]. For solving these problems, the exploration is very important to avoid the 

local optima and discover a promising region with the global optimum. In Figs. 9-13, the interaction forces 

between every two atoms during the whole iterations are provided. The interaction forces are shown as 

either the repulsion (negative) or the attraction (positive) in the former stage and only as the attraction in 

the latter stage. Besides, the interaction forces gradually decrease with the lapse of iterations. The 

attraction in the latter stage can prevent the atom swarm from prematurely concentrating in a local region, 

which can contribute significantly to the exploration of ASO. 

Based on the above results and discussion, the four qualitative metrics can show how well the 

exploration and exploitation perform, the convergence performance, and the accuracy of the final 

approximation to the global optimum. The results indicate that ASO establishes a proper balance between 

the exploration and exploitation. In addition, the search performance for the global optimum is also 

satisfactory. 
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Fig. 9 Qualitative results of f5. 
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Fig. 10 Qualitative results of f11. 
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Fig. 11 Qualitative results of f15. 
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Fig. 12 Qualitative results of f25. 
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Fig. 13 Qualitative results of f32. 

 

4.3.2 Convergence preference of the algorithms 

Although the qualitative metric results reveal that ASO has a good optimization performance, they 

cannot indicate how well the proposed ASO performs for all benchmark functions. In this subsection, ASO 

is evaluated using some performance evaluation indexes, which are compared to those of the other 

algorithms. To obtain statistical solutions and better evaluate the algorithms, there are three performance 

evaluation indexes used to quantitatively compare all the algorithms: the average, standard deviation and 

minimum of the best-so-far solution. Apparently, among all the 50 runs, the lower the average of the 

best-so-far solution is, the greater the algorithm’s ability to avoid local optima and approximate a global 

optimum is. Also, the lower the standard deviation of the best-so-far solution is, the closer the solution is to 

the average. Further, the more stable the algorithm is, the better the minimum of the best-so-far solution is, 

and the more accurate the approximation is to the global optimum. The average of the best-so-far solution 

among the comparative algorithms on each function is shown in bold. 

Tables 4-8 show the comparisons of optimization results obtained for different types of functions given 

in Table 1-2, and the convergence processes of all comparative algorithms are shown in Figs. 14-18. As 

described in [98], there is no optimization algorithm that can best perform for all different types of 

problems, hence the performance evaluation of the proposed algorithm should come from different 

perspectives by using multifarious benchmark functions.  

For the unimodal functions f1-f7, from Fig. 14 and Table 4, ASO performs better than the others, except 

for WDO on functions f1-f4, and performs the best for function f5. Although ASO fails to achieve the best 

convergence performance for functions f6 and f7, it performs better than PSO, GA and SA. Specifically, the 

convergence rate of ASO on some functions is slower than that of the other algorithms in the early 

iterations because of the repulsion among atoms, which makes them perform a global search in the entire 

search space to prevent the optimization from prematurity. In addition, WDO and GSA are also excellent 

and novel stochastic algorithms developed recently that have a certain advantage in terms of the 

convergence rate. Even so, ASO is still competitive in terms of the convergence rate for unimodal 

functions. The final solutions in Table 4 show that ASO achieves better results than the others on functions 

f5 and has the same results as WDO, GSA and GA on function f6. It ranks behind only WDO on functions 
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f1-f4. Therefore, ASO can achieve a good precision for the umimodal functions. 

For the multimodal functions f8-f13, from Fig. 15 and Table 5, ASO performs much better than the others, 

except for functions f8 and f10. ASO is inferior to SA on function f8 and is outperformed by WDO on 

function f10. However, WDO shows the worst results for functions f9 and f13, and GSA shows the worst 

results for functions f8 and f11. Although SA has the best results on function f8, the algorithm shows worse 

results than the others on functions f10 and f12, indicating that the three algorithms all fail to step out of the 

local optimum in some multimodal functions. For ASO, the repulsion can effectively avoid prematurity 

and greatly improve the exploration in the early stage. In the later stage, the stronger attraction force and 

the constraint force jointly contribute to the fine search for the global optimum. 

For low-dimensional functions f14-f23, which are multimodal functions with low-dimension and a few 

local optima. Fig. 16 and Table 6 show that all the algorithms provide nearly the same performance for 

functions f16, f17 and f19. They also perform similarly well except for GA for function f18, and ASO obtains 

the same good results as SA and GSA on functions f22 and f23. ASO also performs the best for functions f14 

and f20, ranking behind only SA for function f21. Even for function f15, ASO performs better than WDO, 

GSA and GA. Obviously, ASO is highly competitive for these low-dimensional functions with local 

optima.   

For hybrid functions f24-f29, Fig. 17 and Table 7 show that obviously, ASO performs the best on 

functions f24, f26 and f28. For functions f25, f27 and f29, ASO ranks only second to GSA, WDO and SA, 

respectively. In addition, GSA shows the worst convergence performance and results on functions f26-f29, 

and PSO performs the worst on functions f24 and f25. It should be noted that the variables of the hybrid 

functions are randomly separated into different subdivisions, which are replaced by using unimodal and 

multimodal functions, directly affecting the optimization performance. The results show that the 

optimization performance of GSA and PSO is not satisfactory for many hybrid functions, while ASO 

achieves a good optimization performance on them. 

For composite functions f30-f37, Fig. 18 and Table 8 show that ASO performs a better convergence and 

obtains better statistical results than the others on functions f33, f34, f36 and f37. For functions f30 and f35, 

ASO ranks only second to GSA and SA, respectively. In addition, ASO ranks third to WDO and GSA on 

function f31. Even for function f32, ASO is also superior to GA and PSO. Because the subfunctions from the 

basic functions contribute to too many local optima, it is very difficult for the algorithms to find the global 

optimum. It can clearly be shown that all the algorithms except for ASO are trapped into local optima at 

different levels on functions f33, f34, f36 and f37. This is due to the fact that the repulsion of ASO contributes 

significantly to the exploration and avoids the local optima efficiently. 

Tables 4-8 and Figs. 14-18 show that from the perspective of the convergence performance, ASO is 

highly competitive compared to its competitors on the benchmark functions, including unimodal, 

multimodal, low-dimensional, hybrid and composition functions. 
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Fig. 14 Performance comparisons of algorithms for unimodal functions. 
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Fig. 15 Performance comparisons of algorithms for multimodal functions. 
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Fig. 16 Performance comparisons of algorithms for low-dimensional functions. 
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Fig. 17 Performance comparisons of algorithms for hybrid functions. 
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Fig. 18 Performance comparisons of algorithms for composition functions. 

Table 4 Comparisons of results for unimodal functions.  

Function Index WDO SA PSO GSA GA ASO 

f1(x) 

Mean 0 2.04E-13 0.000146 2.11E-17 0.010212 2.68E-21 

Std 0 6.14E-14 0.000119 6.67E-18 0.005073 3.65E-21 

Best 0 7.76E-14 9.56E-06 1.06E-17 0.002975 3.52E-22 

f2(x) 

Mean 0 9.73102 0.000198 2.37E-08 0.020789 3.33E-10 

Std 0 7.34169 0.000188 2.60E-09 0.005434 1.89E-10 

Best 0 0.003379 5.45E-05 1.71E-08 0.012651 5.34E-11 

f3(x) 

Mean 6.73E-29 4554.414 2659.282 251.2258 1115.564 197.5452 

Std 3.69E-28 2329.664 1194.893 41.96643 493.2294 79.7024 

Best 0 1527.615 760.8198 179.2156 401.8981 23.1228 

f4(x) 

Mean 0 6.399475 18.26166 3.35E-09 0.994831 3.24E-09 

Std 0 3.284424 4.247802 7.53E-9 0.354854 6.14E-09 

Best 0 1.338689 10.65944 2.28E-09 0.547858 2.13E-10 

f5(x) 

Mean 28.19528 1059.101 134.3922 28.1473 97.11795 24.8388 

Std 0.168679 2050.492 128.5852 11.29836 128.7488 0.515853 

Best 27.95513 23.1826 26.23857 25.75286 9.696092 16.58185 

f6(x) 

Mean 0 0.566667 0.133333 0 0 0 

Std 0 0.727932 0.345746 0 0 0 

Best 0 0 0 0 0 0 

f7(x) 

Mean 6.10E-05 0.123989 0.066316 0.02076 0.0505 0.035641 

Std 4.49E-05 0.039739 0.019519 0.007716 0.021781 0.019498 

Best 1.43E-06 0.062475 0.029819 0.007006 0.0132 0.03615 
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Table 5 Comparisons of results for multimodal functions.  

Function Index WDO SA PSO GSA GA ASO 

f8(x) 

Mean -5840.86 -9289.96 -5197.85 -2653.67 -6795.16 -7428.17 

Std 857.0229 402.1469 529.3583 341.6006 632.7758 422.3977 

Best -7594.51 -10055.4 -6787.39 -3488.44 -8147.59 -5561.44 

f9(x) 

Mean 57.69854 54.39099 29.31833 15.05704 12.52966 0 

Std 21.2409 13.82194 6.879953 4.439862 2.915823 0 

Best 15.56306 26.86388 17.34745 7.959667 6.094298 0 

f10(x) 

Mean 8.88E-16 0.343794 0.007432 3.69E-09 0.021188 3.00E-11 

Std 0 0.447427 0.014159 3.96E-10 0.004548 2.15E-11 

Best 8.88E-16 8.29E-08 0.000549 2.96E-09 0.010696 1.13E-11 

f11(x) 

Mean 0.009891 0.012439 0.022795 4.472721 0.018359 0 

Std 0.021887 0.010314 0.02737 2.048563 0.009772 0 

Best 0 3.16E-06 5.88E-05 1.944629 0.006121 0 

f12(x) 

Mean 0.03139 0.698388 0.337564 0.020732 2.80E-05 4.51E-23 

Std 0.087872 0.647321 0.429656 0.057102 1.89E-05 1.88E-23 

Best 0.000355 0.046437 2.54E-05 7.00E-20 7.49E-06 8.69E-25 

f13(x) 

Mean 0.548891 0.514392 0.232059 0.00155 0.000452 1.91E-23 

Std 0.931434 1.324152 0.71351 0.003696 0.00069 3.12E-22 

Best 0.010295 2.77E-05 0.000487 1.31E-18 0.000119 2.31E-24 

 

Table 6 Comparisons of results for low-dimensional functions.  

Function Index WDO SA PSO GSA GA ASO 

f14(x) 

Mean 5.311273 1.395219 0.998004 4.215728 3.92122 0.998004 

Std 5.651641 0.669666 3.41e-13 3.636458 2.697616 7.40e-17 

Best 0.998004 0.998004 0.998004 0.998021 0.998004 0.998004 

f15(x) 

Mean 0.001089 7.67E-04 3.20E-04 0.002059 0.001259 9.47E-04 

Std 0.003656 2.19 E-04 3.64E-05 8.64 E-04 0.001909 2.27E-04 

Best 3.08 E-04 4.78 E-04 3.07 E-04 9.98 E-04 3.25 E-04 2.79E-04 

f16(x) 

Mean -1.03162 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

Std 1.00E-05 6.39E-16 6.78E-16 5.68E-16 7.56E-10 0 

Best -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

f17(x) 

Mean 0.39791 0.397887 0.397887 0.397887 0.397887 0.397887 

Std 1.90E-05 0 6.09E-08 0 3.95E-08 0 

Best 0.397888 0.397887 0.397887 0.397887 0.397887 0.397887 

f18(x) 

Mean 3.000224 3 3 3 3.9 3 

Std 0.000385 1.28E-15 1.32E-15 1.99E-15 4.929503 1.51E-15 

Best 3 3 3 3 3 3 

f19(x) 

Mean -3.86273 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 

Std 0.00011 2.71E-15 2.70E-15 2.46E-15 2.72E-09 2.68E-15 

Best -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 

f20(x) 
Mean -3.26356 -3.27717 -3.2702 -3.322 -3.30614 -3.322 

Std 0.05942 0.056126 0.060244 1.36E-15 0.041107 1.12E-15 
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Function Index WDO SA PSO GSA GA ASO 

Best -3.32082 -3.322 -3.322 -3.322 -3.322 -3.322 

f21(x) 

Mean -6.89682 -9.61699 -5.53835 -7.18959 -8.73973 -8.774464 

Std 3.606535 1.642171 2.55709 3.354687 2.904334 2.186718 

Best -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 -10.1532 

f22(x) 

Mean -7.16466 -10.4029 -8.23528 -10.4029 -8.68393 -10.4029 

Std 3.580271 3.30E-16 3.17987 4.66E-16 3.176461 1.84E-15 

Best -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 -10.4029 

f23(x) 

Mean -6.34454 -10.5364 -8.63826 -10.5364 -8.81243 -10.5364 

Std 4.002617 2.91E-15 3.015894 1.75E-15 3.212375 1.54E-15 

Best -10.5363 -10.5364 -10.5364 -10.5364 -10.5364 -10.5364 

 

Table 7 Comparisons of results for hybrid functions.  

Function Index WDO SA PSO GSA GA ASO 

f24(x) 

Mean 636845.7 826767.3 3778947 4974916 2123123 452502.66 

Std 400326.4 859291.4 3856484 2230865 1146082 538536.4 

Best 114642.2 53802.62 413267.5 2197117 606506.3 10509.77 

f25(x) 

Mean 473538.8 9897.176 1892268 2360.049 2922.662 2521.198 

Std 167046.5 8871.518 9041101 402.0756 884.0251 1001.254 

Best 231041.9 2319.467 1880.679 2051.498 1899.538 1973.163 

f26(x) 

Mean 1932.082 1912.644 1946.653 2048.729 1927.013 1911.15 

Std 30.64479 2.039958 33.06431 40.27749 24.00536 0.742535 

Best 1907.461 1907.34 1907.134 1929.327 1910.308 1909.686 

f27(x) 

Mean 17305.09 57189.46 28438.85 146057.1 39156.38 21999.82 

Std 6298.762 25860.57 11237.46 43914.36 14032.56 8835.043 

Best 4085.151 15530.32 11915.96 82249.38 13558.32 8941.514 

f28(x) 

Mean 222605.1 200164 793350.6 1330821 460277.3 22083.121 

Std 106098.9 193452.9 761226.8 1065693 504584.7 16323.2 

Best 57142.06 33146.05 14201.94 346135.4 67981.71 16885.179 

f29(x) 

Mean 2872.024 2463.856 2831.22 3267.385 2825.28 2756.953 

Std 183.498 116.4591 265.9089 293.3663 203.9491 204.2695 

Best 2431.908 2282.106 2370.504 2628.743 2348.308 2360.424 

 

Table 8 Comparisons of results for composition functions.  

Function Index WDO SA PSO GSA GA ASO 

f30(x) 

Mean 2624.533 2632.702 2645.122 2534.215 2616.423 2616.1100 

Std 2.286212 10.07164 11.87371 63.42403 0.438999 1.941234 

Best 2620.749 2620.702 2628.129 2500 2615.828 2615.248 

f31(x) 

Mean 2600 2637.749 2632.222 2603.002 2630.226 2624.429 

Std 4.73E-05 5.807932 7.351382 6.04137 1.804637 4.75412 

Best 2600 2624.82 2625.289 2600.112 2627.5 2600.568 

f32(x) 
Mean 2700 2710.652 2722.703 2701.248 2713.621 2710.987 

Std 0 2.170978 7.350302 2.489568 2.764908 2.35979 
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Function Index WDO SA PSO GSA GA ASO 

Best 2700 2707.026 2710.674 2700 2708.848 2700 

f33(x) 

Mean 2766.93 2706.882 2704.985 2793.516 2793.486 2700.254 

Std 4.169525 25.60925 18.07296 16.97263 25.30876 0.04997 

Best 2700.599 2700.073 2700.389 2747.814 2700.357 2700.133 

f34(x) 

Mean 3606.247 3206.937 3384.102 4372.258 3468.123 3126.185 

Std 309.7327 80.83431 208.4262 411.4156 345.4187 35.12669 

Best 3113.73 3110.855 3151.307 3054.283 3104.8 3102.133 

f35(x) 

Mean 7136.114 3844.078 7047.004 5169.593 6658.137 4795.1736 

Std 967.6085 162.4164 698.6452 884.0748 541.6948 286.4972 

Best 4984.829 3636.991 5780.443 3946.267 5431.646 3894.87 

f36(x) 

Mean 1006116 1002510 13894512 2023296 8380.851 7366.303 

Std 4951051 3802991 19870463 11065067 1290.275 1360.375 

Best 30874.43 7012.566 5756.596 5100.102 5285.181 5024.042 

f37(x) 

Mean 62783.62 29698.5 148713.6 195076.3 13699.9 12028.283 

Std 22308.01 11159.28 174091.8 88263.52 3855.628 2022.0797 

Best 7525.18 12019.36 16603.94 8200.015 8526.658 7651.182 

 

4.3.3 Overall performance of the algorithms 

To draw a statistical conclusion, a pair-wise statistical test named Wilcoxon Signed-Rank Test (WSRT) 

is used to better compare the overall performance of the algorithms. WSRT is a nonparametric test that can 

be used to check for the statistical significance difference between two algorithms. The null hypothesis H0 

for a two-sided test is: "there is no difference between the median of the solutions produced by algorithm A 

and the median of the solutions produced by algorithm B for the same benchmark function" [99]. To 

determine whether algorithm A achieves a statistically better solution than algorithm B, or if not, whether 

the alternative hypothesis is valid, the sizes of the ranks provided by WSRT are examined. When using 

WSRT, the R+ and R- related to the comparisons between two algorithms can be calculated and their 

p-values can be obtained. In this part, WSRT is used for single-problem-based statistical analysis and 

multi-problem-based statistical analysis, with the significance level a=0.05. 

For the single-problem-based statistical analysis, the best solutions of 50 runs for every benchmark 

function are used for their pair-wise comparisons. The single-problem-based statistical comparisons of the 

algorithms by WSRT are shown in Tables 9 and 10. In these tables, ‘+’ indicates the case in which the null 

hypothesis is rejected and ASO shows a better performance in the single-problem-based statistical 

comparison tests at 95% significance level (a=0.05); ‘-’ indicates the case in which the null hypothesis is 

rejected and ASO shows a worse performance; and ‘=’ indicates a case in which no statistically significant 

difference between ASO and the other algorithms exists. The corresponding statistical results for each 

function in 50 runs are listed in Table 11. This table shows that for unimodal functions, ASO provides 

better results than the others, except for WDO. For multimodal functions, ASO performs significantly 

better than the others. For low-dimension functions, the performance of ASO is not inferior to that of the 

others, and it seems that GSA is just as competitive as ASO. For hybrid functions, ASO performs 

significantly better than the others. For composition functions, ASO significantly outperforms the other 

algorithms. It can be seen that from Table 11, ASO is evidently superior to all other algorithms in five 

different types of benchmark functions. For the multi-problem-based statistical analysis, the mean values 

of the best solutions of 50 runs for every benchmark function are used for the pair-wise comparisons. 
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Thirty-seven mean values of all the functions in Table 12 are used for the input data of WSRT. For ASO, 

the sum of R+ is more than the sum of R- in each pair of comparisons. The statistical analysis shows that 

the optimization performance of ASO is far superior to that of its counterparts quantitatively. 

Table 9 Statistical comparisons of single-problem-based WSRT for ASO vs WDO, SA and PSO.   

Function 
ASO vs WDO ASO vs SA ASO vs PSO 

p-value T- T+ Winner p-value T- T+ Winner p-value T- T+ Winner 

f1(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f2(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f3(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f4(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f5(x) 7.52E-10 1275 0 + 9.03E-10 1272 3 + 7.52E-10 1275 0 + 

f6(x) 1 0 0 = 2.18E-05 231 1044 - 0.007813 1239 36 + 

f7(x) 7.52E-10 0 1275 - 2.50E-09 1255 20 + 0.988446 636 639 = 

F8(x) 9.60E-08 85 1190 - 7.52E-10 0 1275 - 0.001467 308 967 - 

F9(x) 9.14E-07 1146 129 + 1.13E-07 1187 88 + 0.003834 338 937 - 

f10(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f11(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f12(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f13(x) 7.52E-10 1275 0 + 3.35E-09 1250 25 + 7.52E-10 1275 0 + 

f14(x) 1.47E-07 1182 93 + 1.23E-06 1140 135 + 1 0 0 = 

f15(x) 1.23E-06 1140 135 + 0.000311 264 1011 - 7.52E-10 0 1275 - 

f16(x) 7.52E-10 1275 0 + 0.109375 44 11 = 0.125 0 10 = 

f17(x) 7.52E-10 1275 0 + 1 0 0 = 0.5 3 0 = 

f18(x) 7.52E-10 1275 0 + 8.84e-07 1263.5 11.5 + 0.098 660 615 = 

f19(x) 7.52E-10 1275 0 + 0.25 0 6 = 1 6 9 = 

f20(x) 7.52E-10 1275 0 + 5.75E-06 902 373 + 5.90E-05 1044 231 + 

f21(x) 0.67451 681 594 = 4.19E-06 110 1165 - 0.498087 654 621 = 

f22(x) 2.92E-08 1212 63 + 0.671875 12 16 = 0.000135 833 442 + 

f23(x) 1.49E-08 1224 51 + 0.475681 149.5 201.5 = 0.218917 389 886 = 

f24(x) 0.073311 823 452 = 0.160106 783 492 = 1.77E-08 1221 54 + 

f25(x) 7.52E-10 1275 0 + 2.09E-08 1218 57 + 7.70E-05 1047 228 + 

f26(x) 0.225655 512 763 = 6.73E-09 1238 37 + 0.174958 778 497 = 

f27(x) 1.71E-07 96 1179 - 2.22E-07 1174 101 + 0.01037 372 903 - 

f28(x) 0.057816 441 834 = 0.046192 431 844 - 9.16E-06 1097 178 + 

f29(x) 0.005675 924 351 + 2.22E-09 18 1257 - 0.252604 756 519 = 

f30(x) 7.52E-10 1275 0 + 7.99E-10 1274 1 + 7.52E-10 1275 0 + 

f31(x) 7.52E-10 0 1275 - 7.99E-10 1274 1 + 4.00E-09 1247 28 + 

f32(x) 7.52E-10 0 1275 - 0.154439 490 785 = 9.03E-10 1272 3 + 

f33(x) 1.55E-09 1263 12 + 2.19E-06 1128 147 + 7.52E-10 1275 0 + 

f34(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f35(x) 7.52E-10 1275 0 + 1.33E-08 49 1226 - 7.52E-10 1275 0 + 

f36(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 8.50E-10 1273 2 + 

f37(x) 8.50E-10 1273 2 + 2.81E-09 1253 22 + 0.000268 1015 260 + 
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Table 10 Statistical comparisons of single-problem-based WSRT for ASO vs GSA and GA.   

Function 
ASO vs GSA ASO vs GA 

p-value T- T+ Winner p-value T- T+ Winner 

f1(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f2(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f3(x) 3.84E-08 1207 68 + 1.26E-08 1227 48 + 

f4(x) 5.27E-01 703 572 = 7.52E-10 1275 0 + 

f5(x) 4.76E-09 1244 31 + 1.01E-07 1189 86 + 

f6(x) 1 0 0 = 1.00E+00 0 0 = 

f7(x) 7.52E-10 0 1275 - 1.24E-04 240 1035 - 

F8(x) 7.52E-10 1275 0 + 7.52E-10 0 1275 - 

F9(x) 7.52E-10 0 1275 - 7.52E-10 0 1275 - 

f10(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f11(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f12(x) 7.51E-10 1275 0 + 7.52E-10 1275 0 + 

f13(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f14(x) 8.18E-08 1193 82 + 6.60E-08 1197 78 + 

f15(x) 2.50E-09 1255 20 + 0.233136 514 761 = 

f16(x) 9.58E-06 350 925 - 0.484375 18 10 = 

f17(x) 1.00E+00 0 0 = 0.000122 946 329 + 

f18(x) 4.79E-05 983.5 291.5 + 7.08E-02 734.5 540.5 = 

f19(x) 3.41E-07 351 924 - 7.52E-10 1275 0 + 

f20(x) 5.00E-01 3 0 = 7.52E-10 1275 0 + 

f21(x) 0.141593 334 569 = 5.51E-03 350 925 - 

f22(x) 6.25E-01 6 9 = 5.62E-08 1200 75 + 

f23(x) 2.65E-02 312 963 - 7.50E-07 1150 125 + 

f24(x) 7.52E-10 1275 0 + 1.30E-09 1266 9 + 

f25(x) 2.02E-02 397 878 - 2.90E-01 747 528 = 

f26(x) 7.52E-10 1275 0 + 1.72E-01 496 779 = 

f27(x) 7.52E-10 1275 0 + 2.14E-04 1021 254 + 

f28(x) 4.24E-09 1246 29 + 0.003954 936 339 + 

f29(x) 5.04E-09 1243 32 + 8.84E-02 814 461 = 

f30(x) 1.06E-08 45 1230 - 5.99E-04 282 993 - 

f31(x) 7.52E-10 0 1275 - 7.52E-10 1275 0 + 

f32(x) 9.03E-10 3 1272 - 1.64E-06 1134 141 + 

f33(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f34(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f35(x) 7.52E-10 1275 0 + 7.52E-10 1275 0 + 

f36(x) 2.00E-07 1176 99 + 7.52E-10 1275 0 + 

f37(x) 4.49E-09 1245 30 + 7.52E-10 1275 0 + 

 

 

 

Table 11 Statistical results of single-problem-based WSRT of ASO. 
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Function type 
ASO vs WDO 

(+/=/-) 

ASO vs SA 

(+/=/-) 

ASO vs PSO 

(+/=/-) 

ASO vs GSA 

(+/=/-) 

ASO vs GA 

(+/=/-) 

unimodal 1/1/5 6/0/1 6/1/0 4/2/1 5/1/1 

multimodal 4/0/2 5/0/1 4/0/2 5/0/1 4/0/2 

Low-dimension 9/1/0 3/5/2 2/7/1 3/4/3 6/3/1 

Hybrid 2/3/1 3/1/2 3/2/1 5/0/1 3/3/0 

Composition 6/0/2 6/1/1 8/0/0 5/0/3 7/0/1 

Total 22/5/10 23/7/7 23/10/4 22/6/9 25/7/5 

 

Table 12 Statistical comparisons of multi-problem-based WSRT of ASO.   

Comparison p-value T- T+ Winner 

ASO vs WDO 1.03E-03 542 124 - 

ASO vs SA 1.60E-03 409 87 - 

ASO vs PSO 1.06E-06 525 3 - 

ASO vs GSA 1.65E-03 363 72 - 

ASO vs GA 1.47E-06 550 11 - 

 

5. Application to hydrogeologic parameter estimation 

In this part, a hydrogeologic parameter estimation problem is considered. Without considering the 

effects of aquitard storage, the drawdown data of leaky aquifers is from the Hantush model, which is 

expressed as [100-103] 
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where,  

s : drawdown in an observation well, 

T : transmissivity of the aquifer, 

r : distance from discharging well to observation well, 

μ
*
: storage coefficient of the aquifer, 

t : time from the beginning of discharge to observation, 

Q : discharge rate. 

The rounded-off values are given by a0=-0.57722, al=0.99999, a2=-0.24991, a3=0.05519, a4=-0.00976, 

a5=0.00108, b0=0.26777, b1=8.63476, b2=18.05902, b3=8.57333, b4=1, c0=3.95850, c1=21.09965, 

c2=25.63296, c3=9.57332 and c4=1. 

If the discharge is kept constant, the second terms on the right of equations (33) and (34) are both 

constant, and the relationship between s and t is the same as the relationship between W(u,r/B) and 1/u. If 

the values of W(u,r/B) and 1/u are shown on a log-log paper, then a type curve for the relationship between 

s and t is produced. The values of s versus t can be shown on a transparent log-log paper using the same 

scale as the type curve, and its curve may be similar to the type curve, but would be displaced by the term 

Q/(4πT) on the s and W(u,r/B) axes and by the term r
2
μ

*
/(4T) on the t and 1/u axes. The plot of s versus t 

could be carefully slid on the type curve, keeping the axes parallel, until it matches a segment of the type 

curve.  

When the match is finished, the match point is any intersecting line set on the overlay curve. Choosing 

different match points will produce the similar results. A match point is frequently chosen at W(u,r/B)=1 
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and 1/u=10 in W(u,r/B)-1/u coordinate systems, and the values of s and t are read in s-t coordinate systems. 

Fig. 19 shows the curve fitting procedure, the blue plot is the W(u,r/B)-1/u coordinate including the type 

curve and the red is the s-t coordinate. The curve fitting procedure includes two aspects: one is the motion 

of the s-t coordinate relative to the W(u,r/B)-1/u coordinate horizontally and vertically, and the other is the 

change of the Hantush function curve. After the match point is determined, the transmissivity and storage 

coefficients can be calculated as 
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Q r
T W u

s B
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Fig. 19 Curve fitting procedure of leaky aquifer without aquitard storage. 

In short, such a problem indicates how to find a suit of appropriate parameters to achieve the best match 

between W(u,r/B)-1/u coordinate systems and s-t coordinate systems, such that the objective function of 

the problem can be expressed as 
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where, ( 1, , )it i n  is the ith time from the beginning of discharge to observation, n is the size of the 

drawdown data, ,obs is  is the ith drawdown in an observation well, a and b respectively represent the 

displacement of the observation data with respect to the Hantush function curve in a log-log coordinate 

both horizontally and vertically, and β represents the Hantush function which is equal to r/B. 

The pumping test data set taken from [104] is shown in Table 13. The distance r between the observation 

well and pumping well is 29.0 m, the water inflow of the pumping well Q is 69.1 m
3
/h and the total 

pumping time is 540 min.  

All the algorithms described above are used to solve this problem, whose parameters are the same as 

those in the previous section. The size of the population and the maximum number of iterations are set to 
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30 and 300, respectively. Every algorithm runs 50 times and the average performance among 50 runs is 

summarized. Fig. 20 shows the convergence comparisons of algorithms for the objective value of the 

hydrogeologic parameter identification. It is clear that ASO has a better performance compared to the other 

algorithms in terms of the convergence rate. The performance comparisons of algorithms for the 

hydrogeologic parameter identification are illustrated in Table 14. From Table 14, it is evident that ASO 

significantly outperforms the other algorithms in terms of the average of the best-so-far solution, the 

standard deviation of the best-so-far solution, and the minimum of the best-so-far solution. Although SA 

and PSO maintain some levels of competitiveness, the superiority of the standard deviation and the 

convergence performance of ASO shows that it performs a more stable optimization and has more accurate 

results than them. Accordingly, Fig. 20 and Table 14 show the prominent advantages. A certain repulsion 

among atoms contributes effectively to the exploration in the entire search space in the initial iteration. 

With the lapse of iterations, the exploration fades out and a growing attraction contributes significantly to 

the exploitation in promising local regions. ASO initially focuses on a global search to avoid the local 

optima and then focuses on a local search to improve the accuracy of the final solutions, thus greatly 

enhancing a smooth transition from the explorative search to the exploitative search. 

Fig. 21 shows the fitting graphs between the Hantush function curves and the observation data 

corresponding to the average of the best-so-far solution using the algorithms, and Fig. 22 also shows the 

fitting graphs in [104]. Meanwhile, the Hantush function curves corresponding to the third variable 

obtained using all the algorithms and the traditional fitting method are described in Fig. 23. It can be seen 

that the fitting effects of ASO, SA and PSO are obviously better than those of the others and the fitting 

effect of the traditional fitting method is the worst. The visual effects of these fitting curves are identical 

with the above results. However, it is difficult to visually identify the fitting differences among ASO, SA 

and PSO owing to the similar precision. But as shown in Table 15 and Fig. 20, ASO is more competitive 

than SA and PSO. These figures and tables reveal that the time-drawdown obtained from ASO is in 

excellent agreement with the observation data, as compared to those obtained from its competitors. 

These more accurate hydrogeological parameters are essential in the context of proper estimation and 

management of groundwater resources. 

Table 13 Pumping test data. 

Time 

(min)  

Drawdown 

(m)  

Time 

(min) 

Drawdown 

(m) 

Time 

(min) 

Drawdown 

(m) 

1 0.05 75 0.62 360 0.772 

4 0.054 90 0.64 390 0.785 

7 0.12 120 0.685 420 0.79 

10 0.175 150 0.725 450 0.792 

15 0.26 180 0.735 480 0.794 

20 0.33 210 0.755 510 0.795 

25 0.383 240 0.76 540 0.796 

30 0.425 270 0.76 570 0.797 

45 0.52 300 0.763 600 0.798 

60 0.575 330 0.77 660 0.80 
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Fig. 20 Convergence comparisons of algorithms for hydrogeologic parameter identification. 

Table 14 Performance comparisons of algorithms for hydrogeologic parameter identification.  

Index SA PSO GSA GA WDO ASO 

Mean 2.7769E-03 2.7770E-03 1.6689E-02 1.6691E-02 3066E-03 2.7768E-03 

Std 5.5879E-08 5.3861E-05 1.3479E-02 1.9422E-02 1.4192E-05 2.5748E-18 

Best 2.7768E-03 2.7768E-03 6.1622E-03 5.9201E-03 2.7768E-03 2.7768E-03 

 

Table 15 Result comparisons of different methods for hydrogeologic parameter identification. 

Algorithm 
Solution 

(x,y,β) 

Match point 

(W,1/u, s, t) 

hydrogeologic parameters 

 (T, μ*, B) 

Fitting error 

(f) 

ASO 
(-0.7695, 0.4113, 

0.4347) 
(1, 10, 0.3879, 58.8152) 

(340.2486, 1.4324E-04, 

453.1502) 
2.7768E-03 

SA 
(-0.7696, 0.4113, 

0.4348) 
(1, 10, 0.3879, 58.6262) 

(340.2676, 1.4327E-04, 

453.1293) 
2.7769E-03 

PSO 
(-0.7695, 0.4113, 

0.4351) 
(1, 10, 0.3879, 58.8153) 

(340.2486, 1.4324E-04, 

452.7695) 
2.7770E-03 

GSA 
(-0.7946, 0.3308, 

0.5477) 
(1, 10, 0.4669, 62.3120) 

(282.6632, 1.2607E-04, 

359.6588) 
1.6689E-02 

GA 
(-0.7974, 0.3272, 

0.5502) 
(1, 10, 0.4708, 62.7193) 

(280.3185, 1.2584E-04, 

358.0227) 
1.6691E-02 

WDO 
(-0.7703, 0.4193, 

0.4255) 
(1, 10, 0.3808, 58.9245) 

(346.5939, 1.4618E-04, 

453.1673) 
3.0660E-03 

[104] 
(-0.6946, 0.4971, 

0.3500) 
(2.45, 101, 0.78, 500) (414.7, 1.469E-04, 562.86) 3.4900E-02 
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Fig. 21 Fitting graphs between Hantush function curves and observation data using algorithms. 
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Fig.22 Fitting graphs between Hantush function curves and observation data using traditional fitting 

method [104]. 
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Fig. 23 Hantush function curves corresponding to the third variable obtained from all methods. 

 

6. Conclusions 

In this study, a novel physics-inspired metaheuristic algorithm, namely atom search optimization (ASO) 

algorithm, has been developed for global optimization problems. ASO is inspired by the basic molecular 

dynamics to mathematically establish the atomic motion model, which is based on the interaction and 

constraint forces. In ASO, each atom is affected by the attractive force or repulsive force from its 

neighbors and the constraint force from the atom with the best fitness value. The atomic motion follows 

Newton’s second law. The attractive force encourages atoms to explore the entire search space extensively, 

and the repulsive force enables them to exploit the promising regions intensively.  

To test the effectiveness of ASO, five comparable algorithms are used on diverse benchmark sets 

including unimodal, multimodal, low-dimensional, hybrid, and composition functions at the same time for 

comparison. The results are verified regarding qualitative results, convergence preference and overall 

preference. Furthermore, ASO is also applied to a hydrogeologic parameter estimation problem, which 

demonstrates its availability and effectiveness in solving real-world problems. Based on the above results, 

analysis and discussion of the experiments and the application, the following conclusions can be drawn. 

ASO performs a better self-adaptive convergence based on the different types of benchmark functions. 

The algorithm can successfully find the local regions around the promising solution. 

ASO performs well for unimodal functions and shows a strong competitiveness for multimodal 

functions. 

ASO can adeptly balance the explorative and exploitative search in dealing with hybrid and composition 

functions. 

The simplicity of ASO and its few control parameters make it easy to implement. 

The experiment results of the benchmark functions and the application to a hydrogeologic parameter 

estimation problem show its potential in solving other real-world problems such as vehicle path planning, 

job shop scheduling, and structural optimization.  

For future work, the binary version of ASO can be presented to deal with discrete problems, and its 

multi-objective version can also be proposed to solve multi-objective problems. ASO proposed here can be 

applied to other real-world problems in hydrology involving the calibration of surface runoff simulation, 

parameter estimation of a watershed model, and dispersion coefficients estimation. 

Molecular dynamics is a complicated subject, if possible, other physical characteristics of atoms can be 

discovered and unitized to enrich ASO and make it become much more competitive than ever. Many 

aspects are still left unknown about ASO, and there are many interesting avenues for future research, for 

[104] 
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example, the leapfrog-type method can be used to develop the mathematical representation of atomic 

motion. 
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•A novel optimization algorithm called Atom Search Optimization (ASO) 

is proposed. 

•ASO is benchmarked on 37 well-known test functions. 

•The results on test functions show the competitiveness of ASO. 

•The results on hydrogeologic parameter estimation confirm the 

performance of ASO. 

Highlights (for review)


