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ABSTRACT

We formulate conditions (k-SCA-conditions) under which we
can represent a given (m×N)-matrix X (data set) uniquely (up to
scaling and permutation) as a multiplication of m × n and n × N
matrices A and S (often called mixing matrix or dictionary and
source matrix, respectively), such that S is sparse of level n−m+k
in sense that each column of S has at least n − m + k zero ele-
ments. We call this the k-Sparse Component Analysis problem
(k-SCA). Conditions on a matrix S are presented such that the k-
SCA-conditions are satisfied for the matrix X = AS, where A is
an arbitrary matrix from some class. This is the Blind Source Sep-
aration problem and the above conditions are called identifiability
conditions.

We present new algorithms: for matrix identification (under
k-SCA-conditions), and for source recovery (under identifiability
conditions). The methods are illustrated with examples, showing
good separation of the high-frequency part of mixtures of images
after appropriate sparsification.

1. INTRODUCTION

One of the fundamental questions in data analysis, signal process-
ing, data mining, neuroscience, etc. is how to represent a large
data set X (given in form of a (n × N)-matrix) in different ways.
A simple idea is a linear representation:

X = AS, A ∈ IRm×n,S ∈ IRn×N , (1)

where the unknown matrices A (dictionary) and S (signals) have
some specific properties, for instance:

1) the rows of S are as statistically independent as possible —
this is Independent Component Analysis (ICA) problem;

2) S contains as many zeros as possible — this is the sparse
representation problem or Sparse Component Analysis (SCA) prob-
lem;

3) the elements of X,A and S are nonnegative - this is non-
negative matrix factorization.

Such linear representations have several potential applications
including decomposition of objects into ”natural” components, learn-
ing the parts of the objects (e.g. learns from set of faces the parts
a face consists of, i.e. eyes, nose, mouth, etc.), redundancy and di-
mensionality reduction, micro-array data mining, enhancement of
images in nuclear medicine etc. (see [7], [5]).

There is a large amount of papers devoted to ICA problems
(see for instance [3], [6] and references therein) but mostly for
the complete case (m = n). We refer to [9], [1], [10], [2], [8] and
reference therein for some recent papers on SCA and overcomplete
ICA (m < n).

A slightly different problem is the so called Blind Source Sep-
aration (BSS) problem, in which we know a priori that a repre-
sentation such as in equation (1) exists and the task is to recover
the sources (and the mixing matrix) as accurately as possible. A
fundamental property of the complete BSS problem is that such
a recovery (under assumptions in 1) and non-Gaussianity of the
sources) is possible up to permutation and scaling of the sources,
which makes the BSS problem so attractive.

In this paper we consider SCA and BSS problems in the over-
complete case (m < n i.e. more sources than sensors), where
the additional information compensating the lack of sensors is the
sparseness of the sources. The task of the SCA problem is to rep-
resent the given data X as in equation (1) such that the matrix S
(sources) are sparse of level n−m+k (i.e. each column of S has at
least n − m + k zeros). We present conditions on the data matrix
X (k-SCA- or simply SCA-conditions on the data), under which
the representation in equation (1) is unique up to permutation and
scaling of the sources.

The task of BSS problem is to estimate the unknown sources S
(and the mixing matrix A) using the available data matrix X only.
We describe conditions (identifiability conditions on the sources)
under which this is possible uniquely up to permutation and scal-
ing of the sources, which is the usual condition in the complete
BSS problems.

In the sequel, we present new algorithms for solving the BSS
problem: matrix identification algorithms and source recovery al-
gorithm, which recovers the sources with level of sparseness at
least n − m + 1. When the sources are sufficiently sparse (see
the conditions of Theorem 2) the matrix identification algorithm
is even simpler. We used this simpler form for separation of mix-
tures of images. After sparsification transformation the algorithm
works perfectly in the complete case. In the overcomplete case, the
recovery of the matrix is perfect, but the recovery of the sources
needs sufficient sparsification of the approximation component of
the discrete wavelet transformation. The source recovery algo-
rithm works good, if sufficient sparsification is achieved.



2. BLIND SOURCE SEPARATION

In this section we develop a method for completely solving the
BSS problem in the case when the following assumptions are sat-
isfied:
A1) the mixing matrix A ∈ IRm×n has the property that any
square m × m submatrix of it is nonsingular, and
A2) the sources are sparse of level n−m + 1, i.e. each column of
S has at least n − m + 1 zero elements.

2.1. Matrix identification

In this section we describe conditions under which we can identify
the mixing matrix in the sparse BSS problem. Some proofs are
omitted due to lack of space.

Theorem 1 (Identifiability conditions - general case) Assume
that for every j ∈ {1, ..., n}, there exists m group of samples
{tq1,p}m

p=1, . . . , {tqm,p}m
p=1 such that sj(tqk,1) �= 0, ∀k =

1, ..., m, the vectors {s(tqk,p)}m
p=1 have zeros at the same indexes,

and any m − 1 of them are linearly independent. Then the mixing
matrix A is identifiable from any mixture X = AS, provided A
and S satisfy conditions A1) and A2) respectively.

Algorithm for identification of the mixing matrix 1

1) Cluster the columns of X in
(

n
m−1

)
groupsHk, k = 1, ...,(

n
m−1

)
such that the span of the elements of each group Hk pro-

duces one hyperplane and these hyperplanes are different.
2) Cluster the normal vectors to these hyperplanes in n groups

Gj , j = 1, ..., n such that the normal vectors to the hyperplanes in
each group Gj lie in a new hyperplane Ĥj , and these hyperplanes
Ĥj are different.

3) Calculate the normal vectors âj to each hyperplane Ĥj , j =
1, ..., n. Note that the one-dimensional subspace spanned by âj

is the intersection of all hyperplanes in Gj . The matrix Â with
columns {âj}n

j=1 is an estimation of the mixing matrix (up to per-
mutation and scaling of the columns).

Theorem 2 (Identifiability conditions - sparse instances) As-
sume that the number of sources is unknown and

1) for each source si := S(i, .) there are at least two time
instances when all the signals are zero except si (so each source is
uniquely present at least twice), and

2) A(S(., k) − MS(., q)) �= 0 for any M ∈ IR, any k =
1, ..., N and any q = 1, ..., N, k �= q for which S(., k) has more
that one nonzero element.

Then the number of sources is recoverable and the matrix A
is identifiable up to permutation and scaling.

Here we used the notation S(i, .) and S(., j) for the i-th row
respectively j-th column of S.

Proof. We cluster in groups all nonzero normalized column
vectors of X such that each group consists of vectors which differ
only by sign. From conditions 1) and 2) it follows that the number
of the groups containing more that one element is precisely the
number of sources n, and that each such group will represent a
normalized column of A (up to sign).

Below we include an algorithm for identification of the mixing
matrix in the case of Theorem 2.

Algorithm for identification of the mixing matrix 2
1) Remove all zero columns of X (if any) and obtain a matrix

X1 ∈ IRm×N1 .

2) Normalize the columns xi, i = 1, . . . , N1 of X1 : yi =
xi/‖xi‖ and put i = 1, j = 2, k = 1.

3) if either yi = yj or yi = −yj , then put ak = yi, increase
i, k with 1, put j = i+1 and if i < N1, repeat 3) (otherwise stop).
Otherwise: if j < N1, increase j by 1 and repeat 3). If j = N1,
increase i by 1, put j = i+1 and repeat 3). Stop when i = N1+1.

2.2. Identification of sources
Theorem 3 (Source recovery) Let H be the set of all x ∈ IRm

such that the linear system As = x has a solution with at least
n − m + k zero components. If A fulfills A1), then there exists
a subset H0 ⊂ H with measure zero with respect to H, such that
for every x ∈ H \ H0 this system has no other solution with this
property.

Proof. ObviouslyH is the union of all
(

n
m−k

)
= n!

(m−k)!(n−m+k)!

k-codimensional linear subspaces of IRm (which are hyperplanes
when k = 1), produced by taking the linear hull of every subsets
of the columns of A with m− k elements. Let H0 be the union of
all intersections of any two such subspaces. Then H0 has a mea-
sure zero in H and satisfies the conclusion of the theorem, because
if As = As̄ then due to A1) and sparseness, s and s̄ lie in different
subspaces, so x ∈ H0.

From Theorem 3 it follows that the sources are identifiable
generically (or with probability one), i.e. up to a set with measure
zero, if they have level of sparseness grater than or equal to n −
m + 1, and the mixing matrix is known. Below is the algorithm,
based on the observation in Theorem 3.

Source recovery algorithm:
1. Identify the the set of k-codimensional subvectorspaces H

produced by taking the linear hull of every subsets of the columns
of A with m − k elements;

2. Repeat for i = 1 to N :
2.1. Identify the space H ∈ H containing xi := X(., i), or, in

practical situation with presence of noise, identify the one to which
the distance from xi is minimal and project xi onto H to x̃i.

2.2. If H is spanned by column vectors ai1 , ..., aim−k , then

find coefficients λi,j such that x̃i =
∑m−k

j=1 λi,jaij . These coeffi-
cients are uniquely determined if x̃i doesn’t belong to the set H0

with measure zero with respect to H (see Theorem 3).
2.3. Construct solution si = S(., i): it contains λi,j in the

place ij for j = 1, ..., m − k, the other components are zero.

3. SPARSE COMPONENT ANALYSIS

In this section we develop a method for the complete solution of
the SCA problem in the case of A1) and A2) from the previous
section.

Theorem 4 Assume that m ≤ n ≤ N and the matrix X ∈
IRm×N satisfies the following conditions:

(i) the columns of X lie in the union H of hyperplanes, each
column lies in only one such hyperplane, each hyperplane contains
at least m columns of X such that any m − 1 of them are linearly
independent.

(ii) for each i ∈ {1, ..., n} there exist at least m different
hyperplanes {Hi,j}m

j=1 in H such that their intersection Li =
∩m

j=1Hi,j is one dimensional subspace.
(iii) any m different Li span the whole IRm.
Then the matrix X is representable uniquely (up to permuta-

tion and scaling of the columns of A and the rows of S) in the form
(1), and A, S satisfy conditions A1) and A2) respectively.



4. COMPUTER SIMULATION EXAMPLES

4.1. Complete case

In this example for the complete case (m = n) of instantaneous
mixtures, we demonstrate the effectiveness of our algorithm for
identification of the mixing matrix in the special case considered
in Theorem 2. We mixed 3 images of landscapes (shown in Fig.1)
with a 3-dimensional Hilbert matrix H and transformed them by
a discrete wavelet transform using the Haar wavelet. As a result,
high frequency components become very sparse and they satisfy
the conditions of theorem 2. We use only one row (320 points)
of the transformed mixture, which is enough to recover very pre-
cisely the mixing matrix (det(H) = 0.00046). Fig. 3 shows the
recovered mixtures.

Fig. 1. Original sources

Fig. 2. Mixed (observed) signals

Fig. 3. Estimated normalized images using the estimated matrix.
The signal-to-noise ratios with the sources from figure 1 are 232,
239 and 228 respectively.

4.2. Overcomplete case

Here simulations for the overcomplete case are presented both us-
ing artificial and real data.

We consider the mixture of four artificially created sources —
sparsified sine signals with different wavelengths and at least 2
zeros in each column — with the semiorthogonal mixing matrix

A =

⎛
⎝

−0.52 0.20 0.56 −0.88
−0.76 −0.45 −0.80 0.12
−0.38 0.87 −0.20 0.45

⎞
⎠ .

Figure 4 gives a normalized scatterplot of the mixtures — the data
clearly lie in 6 hyperplanes, which confirms that the sources are
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Fig. 4. Normalized scatter plot (density) of the mixtures.
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Fig. 5. Recovered source signals. The signal-to-noise ratio be-
tween the original sources and the recoveries is very high with
292, 282, 305 and 291 dB after permutation and normalization.

at least sparse of level 2. According to Theorem 4 SCA can be
used. Applying the overcomplete matrix recovery algorithm 1 to
the mixtures gives the recovered mixing matrix

B =

⎛
⎝

0.56 −0.20 −0.88 −0.53
−0.80 0.45 0.12 −0.76
−0.20 −0.87 0.45 −0.38

⎞
⎠ .

The generalized crosstalking error [8] is very low with E(A,B) =
6.7 · 10−16, which confirms the matrix identification stated in the-
orem 1. Applying sparse source recovery algorithm to the mix-
tures with this matrix gives perfectly recovered signals, see figure
5. Again this is a confirmation of the assertion of source identifi-
cation in Theorem 3.

Now an application to real data sets is presented. We consider
the mixtures of natural images. Namely, four 320 × 240 grey-
level natural scenes are linearly mixed to three images using the
semiorthogonal mixing matrix A from above. The mixed images
were sparsified using iterative two-dimensional discrete wavelet
decomposition with the Haar wavelet. Application of the overcom-
plete matrix recovery algorithm 2 to only five rows of the sparse



Fig. 6. Three mixed images are shown, containing four indepen-
dent source images.

0 100 200 300 400 500 600 700 800
50

0

50

0 100 200 300 400 500 600 700 800
50

0

50

0 100 200 300 400 500 600 700 800
10

0

10

0 100 200 300 400 500 600 700 800
2

0

2

Fig. 7. Recovered diagonal wavelet coefficients using sparseness.
The signal-to-noise ratios of the original source coefficients with
the recovered signals are 11.4, 8.0, 23.7 and 19.7 respectively.
During the signal recovery, 24 out of 800 points were found which
did not lie on any hyperplane spanned by columns of A. This is
due to the fact that the sources are not fully sparse of level 2, which
accounts for the (small) recovery error.

first diagonal wavelet coefficients gives the recovered mixing ma-
trix

B =

⎛
⎝

0.88 0.56 0.20 −0.53
−0.12 −0.80 −0.45 −0.76
−0.45 −0.20 0.87 −0.38

⎞
⎠ .

Again, the generalized cross talking error between those two ma-
trices is very low E(A,B) = 1.1 · 10−13, which confirms the
good matrix recovery. Applying the overcomplete source recovery
algorithm to the very sparse wavelet coefficients gives very good
performance, as is demonstrated in figure 7.

In order to then find the source images, the overcomplete source
recovery algorithm is applied to each of the wavelet coefficients
separately. Only the non-sparse approximation images could not
be recovered in this way; for them, best results were achieved by
applying the pseudo-inverse of B. This corresponds to 2-norm
minimization under the constraint x = Bs i.e. to a Gaussian
prior [8], which represents a better approximation to the unknown
low-frequency density of the approximation images than the sparse
models used for the wavelet coefficients. Figure 8 gives a plot of
the recovered images. It can be seen that the high-frequency part
is well recovered although low-frequency obstructions due to in-
determinacies of 2-norm minimization did not allow for recoveries
with higher SNRs.

Fig. 8. Recovered images using overcomplete SCA. Sign and scal-
ing was chosen appropriately for visualization. The signal-to-noise
ratios of the sources with the recovered images are 6.8, 4.1, 11.0
and 11.8 respectively.

5. CONCLUSION

We developed rigorously a theory for Blind Signal Separation of
overcomplete linear mixtures of sparse signals, presenting suffi-
cient conditions for that and developing new algorithms for iden-
tification of the mixing matrix and for source recovery. Our main
assumptions for sparseness (i.e. each column of the source matrix
has less non-zero elements than the mixing dimension) allows us
to obtain uniqueness for the source recovery by our algorithm. The
presented experiment for separation of artificially created signals
with sufficient level of sparseness give excellent results. The ex-
periments for the separation of mixtures of images perform very
well in the complete case and sufficiently well in the overcomplete
case (due to presence of low-frequency components).
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