

Bernstain-Search Differential Evolution Algorithm for Numerical Function Optimization

Accepted Manuscript

Bernstain-Search Differential Evolution Algorithm for Numerical
Function Optimization

Pinar Civicioglu, Erkan Besdok

PII: S0957-4174(19)30533-0
DOI: https://doi.org/10.1016/j.eswa.2019.112831
Article Number: 112831
Reference: ESWA 112831

To appear in: Expert Systems With Applications

Received date: 20 January 2019
Revised date: 19 July 2019
Accepted date: 20 July 2019

Please cite this article as: Pinar Civicioglu, Erkan Besdok, Bernstain-Search Differential Evolu-
tion Algorithm for Numerical Function Optimization, Expert Systems With Applications (2019), doi:
https://doi.org/10.1016/j.eswa.2019.112831

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.eswa.2019.112831
https://doi.org/10.1016/j.eswa.2019.112831

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 1

Highlights

• Bernstein polynomials based parameter-free crossover

• A new universal / parameter-free Differential Evolution

• Real-valued numerical function optimization

• Evolutionary Image Vectorization

• Evolutionary Digital Terrain Model Simplification

1

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Expert Systems with Applications 00 (2019) 1–??

Bernstain-Search Differential Evolution Algorithm for Numerical
Function Optimization

Pinar Civicioglu1

Erciyes University, Faculty of Aeronautics and Astronautics, Dept. of Aircraft Electrics and Electronics, Kayseri, Turkey

Erkan Besdok2,∗

Erciyes University, Faculty of Engineering, Dept. of Geomatics Eng., Kayseri, Turkey

Abstract
The standard Differential Evolution Algorithm (sDE) is a stochactic search method commonly used in evolu-

tionary computing. The problem solving success of sDE is highly sensitive to the genetic operators used and the
initial values of the parameters of these operators. Since a universal Differential Evolution Algorithm (uDE) is not
sensitive to the structure and parameter values of the genetic operators used, it is parameter-free in practice and
easier to control than sDE. uDE does not need a trial-and-error process when selecting the genetic operators and
initial values of intrinsic parameter of related genetic operators to solve the problem, unlike the sDE. Therefore, the
use and adaptation of a uDE to solve different types of numerical engineering problems is easy and time-consuming
compared to sDE. In this paper, a new uDE, Bernstain-Search Differential Evolution Algorithm (BSD), is introduced.
BSD is new and easily controllable, simple structured, non-recursive, highly efficient, fast and practically parameter-
free uDE. BSD have a too feasible random crossover and mutation process and does not have a control-parameter
setting process, contrary to sDE and its improved variants. In this paper, 30 benchmark problems of CEC'2014, 60
classic benchmark problems, image evolution problems for 12 test images and one Triangulated Irregular Network
(TIN) refinement problem were used in the experiments performed to investigate the problem solving success of BSD,
statistically. Four tested methods (i.e., ABC, JADE, CUCKOO, WDE) were used in the conducted experiments.
Problem solving successes of BSD and tested methods were statistically compared by using Wilcoxon Signed Rank
Test piecewisely. Results obtained from the performed tests showed that in general, problem solving success of BSD
is statistically better than the tested methods that have been used in this paper.

© 2011 Published by Elsevier Ltd.

Keywords: Artificial Bee Colony Algorithm, Differential Evolution Algorithm, Cuckoo Search Algorithm, Weighted
Differential Evolution Algorithm, Image Evolution.

∗Corresponding author
Email addresses: civici@erciyes.edu.tr (Pinar Civicioglu), ebesdok@erciyes.edu.tr (Erkan Besdok)

1Tel.: +90 352 207 66 66-41054; fax: +90 352 437 57 44.
2Tel.: +90 352 207 66 66-32650; fax: +90 352 437 57 84.

2

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 3

1. Introduction

Standard Differential Evolution Algorithm (sDE) is one of the most widely used stochastic search method
in evolutionary computing. The genetic operators (i.e., mutation, crossover) used and the initial values of
the intrinsic parameters of these operators affect the problem solving success of sDE (Brest et al , 2006; Das,
Mullick, & Suganthan , 2016; Mohamed, & Suganthan , 2018; Price, Storn, & Lampinen , 2005). Selecting
genetic operators in sDE and adjusting initial values of their parameters is based on a trial-and-error process
and it is time-consuming (Zhang, & Sanderson , 2009; Mlakar, & et al , 2016). The chaotic relationship
between the initial values of the parameters of evolutionary algorithms and the problem-solving successes of
the relevant algorithms is still an active research area since there is no analytical parameter setting method
that sets the best Evolutionary Search Algorithm (EA) parameters for the problem to be solved. Since
EAs are too sensitive to initial values of intrinsic parameters, using fixed initial values for related intrinsic
parameters may limit the problem solving success of EAs. Therefore, various adaptive parameter adjustment
methods have been developed for EAs. Adaptive parameter setting methods are also effective on problem
solving success of EA depending on the problem type, such as fixed parameter setting methods (Karabog̃a,
& Basturk B , 2007; Lynn, & Suganthan , 2017; Qin et al , 2014; Chen, & et al , 2017; Zhang, & Zhu , 2011;
Liu & et al. , 2018; Özsoydan, Baykaşog̃lu , 2019; Clerc, & Kennedy , 2002).

There are many mutation and crossover operators developed for sDE. Mutation operators generally
produce a new solution-vectors by using one of the two different methods. The first type of solution-
vector generation methods are simply based on the parameter-space based vector blending (Das, Mullick,
& Suganthan , 2016; Opara, & Arabas , 2018). Although these methods allow to produce a new vector
that is very different from parent vectors, its success depends on gene diversity in parent vectors (Das,
Mullick, & Suganthan , 2016; Opara, & Arabas , 2018; Zhang et al , 2019). Methods of generating the
second type of solution-vector are based on producing the new solution-vector by using a pseudo random
number generator. These methods are not affected by the problem of gene-diversity, but the search process
is prolonged and often becomes inefficient (Das, Mullick, & Suganthan , 2016; Zhang et al , 2019). There
are two types of crossover operators called binomial and exponential for sDE (Das, Mullick, & Suganthan
, 2016). Unfortunately, there is no analytical method to show which mutation and crossover operators
should be used to solve a numerical problem most efficiently by using sDE. Therefore, it is difficult and
time consuming to determine the combination of mutation and crossover operators required to operate
the relevant search process in the most efficient manner. Developing more efficient mutation and crossover
processes can make the relevant search process radically efficient (Das, Mullick, & Suganthan , 2016; Zhang
et al , 2019).

The parameters of EAs can be divided into two groups; common parameters and structural parameters.
Common parameters are the parameters that cannot be structurally related to the direct algorithm, such
as the number of iterations, the number of elements of the pattern matrix (i.e., population in raw-genetic
methods), and the size of problem. The values of these parameters all affect the success of problem solving
in all EAs. Structural parameters, which are directly necessary to define the relevant algorithm, affect the
problem solving success of the algorithm and its convergence ability. Apart from common parameters,
EAs have other parameters that make their use difficult and require time-consuming parameter adjustment
processes (Civicioglu , 2013a, 2012, 2013b; Price, Storn, & Lampinen , 2005; Karabog̃a, & Basturk B , 2007).

The parameter adaptation methods developed for EAs can be divided into 3 groups; deterministic meth-
ods, adaptive methods and self-adaptive methods. Deterministic methods change the parameter by using
analytical methods without using the information provided by the algorithm. Deterministic methods do not
have the ability to change behavior depending on the type of problem. Cuckoo Search Algorithm (CUCKOO)
is a very successful and very fast differential evolution algorithm (Civicioglu, & Besdok , 2013, 2014; Yang,
& Deb , 2009). The parameters of CUCKOO have fixed values. Therefore, it uses a deterministic process
for tuning the parameters. Adaptive methods adjust the values of the corresponding control parameters
according to the success of the algorithm. Adaptive Differential Evolution Algorithm (JADE) (Zhang, &
Sanderson , 2009) and SADE (Brest et al , 2006) are DE algorithms with the ability to set adaptive param-
eters. Adaptive methods are capable of changing behavior depending on the success achieved. Self-adaptive
methods determine the value of a parameter separately for each pattern vector. Artificial Bee Colony Algo-

3

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 4

rithm (ABC) is such an algorithm (Karabog̃a, & Basturk B , 2007; Civicioglu , 2013a,b). In the adaptive
parameter determination method, the pattern vectors with good parameter values have the potential to
better evolve. Using an adaptive or self-adaptive method to determine the relevant parameter values of an
EA may improve the problem-solving success of the respective EA. This cannot completely eliminate the
trial-and-error process required to determine the parameter values, but it can be quite shortened. Adaptive
and Self-Adaptive DEs are more successful than classic DE in solving numerical optimization problems.
Even if parameter values are adaptively determined, finding the best mutation and crossover strategy that
should be used to solve the problem involves a time-consuming trial-and-error process (Civicioglu , 2013a,
2012, 2013b). This motivates the development of new DE techniques whose parameters can be randomly
determined, and the mutation and crossover processes are relatively simple.

A universal DE (uDE) that is free from deficiencies caused by the genetic operators of sDE can search the
search space more efficiently. The problem solving success of a uDE is not sensitive to the genetic operators
used and the initial values of the parameters of the relevant operators. uDE development efforts aim to
develop highly advanced DE versions that are parameter-free, very efficient, fast and easier to control.
The need for an easily controllable, simple structured, non-recursive, highly efficient, fast and practical
parameter-free uDE has motivated efforts to develop the proposed algorithm, BSD.

In this paper, ABC, JADE, CUCKOO and WDE were used as tested methods due to their good problem
solving abilities.

ABC has been used in many studies and its problem-solving success is better than many of the EAs
(Karabog̃a, & Basturk B , 2007; Civicioglu , 2013a, 2012, 2013b). ABC is a structurally adaptive algorithm
that tends to investigate more efficient areas of search space in more detail. Inefficient search space segments
are abandoned after a certain number of searches. During this time, using unboundend search may require
minor structural changes. ABC searches separately for each pattern vector parameter. Therefore, the pattern
vectors in the next generation pattern matrix cannot be determined naturally before the search process for
a pattern vector is completed.

JADE is an extremely successful and highly developed adaptive DE (Zhang, & Sanderson , 2009). JADE
can converge to the problem solution at an astonishing speed (Zhang, & Sanderson , 2009). The structure
of JADE is quite complex. JADE can do bounded / unbounded search. In JADE, unbounded search does
not require a structural modification.

CUCKOO has a two-step search process (Civicioglu, & Besdok , 2013, 2014; Yang, & Deb , 2009).
CUCKOO has the ability to converge surprisingly fast to the result of the problem. CUCKOO uses levy-
fly rules. Therefore, the evolutionary step can change the magnitude value (i.e., the scale value) and
the direction of evolution, rapidly. This makes it very easy for CUCKOO to escape from local solutions.
CUCKOO can do bounded / unbounded search.

A random determination of EA’s parameter values means that it does not have a parameter in practice.
The values of the intrinsic parameters of Weighted Differential Evolution Algorithm (WDE) (Civicioglu,
Besdok, & et al , 2018) are randomly determined. Therefore, WDE is a structurally parameter-free method,
in practice. WDE is more successful in solving various numerical problems than JADE (Zhang, & Sanderson
, 2009), ABC (Karabog̃a, & Basturk B , 2007), BSA (Civicioglu , 2013a), and CUCKOO (Civicioglu, Besdok,
& et al , 2018).

The structural parameter values of the BSD introduced in this paper are determined randomly. BSD
is a very simple structured row-genetic DE. In BSD, each pattern vector in the pattern matrix is evolved
separately. Since the evolution of each pattern vector is independent from the other, BSD is naturally a
parallel search algorithm. In BSD, the crossover process is controlled using Bernstain polynomials. Therefore
BSD does not have a parameter for the crossover process. The problem-solving success of BSD, like other
EAs, is sensitive to common parameter values.

Rapidly developing artificial intelligence (AI) technologies, (i.e.,Expert systems, Statistical Learning, Deep
Learning and Artificial Neural Networks, Fuzzy Systems, Evolutionary Computation) have the potential to
transform the entire social and economic structure of human society into a new form in the near future. Many
advanced AI applications still require new and highly advanced portable / wearable nano-scaled computers
/ sensors, energy technologies and computing algorithms. Therefore, even the smallest contributions of
researchers to evolutionary computing technologies are critical to technological development. In recent

4

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 5

years, researchers have focused on developing rapid EA methods with more efficient genetic operators.
The innovations provided by BSD are as follows;

• BSD uses a unique bijective mutation strategy.

• BSD uses a more efficient crossover operator than those of sDE’s crossover operators.

• The crossover process of BSD is controlled randomly by using Bernstein polynomials.

• BSD does not have a pre-fixed mutation and crossover rate value, in contrary to sDE.

• Since BSD is a non-recursive method, it is easy using BSD with parallel-computing methods.

• BSD does not require parameter tuning phases for intrinsic parameters of mutation and crossover
operators, in contrary to sDE and its modern variants.

• BSD is a partially-elitist method, in contrary to elitist methods (i.e.,ABC, JADE, and CUCKOO).

This paper is organized as follows: In Section 2, Bernstain-Search Differential Evolution Algorithm
(BSD) is expressed. In Section 3, Experiments are given and finally in Section 4, Conclusions are presented.

2. Bernstain-Search Differential Evolution Algorithm (BSD)

In the literature of evolutionary algorithms, a random solution is called a pattern vector and N pattern
vectors form the pattern matrix P. Each pattern vector consists of D individuals. EAs can perform bounded
and/or unbounded search. Bounded search works between the upper and lower limits of the individuals
(Civicioglu , 2013a, 2012, 2013b; Civicioglu, Besdok, & et al , 2018). BSD is designed as a global minimizer
algorithm that performs bounded search.

In BSD, individuals are determined using Eq 1;

Pi,j ∼ U(lowj , upj) | i = [1 : N], j = [1 : D], i, j ∈ Z+ (1)

The objective function values of the pattern vectors are calculated using Eq 2;

fitPi = F(Pi) (2)

The global minimizer pattern vector, bestP, which provides the best solution to the problem, and the objective
function value of the global minimizer pattern vector, solP, are obtained with Eq 3;

[solP , bestP] = [fitP(γ), P(γ)] | fitP(γ) = min(fitP) | γ ∈ [1 : N] (3)

BSD controls the crossover ratio with M by using Eq 4-Eq 5. The initial value of M is determined by using
Eq 4.

M(i=1:N,j=1:D) = 0 (4)

M(i,u(1:dρ·De)) = 1 (5)

Here, ρ is defined using Eq 6;

switch κ0
case 1 ρ = (1− β)2

case 2 ρ = 2 · β · (1− β)
case 3 ρ = β2

endsw

(6)

5

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 6

where β ∼ U(0, 1) and κ0 =
⌈
3 · κ3

1
⌉
, κ1 ∼ U[0 1], κ0 ∈ U{1 : 3}. In the Eq 6, the ρ value is computed by

using 2nd degree Bernstain polynomials (Azhari & et al , 2018). The 2nd degree Bernstain polynomials are
described in Subsection 2.2, Bernstain Polynomials.

The u vector, in Eq 5, is defined by using Eq 7;

u = permute(1 : D) (7)

Here, the permute(·) function randomly changes the order of the elements of (·). The evolutionary step size,
F, is determined by using Eq 8.





If κ2 ≺ κ3 then

F =
([
η3

(1,1:D) ◦
∣∣∣λ3

(1,1:D)

∣∣∣
]′
×Q(1,1:N)

)′

else
F = λ3

(N,1) × Q(1,D)
end

(8)

Here, κ2:3, η, and λ are random numbers that receive a new value in each call, where κ2:3, η ∼ U(0, 1), λ ∼
N(0, 1), and (·, ·) sized all-ones matrix Q(·,·) = 1.

BSD’s trial pattern vector (i.e., Ti) generation process is a random crossover process. In the BSD, the
trial pattern vectors are generated by using the system equation defined in Eq 9.

T = P + F ◦M ◦
(

(w∗)3 ◦ E +
(

1− (w∗)3
)
◦ bestP − P

)
| w∗(1:N,1) ∼ U(0, 1) (9)

where, E = w · PL1 + (1− w) · PL2 | w(1:N,1:D) ∼ U(0, 1) and L1 and L2 are defined in Eq 10.

L1 = permute(1 : N), L2 = permute(1 : N) | L1 6= [1 : N] , L1 6= L2 (10)

If an individual of a trial pattern vector exceeds the search space, the individual is updated using the Eq 11.

If (Ti,j < lowj) or (Ti,j > upj) then Ti,j = lowj + δ · (upj − lowj) (11)

Here, δ ∼ U(0, 1).
The objective function, F(·), values, fitT, of the trial pattern vectors are computed by using Eq 12;

fitT = F(T) (12)

Trial pattern vector, which provides a better objective function value than the corresponding pattern vector,
is used to update the relevant pattern vector. It is also updated in the objective function value of the pattern
vector. This process is achieved by using Eq 13.

If fitT(i∗) < fitP(i∗), [P(i∗), fitP(i∗)] = [T(i∗), fitT(i∗)] | i∗ ∈ [1 : N] (13)

In the present iteration step, the pattern vector which provides the best solution, bestP, and its objective
function value, solP, are obtained by using Eq 14.

[solP , bestP] = [fitP(γ), P(γ)] | fitP(γ) = min(fitP) (14)

The pseudo-code of BSD is given in Fig. 1.
The similarities and differences of BSD and the tested methods are as follows:

• BSD’s random crossover process differs from the corresponding crossover processes of the tested
methods.

• The BSD’s crossover process is a stochastic process based on the use of Bernstain polynomials and
6

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 7

Input: Objective Function:F , Search-Space Limits:(low, up), Size of Pattern Matrix:N,
Dimension of problem: D, Maximum Number of Iterations: MaxCycle
Output: solP: Global Minimum, bestP: Global Minimizer
// Initialization

1 Pi,j ∼ U(lowj , upj) | i = [1 : N], j = [1 : D] , where i, j ∈ Z+

2 fitP i = F(Pi)
3 [solP , bestP] = [fitP (γ), P(γ)] | fitP(γ) = min(fitP) | γ ∈ [1 : N]
4 for Iteration=1 to MaxCycle do

// Generation of Mutation Control Matrix ; M
5 M(i=1:N,j=1:D)=0
6 for i=1 to N do
7 u = permute(1 : D)
8 Generate β, where β ∼ U(0,1)
9 Generate κ0, where κ0 =

⌈
3 · κ1

3
⌉
, κ1 ∼ U [0 1], κ0 ∈ U{1 : 3}

10 switch κ0 do
11 case 1, ρ = (1− β)2

12 case 2, ρ = 2 · β · (1− β)
13 case 3, ρ = β2

14 endsw
15 M(i,u(1:dρ·De)) = 1
16 end

// Generation of Evolutionary Step Size; F
17 κ2:3, η, and λ are random numbers, where κ2:3 ∼ U(0, 1), η ∼ U(0, 1), λ ∼ N(0, 1), and all-ones matrix Q(·,·) = 1
18 if κ2 < κ3 then

19 F =
([
η3

(1,1:D) ◦
∣∣λ3

(1,1:D)

∣∣]′ ×Q(1,1:N)

)′

20 else
21 F = λ3

(N,1) × Q(1,D)
22 end

// Generation of Trial Pattern Vectors; T
23 L1 = permute(1 : N), L2 = permute(1 : N) | L1 6= [1 : N] , L1 6= L2
24 E = w · PL1 + (1− w) · PL2 | w(1:N,1:D) ∼ U(0, 1)
25 T = P + F ◦M ◦

(
(w∗)3 ◦ E +

(
1− (w∗)3

)
◦ bestP − P

)
| w∗(1:N,1) ∼ U(0, 1)

// Boundary Control Mechanism
26 if (Ti,j < lowj) or (Ti,j > upj) then Ti,j = lowj + δ · (upj − lowj) | δ ∼ U(0, 1)

// Update
27 fitT = F(T)
28 if fitT(i∗) < fitP (i∗) then [P(i∗), fitP (i∗)] = [T(i∗), fitT(i∗)] | i∗ ∈ [1 : N]

// Get the solutions
29 [solP , bestP] = [fitP (γ), P(γ)] | fitP(γ) = min(fitP)
30 end

Figure 1. Pseudo code of the Bernstain-Search Differential Evolution Algorithm (BSD). The unoptimized Matlab code of the
BSD is publicly available at (Mathworks , 2019).

7

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 8

there is no parameter controlling this process.

• Since BSD uses the global minimizer pattern vector in its system equation (i.e., Eq 9), it shows a
partially elitist behavior whereas ABC and CUCKOO are elitist algorithms.

• The BSD is sensitive to the values of common control parameters (i.e., N, D and number of iterations)
such as tested methods (i.e., ABC, JADE, CUCKOO and WDE).

• BSD can operate in parallel to calculate the objective function values, and BSD can perform bounded
/ unbounded search without any modification.

• BSD has a one-step search process, unlike ABC and CUCKOO.

2.1. Nomenclature
Symbol Meaning / Definition
F Objective function.
low, up Lower and upper limits of search-space.
N Size of pattern matrix.
D Dimension of problem.
MaxCycle Maximum number of iterations.
gmin Global minimum value.
gbest The global minimizer pattern vector.
κ(·) ∼ U(0, 1), κ(·) 6= 0 κ is a uniform random number.
λ(·) ∼ N(0, 1) λ is a normal random number.
η ∼ N(0, 1) η is a normal random number.
β ∼ U(0, 1) β is a uniform random number.
U(·) Continuous Uniform Distribution.
U{·} Discrete Uniform Distribution.
P(i0,j0) | P(i0,j0) ∼ U(low(j0), up(j0)) Pattern vectors of pattern matrix.
fitP(i0) Fitness values of Pi0=1:N .
permute() Permuting function.
◦ Hadamart multiplication operator.

2.2. Bernstain Polynomials
The 2nd degree Bernstain polynomials (Azhari & et al , 2018) are identified using Eq.s 15-16;

Bs,n(t) =
(
n
s

)
ts(1− t)n−s (15)

Here s = 0 : n ,
(
n
s

)
= n!

s!(n−s)! . Eq. 16 generates (n+ 1) sized nth degree Bernstain polynomials. For
s < 0 and s > n, Bs,n = 0.

B0,2(t) = (1− t)2

B1,2(t) = 2t(1− t)
B2,2(t) = t2

(16)

Fig. 2 illustrates 2nd degree Bernstain polynomials for 0 ≤ t ≤ 1 ;

8

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 9

Figure 2. 2nd degree Bernstain polynomials.

9

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 10

2.3. Benchmark Problems
Numerical optimization problem solving capability of BSD that is introduced in this paper is examined

by using 30 benchmark problems of CEC'2014 (Liang, Qu, & Suganthan , 2013), F1-F30, and 60 classic
benchmark problems (Matlab , 2019a,b), F31-F90. Structures of F1-F30 are more complex than those of
the classic benchmark problems and their solutions ares relatively more difficult. Dimensions of F1-F30
are selected as 10. Detailed mathematical definitions belonging to F1-F30 can be found in (Liang, Qu, &
Suganthan , 2013). Some properties of the classic benchmark problems are given in Table 1.

In this paper, in order to examine the success of BSD in the solution of real-world engineering problems,
an image vectorization problem (Bergen & Ross , 2012) for 12 images (i.e., Test Img.s 1-12) and one TIN
refinement problem (Chernikov, & Chrisochoides , 2012; Civicioglu, & Alci , 2004) for Mount Erciyes, in
Kayseri City in Turkey, were used;

2.4. Statistical Analysis
In this paper, a two-tailed Wilcoxon Signed Rank Test (Derrac, Garca, & Molina , 2011; Civicioglu ,

2013a, 2012, 2013b) was used for the statistical comparison of the results obtained from the experiments
as in (Civicioglu, Besdok, & et al , 2018). In statistical comparisons, the level of significance is set to 0.05
(Derrac, Garca, & Molina , 2011).

3. Experiments

The related benchmark problems were solved using 50 different initial pattern matrix. Each algorithm
used the same initial pattern matrix at each experiment. In experiments performed, the numerical resolution
level is 10−16. Dimension of pattern matrix was set to 30 in the experiments. Experimental test results were
recorded at the end of the 200,000th iterations. In this paper, Mersenne Twister was used as the random
number generator (Matsumoto, & Nishimura , 1998). Initial values of control parameters of the tested
methods used in this paper are given in Table 2.

3.1. Numerical function optimization
In this section, success of BSD in numerical function optimization problems was examined with detailed

applications.
The mean value, Mu, and standard deviation value, Std, of the solutions obtained by BSD and test

methods were calculated, in order to conventionally analyze the ability of the related methods to reach the
minimum of the related problem. Conventional statistical results (i.e., Mu and Std) are given in Tables 3-5.

The Wilcoxon Signed rank test (p = 0.05) based statistical comparison results of the numerical problem
solving success of BSD and tested methods for F1-F90 are given in Tables 6-7.

On the last row of Table 6, results obtained from BSD and tested methods were compared in (+,=,-
). (+) is the benchmark function number that BSD obtains a statistically better result than the related
tested method. (=) is the benchmark function number that the performances of BSD and the related
tested method are statistically equal. (-) is the benchmark function number that the related tested method
obtained a statistically better result than BSD.

10

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 11

Ta
bl
e
1.

T
he

cl
as
si
c
be

nc
hm

ar
k
pr
ob

le
m
s
(L

ow
,U

p;
Lo

w
er

an
d
up

pe
r
lim

its
of

se
ar
ch
-s
pa

ce
,D

im
:
D
im

en
si
on

of
pr
ob

le
m
).

#
Fu

nc
ti
on

Lo
w

U
p

D
im

#
Fu

nc
ti
on

Lo
w

U
p

D
im

#
Fu

nc
ti
on

Lo
w

U
p

D
im

F
31

A
bs
ol
ut
e

-1
00

10
0

30
F
51

H
ar
tm

an
3

0
1

3
F
71

R
os
en
br
oc
k

-3
0

30
30

F
32

A
ck
le
y

-3
2

32
30

F
52

H
ar
tm

an
6

0
1

6
F
72

Sc
ha

ffe
r

-1
00

10
0

2
F
33

B
ea
le

-4
.5

4.
5

5
F
53

H
im

m
el
bl
au

-5
5

30
F
73

Sc
hw

ef
el

-5
00

50
0

30
F
34

B
oh

ac
he

cs
ky

1
-1
00

10
0

2
F
54

H
um

p
-5

5
2

F
74

Sc
hw

ef
el
_
1_

2
-1
00

10
0

30
F
35

B
oh

ac
he

cs
ky

2
-1
00

10
0

2
F
55

K
ow

al
ik

-5
5

4
F
75

Sc
hw

ef
el
_
2_

22
-1
0

10
30

F
36

B
oh

ac
he

cs
ky

3
-1
00

10
0

2
F
56

La
ng

er
m
an

n
0

10
2

F
76

Sh
ek
el
10

0
10

4
F
37

B
oo

th
-1
0

10
2

F
57

La
ng

er
m
an

n
0

10
5

F
77

Sh
ek
el
5

0
10

4
F
38

B
ra
ni
n

-5
10

2
F
58

La
ng

er
m
an

n
0

10
10

F
78

Sh
ek
el
7

0
10

4
F
39

C
ol
vi
lle

-1
0

10
4

F
59

Le
vy

-1
0

10
30

F
79

Sh
ub

er
t

-1
0

10
2

F
40

D
ix
on

pr
ic
e

-1
0

10
30

F
60

M
at
ya

s
-1
0

10
2

F
80

Si
xh

um
pc

am
el
ba

ck
-5

5
2

F
41

D
ro
pw

av
e

-2
2

2
F
61

M
ic
ha

le
w
ic
s1
0

0
pi

10
F
81

So
lo
m
on

-1
00

10
0

30
F
42

E
as
om

-1
00

10
0

2
F
62

M
ic
ha

le
w
ic
s2

0
pi

2
F
82

Sp
he

re
2

-1
00

10
0

30
F
43

E
gg

ho
ld
er

-5
12

51
2

2
F
63

M
ic
ha

le
w
ic
s5

0
pi

5
F
83

St
ep

2
-1
00

10
0

30
F
44

F
le
tc
he

r
-p
i

pi
2

F
64

P
en

al
iz
ed

-5
0

50
30

F
84

St
ep

in
t

-5
.1
2

5.
12

5
F
45

F
le
tc
he

r
-p
i

pi
5

F
65

P
en

al
iz
ed

2
-5
0

50
30

F
85

Su
m
sq
ua

re
s

-1
0

10
30

F
46

F
le
tc
he

r
-p
i

pi
10

F
66

P
er
m

-4
4

4
F
86

T
ri
d

-3
6

36
6

F
47

Fo
xh

ol
es

-6
5.
53

6
65

.5
36

2
F
67

P
ow

el
l

-4
5

24
F
87

T
ri
d

-1
00

10
0

10
F
48

G
iu
nt
a

-1
1

2
F
68

P
ow

er
su
m

0
4

4
F
88

W
ei
er
st
ra
ss

-0
.5

0.
5

30
F
49

G
ol
ds
te
in
pr
ic
e

-2
2

2
F
69

Q
ua

rt
ic

-1
.2
8

1.
28

30
F
89

W
hi
tl
ey

-1
0

10
30

F
50

G
ri
ew

an
k

-6
00

60
0

30
F
70

R
as
tr
ig
in

-5
.1
2

5.
12

30
F
90

Za
kh

ar
ov

-5
10

10

11

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 12

Table 2. Initial values of control parameters of the tested methods.

Algorithm Initial Values of Control Parameters
1 ABC limit = N ·D

Size of employed bee = (size of colony)/2
2 JADE F ∼ N(µc, 0.10)

CR ∼ Cauchy(µF , 0.10) , c = 0.10 , p = 0.05
3 CUCKOO β = 1.50 , p0 = 0.25
4 WDE There are no parameters other than the common parameters (i.e., the

number of iterations, N, and D).
5 BSD There are no parameters other than the common parameters (i.e., the

number of iterations, N, and D).

12

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 13

Ta
bl
e
3.

R
es
ul
ts

be
lo
ng

in
g
to

te
st
s
ca
rr
ie
d
ou

t
by

us
in
g
C
E
C

'2
01
4
be

nc
hm

ar
k
pr
ob

le
m
s
(i
.e
.,
F1

-F
30
).

Fn
c

A
BC

JA
D
E

C
U
C
K
O
O

W
D
E

BS
D

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

F1
1.
14
4E

+
04

1.
00
8E

+
03

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

1.
53
6E

-0
3

1.
35
4E

-0
4

F2
7.
98
2E

-0
2

7.
37
1E

-0
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
9.
53
5E

-0
1

3.
15
9E

-0
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
2.
36
3E

-0
3

6.
48
9E

-0
5

3.
47
8E

+
01

9.
55
2E

-0
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

3.
63
8E

-0
3

9.
99
1E

-0
5

F5
4.
22
8E

+
00

1.
83
1E

-0
1

1.
33
5E

-0
1

5.
78
0E

-0
3

2.
00
0E

+
01

8.
66
2E

-0
1

1.
99
9E

+
01

8.
65
8E

-0
1

1.
90
1E

+
01

8.
23
2E

-0
1

F6
9.
14
3E

-0
1

5.
47
3E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

1.
27
4E

+
00

7.
62
5E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

F7
1.
13
7E

-1
2

2.
99
6E

-1
5

0.
00
0E

+
00

0.
00
0E

+
00

7.
39
6E

-0
3

1.
94
9E

-0
5

5.
16
1E

-1
1

1.
36
0E

-1
3

6.
04
9E

-0
3

1.
59
4E

-0
5

F8
0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F9
3.
99
7E

+
00

3.
20
6E

-0
1

0.
00
0E

+
00

0.
00
0E

+
00

1.
99
0E

+
00

1.
59
6E

-0
1

4.
97
5E

+
00

3.
99
0E

-0
1

1.
77
2E

+
00

1.
42
1E

-0
1

F1
0

8.
18
5E

-1
2

4.
36
2E

-1
3

2.
49
8E

-0
1

1.
33
1E

-0
2

6.
24
5E

-0
2

3.
32
8E

-0
3

1.
64
4E

-0
7

8.
75
9E

-0
9

0.
00
0E

+
00

0.
00
0E

+
00

F1
1

4.
32
9E

+
01

1.
59
5E

+
00

6.
24
5E

-0
2

2.
30
2E

-0
3

2.
68
9E

+
01

9.
90
9E

-0
1

3.
52
4E

+
01

1.
29
9E

+
00

3.
12
3E

-0
1

1.
15
1E

-0
2

F1
2

1.
33
9E

-0
1

7.
10
4E

-0
3

4.
32
3E

-0
2

2.
29
4E

-0
3

2.
10
8E

-0
3

1.
11
8E

-0
4

1.
93
1E

-0
2

1.
02
5E

-0
3

1.
10
8E

-0
4

5.
87
8E

-0
6

F1
3

7.
44
3E

-0
2

1.
37
7E

-0
3

6.
99
4E

-0
2

1.
29
4E

-0
3

1.
09
5E

-0
1

2.
02
6E

-0
3

7.
63
8E

-0
2

1.
41
3E

-0
3

7.
36
7E

-0
2

1.
36
3E

-0
3

F1
4

1.
06
3E

-0
1

9.
43
0E

-0
3

1.
02
8E

-0
1

9.
12
6E

-0
3

4.
46
7E

-0
2

3.
96
5E

-0
3

5.
83
4E

-0
2

5.
17
8E

-0
3

8.
82
2E

-0
2

7.
82
9E

-0
3

F1
5

4.
67
9E

-0
1

1.
68
8E

-0
2

3.
84
7E

-0
1

1.
38
8E

-0
2

5.
17
5E

-0
1

1.
86
7E

-0
2

4.
25
0E

-0
1

1.
53
3E

-0
2

4.
61
2E

-0
1

1.
66
4E

-0
2

F1
6

1.
51
0E

+
00

2.
41
7E

-0
2

4.
59
6E

-0
1

7.
35
2E

-0
3

1.
17
8E

+
00

1.
88
4E

-0
2

1.
55
4E

+
00

2.
48
6E

-0
2

1.
04
6E

+
00

1.
67
3E

-0
2

F1
7

3.
43
1E

+
04

9.
47
4E

+
02

1.
35
1E

+
02

3.
72
9E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

4.
81
6E

+
00

1.
33
0E

-0
1

4.
17
1E

+
01

1.
15
2E

+
00

F1
8

6.
93
8E

+
00

3.
55
2E

-0
2

1.
65
0E

-0
1

8.
44
4E

-0
4

7.
01
4E

-0
5

3.
59
1E

-0
7

2.
76
9E

-0
2

1.
41
7E

-0
4

4.
27
5E

-0
4

2.
18
9E

-0
6

F1
9

1.
18
8E

-0
1

1.
09
0E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

2.
18
8E

-0
1

2.
00
7E

-0
2

9.
93
7E

-0
3

9.
11
5E

-0
4

F2
0

4.
78
9E

+
00

1.
58
9E

-0
1

3.
16
2E

-0
2

1.
04
9E

-0
3

3.
89
4E

-0
6

1.
29
2E

-0
7

4.
94
3E

-0
2

1.
64
0E

-0
3

2.
60
8E

-0
2

8.
65
3E

-0
4

F2
1

9.
51
9E

+
02

2.
90
5E

+
01

2.
41
9E

-0
1

7.
38
0E

-0
3

1.
18
9E

-0
5

3.
62
9E

-0
7

1.
11
1E

-0
2

3.
39
0E

-0
4

1.
67
7E

+
01

5.
11
7E

-0
1

F2
2

1.
43
6E

-0
1

1.
33
8E

-0
2

3.
12
3E

-0
1

2.
90
9E

-0
2

9.
60
8E

-0
3

8.
95
0E

-0
4

7.
90
1E

-0
3

7.
36
0E

-0
4

3.
76
4E

-0
3

3.
50
7E

-0
4

F2
3

9.
43
4E

+
00

6.
49
4E

-0
3

3.
29
5E

+
02

2.
26
8E

-0
1

3.
29
5E

+
02

2.
26
8E

-0
1

3.
29
5E

+
02

2.
26
8E

-0
1

3.
25
9E

+
02

2.
24
4E

-0
1

F2
4

1.
14
5E

+
02

2.
42
8E

+
00

1.
08
7E

+
02

2.
30
7E

+
00

1.
09
6E

+
02

2.
32
4E

+
00

1.
09
1E

+
02

2.
31
4E

+
00

1.
07
3E

+
02

2.
27
7E

+
00

F2
5

1.
16
0E

+
02

9.
90
0E

+
00

1.
10
3E

+
02

9.
41
6E

+
00

1.
00
0E

+
02

8.
53
7E

+
00

1.
19
3E

+
02

1.
01
8E

+
01

1.
08
4E

+
02

9.
25
7E

+
00

F2
6

8.
83
8E

+
01

4.
34
7E

+
00

1.
00
0E

+
02

4.
92
0E

+
00

1.
00
1E

+
02

4.
92
2E

+
00

1.
00
0E

+
02

4.
91
9E

+
00

9.
70
7E

+
01

4.
77
4E

+
00

F2
7

6.
60
8E

+
00

1.
47
3E

-0
1

4.
00
1E

+
02

8.
92
1E

+
00

6.
95
7E

-0
1

1.
55
1E

-0
2

2.
37
2E

+
00

5.
28
7E

-0
2

1.
79
6E

+
00

4.
00
4E

-0
2

F2
8

1.
67
3E

+
02

1.
63
8E

+
01

4.
78
0E

+
02

4.
68
0E

+
01

3.
56
8E

+
02

3.
49
4E

+
01

3.
57
0E

+
02

3.
49
6E

+
01

3.
54
2E

+
02

3.
46
8E

+
01

F2
9

2.
38
1E

+
02

2.
31
0E

+
01

2.
24
2E

+
02

2.
17
5E

+
01

1.
00
0E

+
02

9.
70
2E

+
00

1.
02
0E

+
02

9.
89
5E

+
00

2.
26
0E

+
02

2.
19
2E

+
01

F3
0

4.
87
1E

+
02

1.
46
8E

+
01

4.
65
7E

+
02

1.
40
3E

+
01

4.
62
3E

+
02

1.
39
3E

+
01

2.
34
5E

+
02

7.
06
6E

+
00

3.
57
1E

+
02

1.
07
6E

+
01

13

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 14

Ta
bl
e
4.

R
es
ul
ts

be
lo
ng

in
g
to

te
st
s
ca
rr
ie
d
ou

t
by

us
in
g
cl
as
si
c
be

nc
hm

ar
k
pr
ob

le
m
s
(i
.e
.,
F3

1-
F6

0)
.

Fn
c

A
BC

JA
D
E

C
U
C
K
O
O

W
D
E

BS
D

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

F3
1

3.
85
1E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
2

2.
93
1E

-1
4

2.
24
7E

-1
5

6.
57
3E

-1
5

1.
74
0E

-1
5

7.
28
3E

-1
5

1.
42
1E

-1
5

7.
28
3E

-1
5

1.
42
1E

-1
5

7.
99
4E

-1
5

0.
00
0E

+
00

F3
3

1.
51
1E

-1
1

1.
63
1E

-1
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
4

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
5

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
6

1.
36
6E

-1
5

1.
06
4E

-1
5

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
7

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F3
8

3.
97
9E

-0
1

0.
00
0E

+
00

3.
97
9E

-0
1

0.
00
0E

+
00

3.
97
9E

-0
1

0.
00
0E

+
00

3.
97
9E

-0
1

0.
00
0E

+
00

3.
97
9E

-0
1

0.
00
0E

+
00

F3
9

3.
26
8E

-0
2

1.
65
5E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
0

4.
65
4E

-1
5

1.
91
4E

-1
5

6.
66
7E

-0
1

0.
00
0E

+
00

6.
66
7E

-0
1

0.
00
0E

+
00

6.
66
7E

-0
1

0.
00
0E

+
00

6.
66
7E

-0
1

0.
00
0E

+
00

F4
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
4

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F4
5

1.
51
3E

-0
2

2.
76
0E

-0
2

3.
71
9E

+
01

7.
43
8E

+
01

0.
00
0E

+
00

0.
00
0E

+
00

1.
70
2E

-1
5

8.
48
4E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

F4
6

5.
10
4E

+
00

1.
82
7E

+
00

3.
13
0E

+
02

6.
07
3E

+
02

0.
00
0E

+
00

0.
00
0E

+
00

3.
19
6E

-0
6

3.
45
9E

-0
6

0.
00
0E

+
00

0.
00
0E

+
00

F4
7

9.
98
0E

-0
1

0.
00
0E

+
00

9.
98
0E

-0
1

0.
00
0E

+
00

9.
98
0E

-0
1

0.
00
0E

+
00

9.
98
0E

-0
1

0.
00
0E

+
00

9.
98
0E

-0
1

0.
00
0E

+
00

F4
8

6.
44
7E

-0
2

0.
00
0E

+
00

6.
44
7E

-0
2

0.
00
0E

+
00

6.
44
7E

-0
2

0.
00
0E

+
00

6.
44
7E

-0
2

0.
00
0E

+
00

6.
44
7E

-0
2

0.
00
0E

+
00

F4
9

3.
00
0E

+
00

1.
37
6E

-1
5

3.
00
0E

+
00

0.
00
0E

+
00

3.
00
0E

+
00

1.
98
6E

-1
6

3.
00
0E

+
00

0.
00
0E

+
00

3.
00
0E

+
00

1.
98
6E

-1
6

F5
0

0.
00
0E

+
00

0.
00
0E

+
00

3.
45
1E

-0
3

4.
29
7E

-0
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
4

4.
65
1E

-0
8

0.
00
0E

+
00

4.
65
1E

-0
8

0.
00
0E

+
00

4.
65
1E

-0
8

0.
00
0E

+
00

4.
65
1E

-0
8

0.
00
0E

+
00

4.
65
1E

-0
8

0.
00
0E

+
00

F5
5

3.
62
0E

-0
4

4.
42
3E

-0
5

3.
07
5E

-0
4

0.
00
0E

+
00

3.
07
5E

-0
4

0.
00
0E

+
00

3.
07
5E

-0
4

0.
00
0E

+
00

3.
07
5E

-0
4

0.
00
0E

+
00

F5
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
7

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
8

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F5
9

3.
69
6E

-1
6

0.
00
0E

+
00

3.
58
1E

-0
2

4.
38
6E

-0
2

1.
08
8E

-0
1

2.
17
5E

-0
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
0

5.
28
7E

-1
6

5.
49
1E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

14

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 15

Ta
bl
e
5.

R
es
ul
ts

be
lo
ng

in
g
to

te
st
s
ca
rr
ie
d
ou

t
by

us
in
g
cl
as
si
c
be

nc
hm

ar
k
pr
ob

le
m
s
(i
.e
.,
F6

1-
F9

0)
.

Fn
c

A
BC

JA
D
E

C
U
C
K
O
O

W
D
E

BS
D

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

M
u

St
d

F6
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
4

3.
12
8E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
5

3.
44
1E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F6
6

1.
33
5E

-0
2

8.
15
4E

-0
3

1.
81
3E

-0
3

2.
19
5E

-0
3

2.
04
5E

-0
7

4.
09
1E

-0
7

7.
76
0E

-0
6

7.
35
2E

-0
6

0.
00
0E

+
00

0.
00
0E

+
00

F6
7

1.
82
3E

-0
4

2.
32
1E

-0
5

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

5.
64
4E

-1
1

4.
96
8E

-1
1

F6
8

1.
04
8E

-0
3

3.
84
6E

-0
4

1.
72
7E

-0
4

2.
35
8E

-0
4

0.
00
0E

+
00

0.
00
0E

+
00

9.
15
1E

-0
9

7.
74
5E

-0
9

2.
04
4E

-0
7

3.
33
1E

-0
7

F6
9

3.
61
5E

-0
2

8.
57
5E

-0
3

1.
79
9E

-0
3

8.
21
9E

-0
4

2.
88
7E

-0
4

1.
02
5E

-0
4

2.
86
2E

-0
4

8.
87
5E

-0
5

1.
92
0E

-0
4

5.
23
7E

-0
5

F7
0

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

7.
96
0E

-0
1

1.
16
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
1

2.
76
2E

-0
2

2.
13
4E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
2

9.
40
6E

-0
9

1.
48
0E

-0
8

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
3

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
4

1.
16
8E

-0
1

2.
07
8E

-0
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
5

3.
61
5E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
7

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
8

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F7
9

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
0

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
1

6.
99
9E

-0
1

8.
94
4E

-0
2

3.
79
9E

-0
1

1.
32
7E

-0
1

2.
39
9E

-0
1

4.
89
9E

-0
2

1.
99
9E

-0
1

6.
32
5E

-0
2

1.
76
1E

-0
1

5.
57
3E

-0
2

F8
2

4.
22
2E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
3

0.
00
0E

+
00

0.
00
0E

+
00

2.
00
0E

-0
1

4.
00
0E

-0
1

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
4

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
5

3.
21
3E

-1
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
6

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
7

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
8

0.
00
0E

+
00

0.
00
0E

+
00

2.
02
6E

-0
1

4.
05
2E

-0
1

2.
33
1E

-0
2

4.
61
7E

-0
2

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F8
9

7.
02
6E

+
01

4.
99
5E

+
01

1.
29
8E

+
02

9.
69
4E

+
01

2.
33
5E

+
01

1.
75
7E

+
01

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

F9
0

1.
13
6E

-0
4

1.
37
6E

-0
4

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

0.
00
0E

+
00

15

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 16

Table 6. Comparison of CEC'2014 benchmark problems (i.e., F1-F30) solving successes of BSD and tested methods by using
Wilcoxon Signed rank test (p=0.05).

Fnc ABC JADE CUCKOO WDE
p R+ R- stat. p R+ R- stat. p R+ R- stat. p R+ R- stat.

F1 9.13E-07 0 465 + 0.999999 465 0 - 0.999999 465 0 - 0.999999 465 0 -
F2 9.13E-07 0 465 + 1 0 0 = 1 0 0 = 1 0 0 =
F3 9.13E-07 0 465 + 1 0 0 = 1 0 0 = 1 0 0 =
F4 0.999999 465 0 - 9.13E-07 0 465 + 0.999999 465 0 - 0.999999 465 0 -
F5 0.999999 465 0 - 0.999999 465 0 - 0.000345 67 398 + 0.000371 68 397 +
F6 9.13E-07 0 465 + 1 0 0 = 1 0 0 = 9.13E-07 0 465 +
F7 0.999999 465 0 - 0.999999 465 0 - 9.13E-07 0 465 + 0.999999 465 0 -
F8 1 0 0 = 1 0 0 = 1 0 0 = 1 0 0 =
F9 9.13E-07 0 465 + 0.999999 465 0 - 1.03E-05 25 440 + 9.13E-07 0 465 +
F10 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 +
F11 9.13E-07 0 465 + 0.999999 465 0 - 9.13E-07 0 465 + 9.13E-07 0 465 +
F12 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 +
F13 0.013875 125 340 + 0.999999 465 0 - 9.13E-07 0 465 + 2.48E-06 10 455 +
F14 2.04E-06 8 457 + 7.82E-06 22 443 + 0.999999 465 0 - 0.999999 465 0 -
F15 0.072097 161 304 = 0.999999 465 0 - 9.13E-07 0 465 + 0.999998 455 10 -
F16 9.13E-07 0 465 + 0.999999 465 0 - 9.13E-07 0 465 + 9.13E-07 0 465 +
F17 9.13E-07 0 465 + 9.13E-07 0 465 + 0.999999 465 0 - 0.999999 465 0 -
F18 9.13E-07 0 465 + 9.13E-07 0 465 + 0.999999 465 0 - 9.13E-07 0 465 +
F19 9.13E-07 0 465 + 0.999999 465 0 - 0.999999 465 0 - 9.13E-07 0 465 +
F20 9.13E-07 0 465 + 9.13E-07 0 465 + 0.999999 465 0 - 9.13E-07 0 465 +
F21 9.13E-07 0 465 + 0.999999 465 0 - 0.999999 465 0 - 0.999999 465 0 -
F22 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 +
F23 0.999999 465 0 - 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 +
F24 9.13E-07 0 465 + 0.025351 137328 + 0.000499 72 393 + 0.00679 112 353 +
F25 0.005705 109 356 + 0.261861 201264 = 0.999379 389 76 - 0.000218 61 404 +
F26 0.999992 442 23 - 0.020862 133332 + 0.069314 160 305 = 0.010621 120 345 +
F27 9.13E-07 0 465 + 9.13E-07 0 465 + 0.999999 465 0 - 9.13E-07 0 465 +
F28 0.999999 465 0 - 1.01E-06 1 464 + 0.255209 200 265 = 0.325453 210 255 =
F29 0.056624 155 310 = 0.5 232233 = 0.999999 465 0 - 0.999999 465 0 -
F30 9.13E-07 0 465 + 9.13E-07 0 465 + 9.13E-07 0 465 + 0.999999 465 0 -
+ 21 14 13 17
- 6 10 11 9
= 3 6 6 4

+: BSD is winner, −: tested method is winner, =: Similar performance.

16

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 17

Table 7. Comparison of classic benchmark problems (i.e., F31-F90) solving successes of BSD and tested methods by using
Wilcoxon Signed rank test (p=0.05).

Fnc ABC JADE CUCKOO WDE
p R+ R- stat. p R+ R- stat. p R+ R- stat. p R+ R- stat.

F31 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F32 3.94E-02 15 0 + 1.57E-01 0 3 - 3.17E-01 0 1 - 3.17E-01 0 1 -
F33 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F34 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F35 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F36 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F37 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F38 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F39 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F40 4.22E-02 0 15 - 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F41 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F42 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F43 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F44 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F45 4.31E-02 15 0 + 3.17E-01 1 0 + 1.00E+00 0 0 = 4.31E-02 15 0 +
F46 4.31E-02 15 0 + 1.09E-01 6 0 + 1.00E+00 0 0 = 4.31E-02 15 0 +
F47 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F48 3.17E-01 0 1 - 5.64E-01 4 2 - 8.33E-02 0 6 - 8.33E-02 0 6 -
F49 3.84E-02 15 0 + 2.53E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 =
F50 3.17E-01 1 0 + 1.80E-01 3 0 + 1.00E+00 0 0 = 1.00E+00 0 0 =
F51 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F52 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F53 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F54 1.00E+00 2 2 - 3.17E-01 0 1 - 3.17E-01 0 1 - 4.55E-02 10 0 +
F55 4.31E-02 15 0 + 4.55E-02 10 0 + 1.57E-01 3 0 + 8.33E-02 6 0 +
F56 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F57 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F58 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F59 4.31E-02 15 0 + 1.57E-01 3 0 + 3.17E-01 1 0 + 1.00E+00 0 0 =
F60 1.09E-01 6 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F61 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F62 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F63 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F64 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F65 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F66 4.31E-02 15 0 + 6.79E-02 10 0 + 3.17E-01 1 0 + 4.31E-02 15 0 +
F67 4.31E-02 15 0 + 4.31E-02 0 15 - 4.31E-02 0 15 - 4.31E-02 0 15 -
F68 4.31E-02 15 0 + 2.25E-01 12 3 - 4.31E-02 0 15 - 4.31E-02 0 15 -
F69 4.31E-02 15 0 + 4.31E-02 15 0 + 4.31E-02 15 0 + 4.31E-02 15 0 +
F70 1.00E+00 0 0 = 1.00E+00 0 0 = 1.80E-01 3 0 + 1.00E+00 0 0 =
F71 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F72 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F73 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F74 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F75 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F76 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F77 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F78 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F79 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F80 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F81 4.31E-02 15 0 + 4.31E-02 15 0 + 4.31E-02 15 0 + 3.94E-02 15 0 +
F82 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F83 1.00E+00 0 0 = 3.17E-01 1 0 + 1.00E+00 0 0 = 1.00E+00 0 0 =
F84 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F85 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F86 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F87 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
F88 1.00E+00 0 0 = 3.17E-01 1 0 + 1.80E-01 3 0 + 1.00E+00 0 0 =
F89 4.31E-02 15 0 + 4.31E-02 15 0 + 4.22E-02 15 0 + 1.00E+00 0 0 =
F90 4.31E-02 15 0 + 1.00E+00 0 0 = 1.00E+00 0 0 = 1.00E+00 0 0 =
+ 27 12 8 7
= 30 43 47 49
- 3 5 5 4

+: BSD is winner, −: tested method is winner, =: Similar performance.

17

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 18

In the solution of CEC'2014 benchmark problems, when results of BSD and tested methods were ex-
amined in (+,=,-) format, the following results are obtained; ABC (21,6,3), JADE (14,10,6), CUCKOO
(13,11,6), WDE (17,9,4).

Accordingly, BSD has statistically better results (54.17%) than those of the tested methods in 65 out of
a total of 120 piecewise comparisons. Successes of BSD and tested methods are statistically similar in 36
(30%) comparisons. Tested methods achieve statistically better results than BSD only in 19 comparisons
(15.83%).

Results belonging to the comparison of classic benchmark problems (i.e., F31-F90) solving successes of
BSD and tested methods by using Wilcoxon Signed rank test (p = 0.05) are given in Table 7.

In the solution of classic benchmark problems, when results of BSD and tested methods were examined
in (+,=,-) format, the following results are obtained; ABC (27,30,3), JADE (12,43,5), CUCKOO (8,47,5),
WDE(7,49,4).

Accordingly, BSD has statistically better results (22.50%) than those of the tested methods in 54 out of
a total of 240 piecewise comparisons. Successes of BSD and tested methods are statistically similar in 169
(70.42%) comparisons. Tested methods achieve statistically better results than BSD only in 17 comparisons
(7.08%) for the classic benchmark problems.

In order to analyze the time-complexity of BSD and the tested methods, the mean runtime values that
spent to converge to the results of the relevant benchmark problems were used. The mean runtime values of
the BSD and the related tested methods to the solutions of the ralated benchmark problems are illustrated
in Fig.s 3-4 as seconds. When examining Fig.s 3-4, it can be said that the fastest algorithms are JADE,
CUCKOO, BSD, WDE and ABC to solve F1-F90. In general, the time complexity values of BSD and
CUCKOO are similar and they are better than those of the ABC and WDE for the F1-F90.

Conventional benchmark problems are relatively easy to solve when compared to CEC2014 benchmark
problems. Therefore, the success of algorithms used in solving classic benchmark problems is relatively
similar.

3.2. Image Evolution Problem
Vector-geometry images (Bergen & Ross , 2012; Civicioglu, & Alci , 2004; Besdok, Civicioglu, & Alci ,

2004) consist of discrete geometric shapes such as circles, lines, and ellipses. Vector-geometry images are
used in graphical design, cartographic scientific visualization in Geomatics, and computer art applications.
If the number of geometric shapes that make up the vector-geometry image can be limited, the stylized
image of the target image can be generated. In the experiments performed in this section, vector-graphics
images of test pictures (i.e., related stylized images) are produced using circles and ellipses. The ellipses
are generated by rotating a circle on the image canvas in 3D space. In each image evolution iteration step,
only one circle is placed on the image canvas. The center;(x0,y0), radius;(radii), 3D turning angles; (Euler
angles:ωeuler, ϕeuler, κeuler), and alpha value, alpha, of each circle are optimized by using ABC, JADE,
CUCKOO, WDE and BSD. Therefore, in experiments performed for alpha <1, each pattern vector has 7
individuals; x0, y0, radii, ωeuler, ϕeuler, κeuler, and alpha. In the experiments performed for alpha = 1, each
pattern vector has only 6 individuals; x0, y0, radii, ωeuler, ϕeuler, and κeuler. In solving this problem, the
size of pattern matrix and the maximum number of iterations were determined as 5 and 1000 for alpha<1,
respectively. Similarly, the size of pattern matrix and the maximum number of iterations were determined
as 5 and 100 for alpha=1, respectively. Fig. 5 shows a few steps of the transparent image evolution process,
i.e., alpha<1, of Test Img-5 by using BSD.

Each stylized image is obtained at the end of an image evolution process. The initial form of stylized
images is a black background where the value of each pixel is zero. Then in each iteration, a new circle with
optimized geometric parameters is placed on the image’s canvas. Objective Function of image evolution
problem has been given in Eq. 17 ;

argmin
IEvolved

1
2562

∑
(IReference−IEvolved) (17)

18

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 19

Figure 3. Analysis of time-complexities of related methods for F1-F30 as mean runtime values.

19

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 20

Figure 4. Analysis of time-complexities of related methods for F31-F90 as mean runtime values.

Figure 5. Process during image evolution for Test Img-5: (a) 1st step, (b) 2nd step, (c) 3rd step, (d) 100th step.

20

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 21

Here IReference and IEvolved are 8-bit [256 256] pixels sized RGB images. IReference and IEvolved denote
original image and synthesized image by image evolution, respectively.

In this section, 12 test pictures (i.e., Test Img.s 1-12) were used in the experiments performed. Relevant
tests were performed using the alpha value and without the alpha value. alpha value controls the transparency
of the geometric shapes used in the evolved image.

Fig.s. 6-7 visualize the solutions obtained for alpha<1. The synthetic images produced at this stage
consist of 100 optimized circles.

Fig.s. 8-9 illustrate the results obtained for alpha=1 (i.e., geometric shapes are opaque). The synthetic
images produced at this stage consist of 1000 optimized circles. Objective function values which were
obtained in the tests performed for alpha <1 and alpha=1 are given in Table 8 and Table 9, respectively.
When Tables 8-9 are examined, it can be said that BSD generally achieves better objective function values
than those of the tested methods. When Fig.s. 6-9 are examined, BSD achieves qualitatively good results,
compared to comparison EAs. The results of the JADE are generally very close to the results of BSD. But
JADE’s computational load is too much higher than that of BSD. JADE also has a much more complex
structure than that of BSD.

21

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 22

Figure 6. Visual results of solutions of image evolution problem for Test Img.s 1-6.

22

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 23

Figure 7. Visual results of solutions of image evolution problem for Test Img.s 7-12.

23

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 24

Figure 8. Visualization of the best image vectorization solutions obtained by the related EAs for the Test Img.s 1-6.

24

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 25

Figure 9. Visualization of the best image vectorization solutions obtained by related EAs for the Test Img.s 7-12.

25

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 26

Table 8. The objective function values obtained by solving the image vectorization problem when alpha<1.

Test Image Algorithms
ABC JADE CUCKOO WDE BSD

Test Img-1 177.971 197.039 216.653 190.828 165.168
Test Img-2 551.371 553.867 633.186 537.566 520.017
Test Img-3 1066.319 1061.776 1248.424 997.936 912.446
Test Img-4 1645.673 1556.862 1865.778 1548.464 1434.537
Test Img-5 352.475 361.429 410.545 345.855 304.481
Test Img-6 643.089 639.979 735.660 595.416 571.776
Test Img-7 293.019 337.384 370.642 293.412 266.948
Test Img-8 352.995 384.919 432.819 322.157 297.737
Test Img-9 384.912 409.755 457.299 378.884 341.725
Test Img-10 262.337 263.699 315.934 248.989 223.538
Test Img-11 289.787 306.485 348.791 261.726 236.767
Test Img-12 317.463 332.101 402.183 304.511 264.368

Table 9. The objective function values obtained by solving the image vectorization problem when alpha=1.

Test Image Algorithms
ABC JADE CUCKOO WDE BSD

Test Img-1 153.92 126.21 147.20 130.45 130.03
Test Img-2 458.26 400.87 435.71 413.71 398.24
Test Img-3 782.89 651.77 764.88 641.91 650.17
Test Img-4 1245.51 955.97 1142.16 1088.74 1021.97
Test Img-5 288.58 245.37 258.82 250.34 241.74
Test Img-6 508.00 435.16 475.08 430.37 420.58
Test Img-7 254.85 215.49 247.38 220.76 219.50
Test Img-8 265.08 215.33 249.65 236.48 222.85
Test Img-9 350.63 290.64 317.11 300.12 284.59
Test Img-10 212.66 174.86 192.98 184.07 173.04
Test Img-11 215.40 173.16 195.08 182.11 170.34
Test Img-12 250.54 196.85 234.35 205.05 201.49

3.3. Evolutionary Triangular Irregular Networks Refinement
Evolutionary Triangular Irregular Networks (TIN) are numerical tools used to model the surface mor-

phology in Geomatics. TINs obtained by triangulating scattered points are frequently used to express
topographical surfaces in Geographical Information Systems. TIN refinement is used in various computer
graphic applications (Chernikov, & Chrisochoides , 2012). There are two commonly used methods for the
refinement of the surfaces that are composed of triangular or gridded patches. The first method is based on
reducing the number of vertex points or edges that are nused to create the digital mesh model of related
surface. This method simplify the surface in accordance to a predefined error threshold value. The second
method is based on iteratively updating of initial-triangulation by adding a new location-optimized vertex
point to the existing triangular mesh. Initial triangulation includes only the outer boundary vertex points
of the original mesh model. In this method, related iterative process is terminated when the vertex number
of the triangular mesh reaches to the predetermined number of vertex. Hence, this method allows the iden-
tification of the surface with a predetermined number of vertex points. In this paper, the second method

26

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 27

based TIN evolution process was employed for the refinement of test TIN model. The test TIN model
were obtained by measuring the peak section of Mount Erciyes with a fixed-wing Atlasus UAV (Atlasus
, 2018). The related measurements were made in geodesic datum of EPSG:5256 TUREF/TM36 (Turef ,
2018). Mount Erciyes, which is an advanced ski resort, is one of the most beautiful mountains in the world
and it is 3916m high. The experiments carried out to simplify the test TIN model, which represent the peak
section of Mount Erciyes, were performed using ABC, JADE, CUCKOO, WDE, and BSD.

A step-by-step description of the evolutionary TIN refinement problem is given below as in (Bergen &
Ross , 2012):

1. Create initial-TIN by using the only corner-vertex points of the Original-Mesh model.
2. Set the maximum number of vertex desired to be obtained at the end of the TIN evolution process.
3. Insert a new location-optimized vertex point to the current TIN and update triangulation.
4. Repeat Step 3 until reaching the desired number of vertex in the current TIN.

The computation phase of location-optimized vertex has been defined by using Eq. 18

while size (q) ≤ (size (q) + 500)
ε0 = callMeshObj (q, PMesh)
argmin
sTIN

ε = callMeshObj
([

q sTIN
]
, PMesh

)

If ε ≺ ε0 then q :=
[
q sTIN

]

endwhile

(18)

where sTIN is a new vertex inside the initial-TIN model. In Eq. 18, callMeshObj denotes objective function
for TIN refinement and it has been defined by using Eq. 19.

function ε = callMeshObj (q, PMesh)[
xMesh yMesh zMesh

]
← PMesh

∆Mesh = Delaunay (xMesh, yMesh)
[xq, yq]← q
∆q = Delaunay (xq, yq)
zq = TLI (∆Mesh, xq, yq)
z∗Mesh = TLI (∆q, xMesh, yMesh)
ε =

∑
(|z∗Mesh − zMesh|)

(19)

where, Delaunay function, TLI denotes Delaunay triangulation process as in (Besdok, Civicioglu, & Alci
, 2004; Civicioglu, & Alci , 2004) and Triangular Linear Interpolation (Besdok, Civicioglu, & Alci , 2004;
Civicioglu, & Alci , 2004), respectively.

The maximum number of vertex=500 has been used in the experiments. The results obtained for the
solution of the TIN refinement problem are illustrated in Fig.s 10-14. The points indicated in red in Fig.s 10-
14 are the added vertex points to the initial-TIN model to converge original-TIN. In the solution of the TIN
refinement problem, size of pattern matrix is set to 5, and the number of function evaluation value is set
to 100. 30 different experiments were performed with each algorithm to solve the related TIN refinement
problem. A different starting pattern matrix was used in each experiment. All algorithms used the same
initial pattern matrix during the experiments.

Boxplot analysis of the results obtained in the TIN refinement experiments is shown in Fig 15.

27

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 28

Figure 10. Evolution steps of TIN refinement problem by using ABC ; (a) Initial mesh, (b) Interpolated mesh after 1-point
insertion into TIN, (c) Interpolated mesh after 2-points insertion into TIN, (d) Interpolated mesh after 50-points insertion into
TIN, (e) Interpolated mesh after 500-points insertion into TIN, (f) Target-mesh model.

Figure 11. Evolution steps of TIN refinement problem by using JADE ; (a) Initial mesh, (b) Interpolated mesh after 1-point
insertion into TIN, (c) Interpolated mesh after 2-points insertion into TIN, (d) Interpolated mesh after 50-points insertion into
TIN, (e) Interpolated mesh after 500-points insertion into TIN, (f) Target-mesh model.

28

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 29

Figure 12. Evolution steps of TIN refinement problem by using CUCKOO ; (a) Initial mesh, (b) Interpolated mesh after 1-point
insertion into TIN, (c) Interpolated mesh after 2-points insertion into TIN, (d) Interpolated mesh after 50-points insertion into
TIN, (e) Interpolated mesh after 500-points insertion into TIN, (f) Target-mesh model.

Figure 13. Evolution steps of TIN refinement problem by using WDE ; (a) Initial mesh, (b) Interpolated mesh after 1-point
insertion into TIN, (c) Interpolated mesh after 2-points insertion into TIN, (d) Interpolated mesh after 50-points insertion into
TIN, (e) Interpolated mesh after 500-points insertion into TIN, (f) Target-mesh model.

29

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 30

Figure 14. Evolution steps of TIN refinement problem by using BSD ; (a) Initial mesh, (b) Interpolated mesh after 1-point
insertion into TIN, (c) Interpolated mesh after 2-points insertion into TIN, (d) Interpolated mesh after 50-points insertion into
TIN, (e) Interpolated mesh after 500-points insertion into TIN, (f) Target-mesh model.

Figure 15. Boxplot analysis of TIN refinement results.

When the results given in Fig. 15 are analyzed, it is observed that BSD and WDE produced statistically
very close results in the solution of the TIN refinement problem.

4. Conclusions

In evolutionary computation, it is difficult to determine the efficient evolution direction and evolution
step size values. Determining the efficient evolutionary direction requires the use of global search strategies
that can avoid local solutions. BSD uses span pattern vectors and the best solution available to produce
efficient evolutionary direction vectors. Therefore BSD is a partially elitist algorithm. The evolutionary step
size value controls the amplitude of direction vector. Efficient evolutionary step size is also very difficult to
determine. The EA’s search success can be sensitive to the nature of the random number generator used
to generate related evolutionary step size value. BSD can use different types of random number generators
to generate evolutionary step size value. BSD can scale each relevant parameter individually while solving
problems involving stongly related or highly correlated parameters. Therefore, BSD can avoid local solutions
while solving complex problems. As every pattern vector in BSD evolves towards a different pattern vector,

30

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 31

BSD is a structurally bijective algorithm. The evolution of each pattern vector in BSD is independent of
the evolution of other pattern vectors. This provides the recursive and parallel nature of BSD.

The statistical results obtained from the experiments show that BSD is capable of solving different types
of digital problems and the problem solving success of BSD is highly better than the tested methods used
in this paper.

The theoretical contributions of BSD are listed below:

1. Since the internal parameter values of the BSD are determined randomly, the BSD is practically a
universal DE like WDE.

2. The mutation operator of BSD is structurally different from the mutation operator of ABC, JADE,
CUCKOO and WDE.

3. BSD does not have mutation and crossover rate parameters.
4. BSD is a partially elitist method.
5. The crossover operator of the BSD is controlled using bezier polynomials. BSD’s crossover operator

is different from ABC, JADE, CUCKOO and WDE’s crossover operators.
6. The structure of the BSD is very simple compared to the structures of the test methods.
7. The computational complexity of BSD is generally better than the computational complexity of ABC,

JADE, CUCKOO and WDE.
8. BSD can work with very small and very large sized pattern matrix.
9. The ability of BSD to solve numerical problems is statistically better than those of the test methods.

10. Since BSD is a non-recursive method, solution vectors in BSD are evolved separately. Therefore, the
operation of the BSD complies with parallel computing requirements.

Acknowledgements

Several sections of this paper have been supported by the following projects; Erciyes University BAP
FDA-2013-4530, FBA-10-3067, FBA-9-1131, FBA-2013-4525, 06-AY-15 and Tubitak 115Y235.

References

Atlasus, http://atlasus.com.tr/Atlas/UAV (Access 18.12.2018)
Azhari, F., Heidarpour, A., & Zhao, X.L. (2018). On the use of Bernstain-Bezier functions for modelling the post-fire stress-

strain relationship of ultra-high strength steel (Grade 1200). Engineering Structures. 175, 605-616.
Bergen, S., & Ross, J.R. (2009). Automatic and interactive evolution of vector graphics images with genetic algorithms. The

Visual Computer, 28, 35-45.
Besdok, E., Civicioglu, P., & Alcı, M. (2004). Impulsive noise suppression from highly corrupted images by using resilient

neural networks. Lecture Notes in Artificial Intelligence, 3070, 670-675.
Brest, J., Greiner, S., Boskovic, B., Mernik, M., & Zumer V. (2006). Self-adapting control parameters in differential evolution:

a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Computation, 10, 646-657.
Chen, J., Zheng, J., Wu, P., et al. (2017). Dynamic particle swarm optimizer with escaping prey for solving constrained

non-convex and piecewise optimization problems. Expert Systems with Applications, 86, 208-223.
Chernikov, A.N. & Chrisochoides, N.P. (2012). Generalized Insertion Region Guides For Delaunay Mesh Refinement, SIAM

Journal On Scientific Computing, 34, A1333-A1350.
Civicioglu, P. (2013,a). Backtracking search optimization algorithm for numerical optimization problems. Applied Mathematics

and Computation, 219, 8121-8144.
Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algo-

rithm. Computers & Geosciences, 46, 229-247.
Civicioglu, P. (2013,b). Artificial cooperative search algorithm for numerical optimization problems. Information Sciences, 229

- 58-76.
Civicioglu, P., & Alci M. (2004). Impulsive noise suppression from highly distorted images with triangular interpolants. AEU

- International Journal of Electronics and Communications, 58, 311-318.
Civicioglu, P., & Beşdok, E. (2013). A conceptual comparison of the cuckoo-search, particle swarm optimization, differential

evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39, 315-346.
Civicioglu, P., & Beşdok E. (2014). Comparative Analysis of the Cuckoo Search Algorithm, Cuckoo Search and Firefly Algorithm

Theory and Applications, Springer, London, 85-113.

31

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

/ Expert Systems with Applications 00 (2019) 1–?? 32

Civicioglu, P., Besdok, E., Gunen, M.A., & Atasever, U.H. (2018). Weighted differential evolution algorithm for numerical func-
tion optimization: a comparative study with cuckoo search, artificial bee colony, adaptive differential evolution, and back-
tracking search optimization algorithms. Neural Computing and Applications. Article online. https://doi.org/10.1007/s00521-
018-3822-5 (Access 18.12.2018)

The matlab codes of classic benchmark problems (2019). https : //www.mathworks.com/matlabcentral/fileexchange/69827−
bernstain − search − differential − evolution − algorithm?s_tid=F X_rc2_behav (last access 23.06.2019)

The matlab codes of classic benchmark problems (2019). https : //www.sfu.ca/ ssurjano/optimization.html (last access
23.06.2019)

Clerc, M., & Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence in a multidimensional complex space.
IEEE Transactions on Evolutionary Computation, 6, 58-73.

Das, S., Mullick, S.S., & Suganthan, P.N. (2016). Recent advances in differential evolution - An updated survey. Swarm and
Evolutionary Computation, 27, 1-30.

Derrac, J., Garca, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of nonparametric statistical tests as a
methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation, 1 3-18.

Karabog̃a, D., & Basturk B. (2007). A powerful and efficient algorithm for numerical function optimization: artificial bee colony
(ABC) algorithm. Journal of Global Optimization, 39, 459-471.

Liang, J.J., & Qu, B.Y., & Suganthan, P.N. (2013). Problem Definitions and Evaluation Criteria for the CEC 2014 Special
Session and Competition on Single Objective Real-Parameter Numerical Optimization, Technical Report 201311, Compu-
tational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Technical Report, Nanyang Technological
University, Singapore, December 2013.

Liu, J., & Zhang, H., & He, K. & et al. (2018). Multi-objective particle swarm optimization algorithm based on objective space
division for the unequal-area facility layout problem. Expert Systems with Applications, 102, 179-192.

Lynn, N., & Suganthan P.N., (2017).Ensemble particle swarm optimizer. Applied Soft Computing, 55, 533-548.
Opara K,Arabas J (2018). Comparison of mutation strategies in Differential Evolution – A probabilistic perspective, Swarm

and Evolutionary Computation. 39, 53–69.
Matsumoto, M., & Nishimura, T. (1998). Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random

number generator. ACM Transactions on Modeling and Computer Simulation, 8, 3-30.
Mathworks, Matlab File Exchange, (2019), https://www.mathworks.com/matlabcentral/fileexchange/69819-bernstain-search-

differential-evolution-algorithm (Last access 25.06.2019)
Mlakar, U., Potocnik, B., & Brest, J., (2016). A hybrid differential evolution for optimal multilevel image thresholding. Expert

Systems with Applications, 65, 221-232.
Mohamed, A.W., & Suganthan P.N., (2018). Real-parameter unconstrained optimization based on enhanced fitness-adaptive

differential evolution algorithm with novel mutation . Soft Computing, 22, 3215-3235.
Price, K.V., Storn, R., & Lampinen, J. (2005). Differential evolution: A practical approach to global optimization. Springer,

Berlin, Germany.
Özsoydan, F.B., & Baykaşog̃lu, A., (2019). Quantum firefly swarms for multimodal dynamic optimization problems. Expert

Systems with Applications, 115, 189-199.
Qin, Q., Cheng, S., Zhang, Q., & et al. (2014). Multiple strategies based orthogonal design particle swarm optimizer for

numerical optimization. Computers & Operations Research, 60, 91-110.
Zhang, Q., Zou, D., Duan, N., et al. (2019). An adaptive differential evolutionary algorithm incorporating multiple mutation

strategies for the economic load dispatch problem. Applied Soft Computing, 78, 641-669.
Turef, https://epsg.io/5256 (Last access 25.06.2019)
Yang, X.S., & Deb, S. (2009). Cuckoo search via levy flights. World Congress on Nature and Biologically Inspired Computing-

Nabic’2009, Coimbatore, India, 4, 210-214.
Zhang, J., & Sanderson, A.C. (2009). JADE: Adaptive differential evolution with optional external archive. IEEE Transactions

on Evolutionary Computation, 13, 945-958.
Zhang, W.B., & Zhu, G.Y. (2011). Comparison and application of four versions of particle swarm optimization algorithms in

the sequence optimization. Expert Systems with Applications,Volume: 38 Issue: 7 Pages: 8858-8864 Published: JUL 2011

32

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

☐The authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Civicioglu, P., Besdok, E.

AUTHORSHIP STATEMENT

Manuscript title: ___

All persons who meet authorship criteria are listed as authors, and all authors certify that they have
participated sufficiently in the work to take public responsibility for the content, including participation in
the concept, design, analysis, writing, or revision of the manuscript. Furthermore, each author certifies that
this material or similar material has not been and will not be submitted to or published in any other
publication before its appearance in the Expert Systems with Applications. .

Authorship contributions
Please indicate the specific contributions made by each author (list the authors’ initials followed by their
surnames, e.g., Y.L. Cheung). The name of each author must appear at least once in each of the three
categories below.

Category 1
Civicioglu, P., Besdok, E., _____________;

acquisition of data: Civicioglu, P., Besdok, E.

analysis and/or interpretation of data: Civicioglu, P., Besdok, E.

Category 2
Drafting the manuscript: Civicioglu, P., Besdok, E.

revising the manuscript critically for important intellectual content: Civicioglu, P., Besdok, E.

_____________, _____________.

Category 3
Approval of the version of the manuscript to be published (the names of all authors must be listed):

_______________, _______________, _______________, _______________, _______________,

_______________, _______________, _______________, _______________, _______________.

Bernstain-Search Differential Evolution Algorithm for Numerical Function Optimization

ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Acknowledgements
All persons who have made substantial contributions to the work reported in the manuscript (e.g., technical
help, writing and editing assistance, general support), but who do not meet the criteria for authorship, are
named in the Acknowledgements and have given us their written permission to be named. If we have not
included an Acknowledgements, then that indicates that we have not received substantial contributions from
non-authors.

This statement is signed by all the authors (a photocopy of this form may be used if there are more than 10 authors):

Author’s name (typed) Author’s signature Date

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

_________________________ _________________________ _______________________

Pinar Civicioglu

Erkan Besdok

26.06.2019

26.06.2019

