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Abstract
Digital image correlation (DIC) is a powerful experimental technique for measuring full-field displacement and strain. The
basic idea of the method is to compare images of an object decorated with a speckle pattern before and after deformation, and
thereby to compute the displacement and strain fields. Local subset DIC and finite element-based global DIC are two widely
used image matching methods. However there are some drawbacks to these methods. In local subset DIC, the computed
displacement field may not be compatible, and the deformation gradient may be noisy, especially when the subset size is
small. Global DIC incorporates displacement compatibility, but can be computationally expensive. In this paper, we propose
a new method, the augmented-Lagrangian digital image correlation (ALDIC), that combines the advantages of both the
local (fast) and global (compatible) methods. We demonstrate that ALDIC has higher accuracy and behaves more robustly
compared to both local subset DIC and global DIC.

Keywords Digital image correlation (DIC) · Augmented Lagrangian

Introduction

Digital image correlation (DIC) is a popular optical
experimental technique for measuring deformation and
strain in solids. In this method, we take a sequence of
grayscale digital images of a test specimen decorated with
a speckle pattern during deformation. Then, by comparing
images in the sequence, we determine the displacement
and strain fields of the specimen using image tracking
algorithms [1–4]. It has several advantages compared with
other strain measurement methods. It does not require
contact with the specimen (especially advantageous for
soft materials where contact may affect strain fields)
and provides full field displacement and strain values
unlike electrical resistance strain gauges and extensometers.
Further, compared with other non-contact and full field
optical strain measurement methods such as holographic
methods and interferometric methods [5–8], DIC does not
require a very sophisticated experimental environment.
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This has led to the wide use of DIC as illustrated by
the following examples. DIC has been applied to study
the behavior of diverse solids systems such as biological
material [9–11], metal alloys [12], shape memory alloys
[13], porous metals [14], polymers [15], and polymer foams
[16]. It has provided insights into very nonlinear behavior
of solids like slip bands [13, 17] and crack tips [18].
This method can also be combined with other diagnostic
tools to enable investigation of complex phenomena with
very heterogenous and complex strain fields at various
length scales from kilometers to nanometers. DIC has
been used to measure nonuniform phase transformation
by combining scanning electron microscopy (SEM) and
electron backscatter diffraction (EBSD) [19]. It has also
been used with atomic force microscopy (AFM) to measure
in-plane displacement at the nanometer scale [20]. At the
other extreme, DIC has been used in earthquake and glacier
monitoring [21–23] at the scale of tens of kilometers.

Over the last thirty years, various DIC algorithms to
compare images and to obtain displacement and strain have
been proposed and implemented. Most algorithms can be
cast into two categories: local subset DIC method and
global DIC method [24–28]. In local subset DIC, as its
name implies, we first break up both reference image
and deformed image into many subsets and then find
the deformation of each subset independently. Since the
subsets are limited in size, the deformation of each subset
can be solved very fast; moreover, the subsets can be

http://crossmark.crossref.org/dialog/?doi=10.1007/s11340-018-00457-0&domain=pdf
mailto: bhatta@caltech.edu


Exp Mech

analyzed in parallel. Therefore, local subset DIC can be
very fast. However, since the deformation of each subset
is obtained independently, the overall deformation may not
be compatible and the strain field can be extremely noisy.
In global DIC, we represent the global deformation using
a basis set (often based on a finite element discretization),
and then analyze the global image to obtain the coefficients
relative to this basis set. However, this is expensive.

These considerations have led to a number of attempts
to improve these methods. A number of filtering and
smoothing schemes have been proposed to address the
noisiness of the local subset DIC methods [29–31]. Broadly,
filtering of both the images and the displacements not only
reduces the noise but also can improve the accuracy because
it incorporates information from surrounding regions. While
this can be effective, the critical choice of filter is unrelated
to the underlying mathematical structure and may be
experiment dependent. Similarly, a number of sophisticated
numerical methods have been introduced to address the
computational cost of global methods. These have followed
two key ideas, or a combination of the two. The first is to
use either gradient [32] or elastic [33–35] regularization.
The second is to use domain decomposition where the
domain is broken up into a number of sub-domains, the
correlation is performed compatibly in each sub-domain
and the compatibility between the sub-domains is enforced
using either Lagrange multipliers [34, 36] or the finite
element tearing and interconnecting (FETI) procedure [33,
35]. These can then be used in parallel implementation
(see [37] for a review). These significantly speed up
the convergence and reduce computational time. However,
these require sophistication in their implementation and
must be adopted to the problem at hand.

In this paper, we propose and demonstrate a new
image comparison algorithm: augmented Lagrangian DIC
or ALDIC. This method seeks to combine the advantages
of both the local subset DIC (speed and parallel imple-
mentation) and the global DIC (displacement compatibility
and strain smoothness). The basic idea is to match subsets
locally as in the local subset DIC, but use compatibility as a
constraint. Specifically, we introduce an auxiliary globally
compatible displacement field and introduce the constraint
that this auxiliary globally compatible displacement field and
its gradient equal the locally correlated values. We implement
the constraint using the augmented Lagrangian method.

The augmented Lagrangian method, also known as the
method of multipliers, has been used to solve constrained
minimization problems in diverse fields [38, 39]. It adds to
the objective functional a term that is linear in the constraint
as in the method of Lagrange multipliers and a term that is
quadratic in the constraint as in the penalty method.
The addition of the quadratic term makes the numerical
implementation easier than the method of Lagrange

multipliers. However, unlike the penalty method, one does
not need to take the limit of infinitely large penalty
coefficients. For this reason, the augmented Lagrangian
method has found widespread acceptance in both image
precessing [40] and in mechanics [41, 42].

We implement the augmented Lagrangian using the alter-
nating direction method of multipliers (ADMM) that is a
form of operator splitting [43]. In this method, we succes-
sively perform the local correlation, optimize the auxiliary
displacement, update the multiplier and iterate. The con-
vergence and other numerical issues of ADMM have been
carefully studied [44], and this method is widely used in
image processing [43, 45, 46] and in mechanics [47]. The
second problem, the optimization over the auxiliary displace-
ment, is global. However, it leads to a universal, sparse, well-
conditioned operator (sum of the Laplacian and identity).
This can be treated very efficiently using established methods.

We begin by providing some background into DIC in
“Background” and reviewing local and global DIC methods
in “Local Subset DIC Method” and “Global DIC Method”
respectively. We formulate augmented Lagrangian DIC or
ALDIC and describe its implementation in “Augmented
Lagrangian DIC (ALDIC) Method”. We verify and evalu-
ate the accuracy of the proposed method using a series of
case studies using synthetic data from the Society of Exper-
imental Mechanics DIC challenge “Case Study I: Synthetic
Images from the SEM 2D-DIC Challenge” and from a
current experiment “Case Study II: Experimental Heteroge-
neous Fracture Deformation”. These examples demonstrate
the superior accuracy of the proposed algorithm. We analyze
the efficiency of the proposed method in “Computational
Cost”. We show that the computational effort of the ALDIC
is at worst a factor of two to four more expensive compared
to local subset DIC, and less expensive than global DIC.

Background

Digital Image Correlation as an Optimization
Problem

Consider a domain � ⊂ R
n undergoing a deformation

y : � → R
n, (n = 2, 3). As seen in Fig. 1, let X denote

Fig. 1 DIC reference image f (X) deforms into deformed image
g(y(X))
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the reference or undeformed position of a particle in �

and y(X) denote the deformed or current position of the
particle. Suppose we have a speckle pattern with grayscale
value f (X) in the reference domain, and the corresponding
grayscale value g(y) in the current configuration. If the
deformation convects the grayscale, then we have

f (X) = g(y(X)). (1)

The problem of digital image correlation is the inverse
problem of finding the deformation y(X) that satisfies (1)
given grayscale images f (X) and g(y). We pose it as one
of optimization, or one of finding the deformation map that
minimizes the squared difference:

C =
∫

�

|f (X) − g(y(X))|2 dX → minimize over y : � → R
n. (2)

A few comments are in order. First, the images are
pixelated with f, g taking discrete values. So we can either
replace the integrals above with a sum, or interpolate the
images (we use bi-cubic interpolation whenever we need
sub-pixel values). Second, due to illumination artifacts and
gain errors in real experiments, it is useful to normalize
the images. This normalization depends on the knowledge
of illumination and other experimental details. A simple
example is to normalize both images to have the same mean
and standard deviation:

f (X) �→ f (X) − f̄

σf

, g(y) �→ g(y) − ḡ

σg

(3)

where f̄ , ḡ are the mean values of f, g, and σf , σg are their
standard deviations [48]. Henceforth, we assume that we are
always working with normalized images. Third, in light of
the normalization, note that minimizing C is equivalent to
maximizing the cross correlation∫

�

f (X)g(y(X))dX. (4)

Finally, in practice, there are different ways in which the
correlation can be performed. One can take a series of
images as the deformation proceeds and do the correlation
between consecutive images, or one correlate the first and

Local DIC Global DIC

Fig. 2 Comparision between Local and global DIC

final image, or one can do something intermediate. The
incremental correlation between successive image can lead
to easier convergence and smaller individual errors due to
small displacement, but can lead to the accumulation of
systemic errors and can add to the cost. These issues are
common to all three algorithms that we discuss presently.

Local Subset DIC Method

The local subset DIC method is the most widely used algo-
rithm in DIC software packages [25, 26, 28]. As the name
indicates, the idea is to break up the domain into local
subsets and perform the correlation or optimization inde-
pendently in each subset (see Fig. 2, left). Mathematically,
we break up our domain into a finite number of subsets
� = ⋃

i �i , and make the ansatz that the deformation is
piecewise affine

y(X) = X + u(X)

= X +
∑

i

(ui + Fi (X − Xi0)) χi(X) (5)

where Xi0 is the center of local subset �i , ui is the
displacement of Xi0 and Fi is the uniform displacement
gradient of �i and χi is the characteristic or index function

χi =
{

1 X ∈ �i,

0 X /∈ �i .
(6)

The optimization problem (2) decomposes into a number
of decoupled problems of optimizing over six (n = 2) or
twelve (n = 3) scalar variables:

Ci =
∫

�i

|f (X) − g (X + ui + (Fi (X − Xi0)))|2 dX → minimize over Fi , ui . (7)

There are a number of methods that have been used to
solve this problem including the Inverse Compositional
Gauss-Newton(IC-GN) scheme [24, 25, 49] and Inverse
Compositional Levenberg-Marquardt(IC-LM) scheme [49].
In this paper, we use IC-GN and this is described in
detail in Appendix A and summarized in Algorithm 1.

Additionally, there are methods based on the fast Fourier
transform.

Since the problems are decoupled, i.e., can be solved
independently for each i, local subset DIC is extremely
fast and easily paralellized. Further, in practice, the subsets
can overlap. However, since each problem is solved
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independently, the results can be noisy, susceptible to local
imaging problems and lead to discontinuous strain fields.

Global DIC Method

In the global DIC method, we represent the global deformation
using a global basis set, often based on a finite element
discretization, such that the compatibility or continuity of
displacement is guaranteed automatically (see Fig. 2, right):

y(X) = X + u(X) = X +
∑
p

upψp(X) (8)

where ψp(X) are the chosen global basis functions and up

are the unknown degrees of freedom. Thus, the problem (2)
becomes

Cg =
∫

�

∣∣∣∣∣f (X) − g(X +
∑
p

upψp(X))

∣∣∣∣∣
2

dX → minimize over {up}. (9)

We can solve this problem iteratively by setting uk+1 =
uk + δu and using the first order approximation
g(y(X)) = g(X + uk(X) + δu) ≈ g(X + uk(X)) + ∇g · δu(X) (10)

so that

Cg ≈
∫

�

∣∣∣∣∣f (X) − g(X + uk(X)) −
(∑

p

δupψp(X)

)
· ∇g(X)

∣∣∣∣∣
2

dX. (11)

This leads to the linear equation in δu

Mpqδuq = bp, (12)

where

Mpq =
∫

�

ψT
p (X) (∇g) (∇g)T ψq(X)dX, (13)

bp =
∫

�

(f (X) − g(X + uk(X))) ψT
p (X)∇g(X)dX. (14)

In this paper, we use a Q4 finite element mesh in global
DIC, and the algorithm is summarized in Algorithm 2.
Alternately, if the displacements are small, we can treat (12)
as a linear problem with δu as the incremental displacement.

Note that the size of the linear problem (12) is equal to the
number of basis functions or the size of the finite element
discretization. This can be large if we seek fine resolution.
Thus, global DIC is expensive and difficult solve in parallel.
However, it leads to compatible solutions. And there are
methods to reduce the computational expense as discussed
in the introduction. In practice, it is common to replace ∇g

with ∇f or to use IC-GN which deals with the inverse map.
This has the advantage that the matrix Mpq is independent
of iteration thereby reducing the effort.

We remark that the procedure described in Eqs. 12–
14 may result in noisy displacement fields because of the
conditioning of the matrix M . So it is common practice
to add a weighted higher order penalty (regularizer) to the
objective function. This needs experience and expertise.
Further, this requires boundary conditions whose choice can
lead to errors. Finally, note that the global DIC is not limited
to smooth fields. It can be used to study discontinuous fields
like cracks and shear bands by using enriched basis [50, 51].
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Augmented Lagrangian DIC (ALDIC) Method

We now introduce a new image comparision algorithm, aug-
mented Lagrangian DIC (ALDIC), that seeks to combine
the advantages of both the local subset DIC (speed and
parallel implementation) and the global DIC (displacement
compatibility and strain smoothness).

Formulation

Recall the ansatz (5) we make in local subset DIC. In this
ansatz, the local displacement ui and local displacement gra-
dient Fi in the subdomain �i are independent of each other,
and independent for each i. Thus, there is no guarantee of
compatibility for the deformation. However, if the displace-
ment field were compatible, then the displacements and

the displacement gradients would not be independent, but
instead satisfy a global constraint

{F} = D{u} (15)

where D is the discrete gradient operator that depends on
the discretization (see Appendix B for an example of first
order finite differences). The local subset DIC ignores this
constraint while the global DIC enforces this constraint by
kinematic construction.

The key idea of ALDIC is to treat this constraint (15)
efficiently. We do so by leaving Fi and ui discrete as before,
and introduce an auxiliary compatible displacement field û
such that

Fi = ∇û(Xi0), ui = û(Xi0). (16)

In other words, we minimize (2) subject to the ansatz (5) and
constraints (16). We do so using an augmented Langrangian
method. Specifically, we consider the correlation functional

L0 = ∑
i

∫
�i

(|f (X) − g (X + ui + (Fi (X − Xi0)))|2
+β

2

∣∣(Dû)i − Fi

∣∣2 + νi : ((Dû)i − Fi ) + μ
2

∣∣ûi − ui

∣∣2 + λi · ((û)i − ui )
)

dX
(17)

where we use the matrix or Frobenius norm for matrices
|A|2 = ∑

ij |aij |2, vector norm for vectors |a|2 = ∑
i a2

i ,
and : for double dot product between two matrices A :
B = ∑

ij AijBij . Above, {νi}, {λi} are Lagrange multipliers
that enforce the constraints (16). Finally, β and μ are two
positive real scalers. If β = μ = 0, then this functional
gives the traditional Lagrange multiplier formulation if we
change the sign of {νi}, {λi} . On the other hand if β

and μ were very large with νi = λi = 0, then we have
a penalty method. Choosing β and μ to be positive real
scalars while retaining the Lagrange multipliers is referred
to as the augmented Lagrangian method, and gives rise to
well-conditioned numerical problems [38].

Given β and μ, we iteratively minimize L0 over {Fi}, {ui}
and {ûi} and update {νi} and {λi}. Before we proceed,
it is convenient to make the following modication to the
functional above. We set Wi := νi/β, vi := λi/μ and
define

L = ∑
i

∫
�i

(|f (X) − g (X + ui + (Fi (X − Xi0)))|2
+ β

2

∣∣(Dû)i − Fi + Wi

∣∣2 + μ
2

∣∣ûi − ui + vi

∣∣2) dX.
(18)

Notice that minimizing L0 over {Fi}, {ui} and {ûi} is the
same as minimizing over L since they differ by quadratic
terms independent of {Fi}, {ui} and {ûi}.

We solve this problem using an alternating direction
method of multipliers that allows us to break it up into
simpler problems.

Alternating DirectionMethod of Multipliers

We use alternating direction method of multipliers (ADMM)
where local subproblems are coordinated to find a solution
to a large global problem [44] to iteratively solve the
problem.

Given {Fk
i }, {uk

i }, {ûk
i }, {Wk

i }, {vk
i }, we find the (k + 1)th

update as follows:

• Subproblem 1: local update. While holding {ûk
i }, {Wk

i },{vk
i } fixed, minimize L over {Fi}, {ui}, to obtain

{Fk+1
i }, {uk+1

i }:

{Fk+1
i }, {uk+1

i } = arg min
{Fi },{ui }

L
(
{Fi}, {ui}, {ûk

i }, {Wk
i }, {vk

i }
)

.

(19)

Since {ûk
i } and hence {(Dû)ki } are known, this problem

breaks into a series of local problems that can be solved
independently for each i:

Fk+1
i , uk+1

i = arg min
Fi ,ui

Li = arg min
Fi ,ui

∫
�i

(|f (X) − g (X + ui + (Fi (X − Xi0)))|2

+β
2

∣∣(Dû)ki − Fi + Wk
i

∣∣2 + μ
2

∣∣ûk
i − ui + vk

i

∣∣2) dX.
(20)
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This is similar to local subset DIC and can be solved
by any of the methods described in “Local Subset DIC
Method”.

• Subproblem 2: global update. While holding
{Fk+1

i }, {uk+1
i }, {Wk

i }, {vk
i } fixed, we minimize L over

{ûi} to obtain {ûk+1
i }:

{ûk+1
i } = arg min

{ûi }
L
(
{Fk+1

i }, {uk+1
i }, {ûi}, {Wk

i }, {vk
i }
)

= arg min
{ûi }

∑
i

∫
�i

(
β
2

∣∣∣(Dû)i − Fk+1
i + Wk

i

∣∣∣2 + μ
2

∣∣∣ûi − uk+1
i + vk

i

∣∣∣2
)

dX.
(21)

Note that this is a global problem, but is independent of
the images f, g. Indeed, it leads to the linear problem(
βDT D + μI

)
ûk+1 =

(
βDT a + μb

)
(22)

where a = {Fk+1
i − Wk

i } and b = {uk+1
i − vk

i }. The
solution is given by

ûk+1 =
(
βDT D + μI

)−1 (
βDT a + μb

)
. (23)

Since β and μ are fixed, the matrix
(
βDT D + μI

)−1

can be precomputed and stored, and therefore this step
becomes a simple matrix-vector multiplication. Further,
the matrix D has a structure, and therefore this matrix-
vector multiplication can be carried out very efficiently.

• Subproblem 3: Lagrange multiplier update. We finally
update {Wi}, {vi} as follows:

Wk+1
i = Wk

i +
(
(Dû)k+1

i − Fk+1
i

)
, (24)

vk+1 = vk + (
ûk+1 − uk+1

)
. (25)

• Stopping criterion. Theoretically, we should check the
convergence of all quantities during ALDIC iterations.
However, in practice, we care most about the displace-
ments. Therefore, we simply check

(
ûk+1 − ûk

)
, and

stop if this happens to be smaller than a given tolerance.

Convergence

We briefly recall some results from Boyd et al. [44] that
apply to the ADMM alogrithm proposed above. Assume
that the following conditions are true:

• Assumption 1. The functional Ci in Eq. 7 or the first
term of L can be approximated by a closed, proper, and
convex functional near the optimal solution.

• Assumption 2. The Lagrangian L0 with β =
μ = 0 has a saddle point; i.e., there exist
({F∗

i }, {u∗
i }, {û∗

i }, {ν∗
i }, {λ∗

i }), for which

L0({F∗
i }, {u∗

i }, {û∗
i }, {νi}, {λi}) ≤ L0({F∗

i }, {u∗
i }, {û∗

i }, {ν∗
i }, {λ∗

i })
≤ L0({Fi}, {ui}, {ûi}, {ν∗

i }, {λ∗
i })

for all ({Fi}, {ui}, {ûi}, {νi}, {λi}).

Then, we have the following convergence

• Primal residual convergence.
(
Dûk − Fk

) → 0 and(
ûk − uk

) → 0 as k → ∞, i.e., the constraints are
satisfied asymptotically;

• Dual residual convergence.
(
ûk+1 − ûk

) → 0 as k →
∞, i.e., the dual feasibility is satisfied asymptotically,
see Appendix C;

• Objective convergence. Lk → L∗ as k → ∞, i.e., the
Lagrangian approaches its optimal value;

• Dual variable convergence. Wk → W∗, vk → v∗ as
k → ∞, where (W∗, v∗) is dual optimal point.

Note that the local functional Ci can be highly oscillatory
and is thus not convex. However, if the initial guess for the
local variables ({Fi}, {ui}) is in the convergence basin of
local subset DIC, then the first assumption is true. If this
assumption is false, then subproblem 1 (19) above diverges;
this provides a check that this assumption holds.

A Simplification and ALDIC Algorithm

We now make one final simplification to subproblem 1 to
speed up ALDIC algorithm. The local problem (20) requires
us to minimize over both ui and Fi : this makes the local
problem large and the overall convergence slow. Further,
the high dimensionality can lead to local minima and thus
poor accuracy. This is consistent with the practice of using
only the displacements in most commonly used local subset
DIC. Therefore, we simplify the ALDIC subproblem 1 as
follows: in the k + 1 iteration step, we update Fk+1 to be
exactly equal to Dûk and only solve for uk+1. We still use
the same IC-GN iteration method as introduced in previous
“Local Subset DIC Method” local subset DIC.

The overall algorithm is given in Algorithm 3.

Demonstration

We now demonstrate the ALDIC method, and compare
it to both local subset DIC and global DIC methods.
All algorithms are implemented in Matlab. We use the follow-
ing parameters unless it is specified otherwise. We use
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Table 1 List of symbols used
in the demonstration section Fk Solved deformation gradient tensor in the k-th ADMM iteration Subproblem 1

uk Solved displacement vector in the k-th ADMM iteration Subproblem 1

uk Solved displacement vector in the k-th ADMM iteration Subproblem 2

Wk, vk Dual variables in the k-th ADMM iteration

u, x-direction displacement component

v, y-direction displacement component

exx, eyy, exy The “xx”,”yy” and “xy” components of infinitesimal strain

bi-cubic interpolations for the grayscale value at subpixel
positions. In the local subset DIC, we stop IC-GN iter-
ations when ‖di‖ ,

∥∥ejk

∥∥ < 10−6. Usually the IC-GN
reaches convergence point within several iteration steps. In
the global DIC, we use Q4 finite element with a bilinear
form of the domain’s displacement field trying to approx-
imate the exact nonuniform one. We stop the iteration
when the average magnitude of the nodal displacement
update is smaller than 10−6 pixels. In ALDIC, we start
W and v from zero. We choose μ to be O(10−3) ∼
O(10−1) times diagonal terms of a′

ip. We take β =[
O(10−1) ∼ O(100) · element size2 · μ

]
to balance the rel-

evant terms. We use the same stop criteria in subproblem 1
as local subset DIC (

∥∥d ′
i

∥∥
L2

< 10−6), and the whole ALDIC

iteration stops when
∥∥ûk+1 − ûk

∥∥
L2

< 10−4.

Fig. 3 Convergence of the ALDIC method for the SEM 2D-DIC synthetic images, sample 1 representing translation
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Fig. 4 Comparison of RMS
error in displacement (a) and
strain (b) computed with the
three methods for the synthetic
images in the SEM 2D-DIC,
sample 1 or translation

When studying synthetic images where the exact deforma-
tion is known, we use the root-mean-square (RMS) error,

RMS error :=

√√√√√
∑

# of nodes

|Numerical result − Exact value|2

# of nodes
(26)

in both the displacement and strain. RMS error reflects
globally how far the computed results are away from the

exact values and is a measure of the standard variance of the
computation error.

In local subset DIC, we report the deformation gradi-
ents/strains obtained directly by the local subset DIC corre-
lation. In global DIC, we compute nodal strains by extrap-
olating the strains from the finite element Gauss points.
In ALDIC, the strain field is obtained directly from Dû.
We summarize the symbols we used in the demonstration
section in Table 1.

Fig. 5 Exact horizontal x-displacement and strain exx field associated with Sample 14 images L1, L3 and L5
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Fig. 6 The horizontal displacement (u) obtained using the three methods from the synthetic images of SEM 2D-DIC sample 14: L1, L3, L5

Case Study I: Synthetic Images from the SEM 2D-DIC
Challenge

We study synthetic images from the SEM 2D-DIC
challenge, samples 1 & 14 [52].1 Sample 1 represents a

1https://sem.org/dic-challenge/2d-test-image-sets.asp

series of pure translations while sample 14 represents a
sinusoidal deformation with changing frequency.

Translation: Sample 1

The deformations in Sample 1 are pure translations in both
x and y directions with amplitudes ranging from 0 to 1 pixel

https://sem.org/dic-challenge/2d-test-image-sets.asp
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Fig. 7 The horizontal longitudinal strain (exx ) obtained using the three methods from the synthetic images of SEM 2D-DIC sample 14: L1, L3, L5

in increments of 0.1 pixels. We set all the local window
sizes to be 20×20 pixels, and set both the local neighboring
windows distance and global element size to be 5×5 pixels.

Figure 3 shows the convergence of the various quantities
(without a stopping criterion). We see that ALDIC behaves
well and converges within 6 steps. Figure 4 shows the RMS

errors in displacements and strains, and compares with the
corresponding errors in the local subset DIC and global DIC
methods. We observe that ALDIC has the smallest errors in
all cases.

We make a couple of comments. First, we see that the
error of the global DIC method is high in this case. This is
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Table 2 Comparison of the
RMS errors in displacement
and strain for the SEM 2D-DIC
synthetic images of sample 14:
L1,L3,L5

Image Local subset Regularized ALDIC

No DIC global DIC

x displacement (pixels) L1 0.0212 0.0234 0.0141

L3 0.0202 0.0162 0.0136

L5 0.0201 0.0080 0.0139

Strain exx L1 3.18 × 10−3 3.15 × 10−4 1.00 × 10−3

L3 3.19 × 10−3 1.90 × 10−3 9.84 × 10−4

L5 3.20 × 10−3 3.15 × 10−3 9.83 × 10−4

because we do not use a regularization since a regularizer
forces zero gradient which artificially forces the desired
answer. Second, when using synthetic images, a bias can
be introduced if the interpolation used for subpixel shifting
is different from those used for creating the images. The
sinusoidal variation with image number is a reflection of this
bias. We use a bi-cubic interpolation in our work based on
the study of Bornert et al. [53].

Heterogeneous Deformation: Sample 14

The deformations in Sample 14 are sinusoidal with varying
frequency in the x direction as shown in Fig. 5 for the
three images – L1, L3, and L5 – that we use. It has
zero displacement in the y direction. We set all the local
window sizes to be 30 × 30 pixels, and set both the local
neighboring windows distance and global element size to be
5 × 5 pixels. As before, the ALDIC method converges in
about six iterations (we have omitted the figure for brevity).
Figures 6 and 7 show the horizontal displacement (u) and
the horizontal longitudinal strain (exx) for the three images
and the three methods. These figures show that the ALDIC
leads to smooth displacement fields and this is reflected
in the strain. Table 2 shows the RMS errors for strain and
displacement, and shows that the ALDIC method leads to
smaller errors compared to the other two methods.

We also use the image L1 from this set to study the effect
of the subset size in the ALDIC method. Table 3 shows the
RMS errors in displacement and strain using three window
sizes. Not surprisingly, the errors increase with decreasing
window size.

Case Study II: Experimental Heterogeneous Fracture
Deformation

We conclude our case studies by analyzing data from an
experiment on the fracture of a heterogeneous material
taken from Avellar [54]. The 50.8 × 45.7 × 9.5 mm
specimen that is shown in Fig. 8(a) is 3D printed
using a compliant material (Stratasys proprietary acrylic
DM9895, E=45 MPa) shown in dark and a stiff material
(Stratasys proprietary acrylic RGD835, E=1960 MPa, ν =
0.399) shown in grey. We choose this example because
the heterogeneous stiffness leads to complex strain and
displacement fields. A speckle pattern is applied using white
spray paint and the specimen is loaded using the two pins
inserted into the holes and pulled to failure. The reference
image and one deformed image of the sample (the area
in the red box of Fig. 8(a)) under loading are shown in
Fig. 8(b, c), where the length scale in the digital image is
0.037 mm/pixel. We set all the local window sizes to be
16 × 16 pixels, and set both the local neighboring windows

Table 3 DIC displacement and
strain RMS errors of Sample 14
L1 with different window sizes

Subset Local subset Regularized ALDIC

Size DIC global DIC

x displacement (pixels) 30 × 30 0.0199 0.0079 0.0056

20 × 20 0.0323 0.0082 0.0067

10 × 10 0.0990 0.0088 0.0165

Strain exx 30 × 30 3.30 × 10−3 2.08 × 10−4 9.57 × 10−5

20 × 20 7.78 × 10−3 2.35 × 10−4 1.62 × 10−4

10 × 10 9.90 × 10−2 2.84 × 10−4 8.19 × 10−4
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Fig. 8 Heterogeneous specimen
used for the third case study. a
Front view of designed fracture
specimen with brick
architecture, where the box area
will be captured using a CCD
camera. b A speckle pattern is
applied using white spray paint
onto the surface of the specimen
where the length scale of the
digital image is 0.037 mm/pixel.
c One deformed image of the
sample as the crack propogates
under loading. d The local
subsets/global finite element
mesh used in all three DIC
methods

distance and global element size also to be 16 × 16 pixels,
see Fig. 8(d). The resulting images are analyzed using all
three DIC methods. The convergence of the ALDIC method
is shown in Fig. 9. The displacement and strain fields
obtained using all three methods are shown in Fig. 10. We
see little difference in the horizontal displacement u, but
the vertical displacement v differ in the noise. ALDIC is
less noisy than global DIC, which in turn is less noisy than
the local subset DIC. This is also reflected in the strain
fields.

Computational Cost

We compare the computational cost of the three DIC
algorithms. The symbols used are listed in Table 4. We
estimate the cost of each step in each algorithm, and these

are listed in Tables 5, 6 and 7. We then use the dominant
terms (assuming that k1 << k2) to estimate the total cost,
and these are also listed in the tables. We observe that all
algorithms, properly implemented, scale linearly with the
size of the image mN . Thus, the differences are in the
pre-factors, and these can be significant as we presently
demonstrate. We also note that the local subset DIC and
ALDIC can be easily parallelized.

Table 8 lists the computational clock time for the case
studies. All studies are performed on the same workstation
with Intel (R) Xeon(R) CPU E5-2650 v3 2.30 GHz (2
Processors), RAM 32.0 GB Memory, 64-bit nodes. In
the local subset DIC and ALDIC Subproblem 1 IC-GN
iterations, we use 20 clusters and process it in parallel in
Matlab. It is clear from the table that local subset DIC is
the least expensive, and global DIC is the most expensive as
expected.
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Fig. 9 Convergence of ALDIC method in heterogeneous fracture experiment

Discussion and Conclusion

In this paper, we have presented a new method, the augmented
Lagrangian digital image correlation (ALDIC), for image
matching. It combines the advantages of the two established
methods, the speed of local subset DIC and the
kinematic compatibility of global DIC. We show in
“Demonstration” through a series of case-studies using
synthetic images that ALDIC provides superior accu-
racy compared to the established methods. We show
in “Computational Cost” that the computational cost
of ALDIC is only a few times that of local subset DIC and
less than that of global DIC.

ALDIC correlates subsets locally to find a displacement
field as in local subset DIC, but then ties them together
by introducing an auxiliary compatible displacement field.
This leads to superior accuracy compared to local subset
DIC for two reasons. First, the local correlation or
sub-problem 1 has some global information through
the augmented Lagrangian and auxiliary field – see
(Eq. 20). Second, the auxiliary field leads to less noisy
deformation gradients as shown in Fig. 11. However,
ALDIC is more expensive than local subset DIC because it
requires the solution of a global problem (22). Still, this is
not prohibitive: we see in “Computational Cost” that it is
only a few times that of local DIC.

Both ALDIC and global DIC seek to impose compatibil-
ity. However, the point of departure is that ALDIC does not
use a basis set to impose compatibility anywhere, but does
so using an augmented Lagrangian. Therefore, the result-
ing operator (βDT D + μI) is the sum of the Laplacian and
identity. This is universal, i.e., independent of the problem,
displacement or image (though the matrix depends on the
discretization). The nature of the operator and the univer-
sality allows us to either precompute the inverse (as we do
here), or us a variety of established efficient methods (see
for example [55]). In contrast, the operator M in Eq. 13
depends on the image, and moreover may be poorly con-
ditioned depending on the image. Regularization can help
with the conditioning and it is possible to address the com-
putational cost. However, these require sophistication in
their implementation and must be adopted to the problem at
hand.

We conclude with a few thoughts on advancing this work.
First, all the demonstrations in this work are limited to two
dimensional images. However, the presentation of the method
and algorithm is valid for two and three dimensions (or
digital volume correlation, DVC). Second, we use the IC-
GN iteration for the local correlation (subproblem 1). This
is robust but slow since it involves pixel-wise summation.
We can improve this by using phase correlation methods
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Fig. 10 Contour plot of three DIC algorithms solved displacement and strain fields in heterogeneous fracture experiment

and fast Fourier transforms that have been introduced for
local subset DIC. Third, we hold β and μ fixed during
ALDIC iterations, but they can also be updated at each
iteration step to further speed up iterations, see Ref [44]

Section 3.4.1. When varying penalty parameters are used,
the scaled dual variables W = ν/β and v = λ/μ

must also be rescaled after updating parameters β and
μ. Fourth, DIC is rather data intensive as it requires

Table 4 List of symbols used
in the analysis of
computational cost

N # of pixels in each local subset or each finite element
m # of total local subsets or finite elements
d The dimension of images, e.g. d = 2 for 2D pixel images
nL Length of parameter vectors of each local subset
nG Length of parameter vectors in finite element
k1 Computation cost to compute image grayscale derivatives
k2 Computation cost to interpolate grayscale value at sub-pixel position
k3 # of iterations in local subset DIC algorithm
k4 # of iterations in global DIC algorithm IC-GN scheme
k5 # of iterations in ALDIC ADMM scheme
k6 # of inside iterations in ALDIC Subproblem 1 IC-GN scheme
C # of clusters used in local subset DIC and ALDIC Subproblem 1

for parallel computation
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Table 5 The computation cost
of the local subset DIC IC-GN
iteration

Pre-computation Step 2 Step 3

O(k1dmN) O(nL
2mN)

Per IC-GN iteration Step 4 Step 5 Step 6 Step 7

O(k2nLmN) O(nLmN) O(nL
3m) O(nL

3m)

Total O(k2k3nLmN/C)

Table 6 The computation cost
of the global DIC FEM
iteration

Pre-computation Step 2 Step 3 Step 4 Step 5

O(k1dmN) O(dn3
GmN) O(dnGmN) O(d2nGmN)

Step 6 Step 7 Step 8

O(d6nGmN) O(d4n2
GmN) O(d4n2

GmN)

Per FEM iteration Step 9 Steps 10-11 Step 12 Step 13

O(k2dnGmN) O(d2nGmN) O(dnGm) O(dnGm)

Total O(k2k4d
2nGmN)

Table 7 The computation cost
of the ALDIC ADMM iteration Pre-computation Steps 2-3

O(2d2m)

Per ALDIC iteration Step 4 Step 5 Step 6

O(k2k6nLmN) O(2d3m2) O(nLm)

Total O(k2k5k6nLmN/C)

Table 8 Computation time
using three DIC algorithms Example Para- local subset DIC Para- global DIC Para- Para- ALDIC

Name meter time cost(s) meter time cost(s) meter meter time cost(s)

Theory k3 O(0.3k3k2mN) k4 O(16k4k2mN) k5 k6 O(0.3k5k6k2mN)

S14 L1 30 × 30 12.2 28.55 6 478.33 7 6.5 121.63

S14 L1 20 × 20 16.0 37.65 7 630.19 7 7.4 145.95

S14 L1 10 × 10 40.8 95.28 7 1402.3 7 13.3 294.99

S14 L1 5 × 5 12.2 743.36 7 11026 7 6.1 3065.02

S14 L3 5 × 5 12.1 743.36 7 11368 7 6.1 2923.05

S14 L5 5 × 5 12.1 743.36 8 11967 7 6.1 2960.71

Fracture exp 11.6 12.46 8 246.20 7 7.9 52.96

S1 img 2 7.3 46.07 5 338.27 6 2.9 150.25

S1 img 4 6.4 40.78 4 303.01 6 2.5 131.31

S1 img 6 5.9 38.48 4 307.18 6 2.5 127.08

S1 img 8 6.2 40.76 4 305.13 6 2.5 133.19

S1 img 10 6.3 39.95 5 331.99 6 2.6 133.03

S1 img 12 6.2 40.07 4 305.27 6 2.5 132.52

S1 img 14 6.0 38.40 4 304.49 6 2.5 126.21

S1 img 16 6.5 41.51 4 305.07 6 2.6 134.10

S1 img 18 7.4 47.16 5 330.98 6 3.1 156.03

S1 img 20 8.5 52.98 5 335.80 5 3.5 175.51
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Fig. 11 Comparison of the
deformation gradient (F11
component) obtained using the
local subset DIC (a) and ALDIC
(b) for sample 14 L1

multiple high resolution images. However, the information
that we seek is only the displacement and strain fields.
Therefore, it would be valuable to combine image matching
with image compression so that the amount of data can
be significantly reduced without losing any experimental
information. We show elsewhere [56] that ALDIC is well
suited for this purpose. Finally, in both the local subset DIC
and subproblem of ALDIC, the accuracy of displacements
increases with subset size. However, the fidelity decreases in
regions of large strain or rapidly changing strain. The ideal
strategy is to use a multiscale or multigrid approach: large
subsets in small strain and small strain-gradient areas, and
small subsets in large strain and large strain-gradient areas.
We describe this in a forthcoming work [57].
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Appendix A: Inverse Compositional
Gauss-Newton

In this paper, we use Inverse Compositional Gauss-Newton
(IC-GN) scheme to solve local subset DIC optimization.
Given the current iterate of deformation map yk , we seek the

Fig. 12 The change of variables involved in the IC-GN update

updated deformation map yk+1. It is convenient to define
the inverse maps φk and φk+1, where φk(yk(X)) = X. We
define the increment ψk through yk+1 = (ψ)k ◦yk as shown
in Fig. 12. We make a change of configuration and rewrite
as

Ci =
∫

�k
i

|f (φk(z)) − g(ψ(z))|2dz, (27)

where z is the current iterate of deformation map yk . We
obtain ψk as the minimizer of this functional and the
updated deformation map as

φk+1 = φk ◦ (ψk)−1. (28)

To minimize (27), we assume ψk ≈ z + v + H(z − z0) for
small v and H. Therefore,

Ci =
∫

�k
i

|f (φk(z))−g(z)−∇g(z)·(v+H(z−z0))|2dz. (29)

Minimizing over v and H, we obtain(
alp blqr

bmnp cmnqr

)(
vp

Hqr

)
=

(
dl

emn

)
(30)

where

alp = 2
∫

�k
i

g,lg,pdz, (31)

blqr =
∫

�k
i

g,lg,q(zr − z0r )dz, (32)

cmnqr = 2
∫

�k
i

g,m(zn − z0n)g,q(zr − z0r )dz, (33)

dl =
∫

�k
i

(f − g)g,ldz, (34)

emn =
∫

�k
i

(f − g)g,m(zn − z0n)dz (35)

and g,l = ∂g
∂zl

etc. We solve (30) for v,H to obtain

ψk . We then obtain the new (inverse) deformation φk+1

using Eq. 28. In practice, we don’t need to compute �k
i
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domain at each iteration, instead we directly compute all
the integrations (or discrete summations) over the final
deformed configuration, which also gives us good results
and saves lots of computation time.

We also use IC-GN to solve subproblem 1 or Eq. 20
in ALDIC. This reduces to Eq. 30 above with alp and dl

replaced with

a′
lp = 2

∫
�k

i

(g,lg,p + μ

2
δlp)dz, (36)

d ′
l =

∫
�k

i

((f − g)g,l + μ

2
(ul − vk

l − ûk
l ))dz. (37)

Appendix B: The operator D

The matrix D in “Augmented Lagrangian DIC (ALDIC)
Method” is the discrete gradient operator. This depends
on the choice of discretization. In this paper, we use first
order finite difference based on an uniform square mesh. We
provide explicit details for this case, but note that ALDIC is
compatible with any discretization and these would lead to
different matrices.

We describe it in one dimension for convenience, and the
generalization to higher dimensions is obvious. We assume
that the domain is discretized uniformly with the distance

h between nodes xi, x2 . . . xN . Then the (15) is explicitly
written as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1
F2
F3
...

FN−1
FN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸

= 1

2h

⎡
⎢⎢⎢⎢⎢⎣

−2 2
−1 0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−2 2

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1
u2
u3
...

uN−1
uN

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

︸ ︷︷ ︸
{F} D {u}

(38)

where ui ,Fi are the values at node xi .

Appendix C: Optimality conditions

Set the first term in Eq. 18 to be

�(F, u) =
∑

i

∫
�i

|f (X) − g (X + ui + (Fi (X − Xi0)))|2 dX. (39)

The necessary and sufficient optimality conditions for the
ALDIC ADMM formulation are primal feasibility[
Dû∗ − F∗
û∗ − u∗

]
=

[
0
0

]
(40)

and dual feasibility,[
∂�(F∗,u∗)

∂F
∂�(F∗,u∗)

∂u

]
−

[
βW∗
μv∗

]
=

[
0
0

]
. (41)

Since Fk+1, uk+1 minimize L(F,u, ûk,Wk, vk) in the
ADMM Subproblem 1, we have that[

0
0

]
=

[
∂�(Fk+1,uk+1)

∂F
∂�(Fk+1,uk+1)

∂u

]
−

[
βWk

μvk

]
−

[
β
(
Dûk − Fk+1

)
μ
(
ûk − uk+1

)
]

=
[

∂�(Fk+1,uk+1)
∂F

∂�(Fk+1,uk+1)
∂u

]
−

[
βWk

μvk

]
−

[
β
(
Dûk+1 − Fk+1

)
μ
(
ûk+1 − uk+1

)
]

−
[

β
(
Dûk − Dûk+1

)
μ
(
ûk − ûk+1

)
]

=
[

∂�(Fk+1,uk+1)
∂F

∂�(Fk+1,uk+1)
∂u

]
−

[
βWk+1

μvk+1

]
−

[
β
(
Dûk − Dûk+1

)
μ
(
ûk − ûk+1

)
]

. (42)

Or equivalently,

[
∂�(Fk+1,uk+1)

∂F
∂SSD(Fk+1,uk+1)

∂u

]
−

[
βWk+1

μvk+1

]
=

[
β
(
Dûk − Dûk+1

)
μ
(
ûk − ûk+1

)
]

.

(43)

This means that the quantity

sk+1 =
[

β
(
Dûk − Dûk+1

)
μ
(
ûk − ûk+1

)
]

(44)

can be viewed as a residual for the dual feasibility condition
(41). We will refer to sk+1 as the dual residual at ADMM
iteration k + 1, and to

rk+1 =
[
Dûk+1 − Fk+1

ûk+1 − uk+1

]
(45)

as the primal residual at ADMM iteration k + 1. And these
two residuals converge to zeros as ADMM proceeds.
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