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This paper jointly addresses the problems of chromatogram baseline correction and noise reduction. The pro-
posed approach is based on modeling the series of chromatogram peaks as sparse with sparse derivatives, and
onmodeling the baseline as a low-pass signal. A convex optimization problem is formulated so as to encapsulate
these non-parametricmodels. To account for the positivity of chromatogrampeaks, an asymmetric penalty func-
tion is utilized. A robust, computationally efficient, iterative algorithm is developed that is guaranteed to con-
verge to the unique optimal solution. The approach, termed Baseline Estimation and Denoising With Sparsity
(BEADS), is evaluated and comparedwith two state-of-the-artmethods using both simulated and real chromato-
gram data.
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1. Introduction

Several sources of uncertainties affect the quality and the perfor-
mance of gas and liquid chromatography analysis [48,1]. As with
many other analytical chemistry methods (including infrared or
Raman spectra [6]), chromatogrammeasurements are often considered
as a combination of peaks, background and noise [35]. The two latter
terms are sometimes merged under different denominations: drift
noise, baseline wander, or spectral continuum. For instance in [5], the
baseline drift is characterized as a “colored” noise, with a low-
frequency dominance in the noise power spectrum. In the following,
we restrict the term “baseline” to refer to the smoothest part of the
trend or bias (the portion of the chromatogram recording the detector
response when only the mobile phase emerges from the column, [34]),
while we call “noise” the more stochastic part. Peak line shapes are of
possibly various nature, from Gaussian to asymmetric empirical models
[17, p. 97 sq.]. Meanwhile, they can easily be described as short-width,
steep-sided up-and-down bumps. They therefore also possess relatively
broad frequency spectra, albeit localized and behaving differently from
the drift noise disturbance. Leaving peak artifacts (fronting and tailing,
co-elution, etc.) aside, their quantitative analysis (peak area, width,
F-1018020.

yu.edu (I.W. Selesnick),
height quantification) is thus hindered by the possibility to accurately re-
move both the smooth baseline and the randomnoise [29]. Indeed, these
problems are often addressed independently, in two different steps
(which could, in turn, “introduce substantial levels of correlated noise”
[5]): a generally low-order approximation or smoothing for the baseline,
and forms of filtering for the noise on the residual chromatogram with
background removed.

First, although seemingly simple, the problem of baseline subtrac-
tion remains a long-standing issue, which can be traced back to [58,
38]. Recent overviews are presented in [42,20,27]. Spectral information
processing [46,47,57] has been amajor course of action. Methods based
on linear and non-linear [36,26,41] filtering, or multiscale forms of fil-
teringwithwavelet transforms [9,24,7,31] have been proposed. The rel-
ative overlap between the spectra of the peaks, the baseline, and the
noise has led to alternative regression models, based on various con-
straints. The low-pass part of the baseline may be modeled by regular
functions, such as low-degree polynomials [33,59] or (cubic) spline
models [19,23,12], in conjunction with manual identification, polyno-
mial fitting or iterative thresholding methods [21]. Related algorithms
based on signal derivatives [5,11] have been devised. In many ap-
proaches, modeling and constraints are laid on the potential features
of the baseline itself: shape, smoothness, and transformed domain
properties. Consequently, it appears beneficial to investigate general-
ized penalizations [13,3,33,59], with less stringent models on either
the signal, the background or the noise. This is the very motivation of
this paper: a joint estimation of these three chromatogram components
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while avoiding overly restrictive parametric models. Specifically, in this
work, the baseline ismodeled as a low-pass signal, while chromatogram
peaks of interest are deemed to be sparse up to second order deriva-
tives, leaving random noise as a residual.

In the past decade, this concept of parsimony, or sparsity, has been
an active and fruitful drive in signal processing and chemistry. It entails
the possibility of describing a signal of interest with a restricted number
of non-zero parameters or components. Sparsity trades accuracy (of the
description) with concentration (of the decomposition). Many algo-
rithms based on sparsity have been developed for reconstruction,
denoising, detection, deconvolution. Most sparse modeling techniques
arose from the “least absolute shrinkage and selection operator” (better
known under the lasso moniker [50,40]), basis pursuit methods [10],
total variation [8], and compound regularization [2].While the latter es-
sentially promotes sparsity, different problems require, simulta-
neously, other constraints, like signal smoothness or residual
stochasticity.

More specifically, recentworks in signal [33,43,44,37] and image pro-
cessing [22,15,16,49,4] have promoted a framework for decomposing
potentially complex measurements into “sufficiently” distinct compo-
nents. Such non-linear decompositions are termed “morphological com-
ponent analysis”, “geometric separation” or “clustered sparsity” [28].
Such approaches are amenable to analytical chemistry issues, relying
on morphological properties of baselines and chromatographic peaks.
Fig. 1(a) displays a chromatogram x obtained from a two-dimensional
gas chromatography [52]. It consists of abrupt peaks returning to a rel-
atively flat baseline, hence exhibits a form of sparsity. Moreover, as
illustrated in Fig. 1(b) and (c), the second and third-order derivatives
of x are also sparse; often sparser than x itself. We thus model the
peaks of a chromatogram as a sparse signal, whose first several deriva-
tives are also sparse. In addition, baselines are sometimes approximated
by polynomials or splines [32,33,59]. However, most baseline signals in
practice do not follow polynomial laws faithfully over a long range. We
thus instead model slowly varying baseline drifts as low-pass signals.
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Fig. 1.Gas chromatogram from two-dimensional gas chromatography [52], with flat base-
line and low noise: (a) analytical signalx, (b) first-order difference D1x and (c) second-
order difference D2x. The chromatographic signal is sparse, as are its first- and second-
order derivatives.
The more generic low-pass model for the baseline provides a conve-
nient and flexible way to specify the behavior of the smoothing opera-
tor, in comparison with polynomial or spline approximations.

Following aforementioned works on morphological component
analysis and its variations, in particular [45], we formulate an approach
for the decomposition ofmeasured chromatogramdata into itsmodeled
components: sparse peaks, low-pass baseline, and a stochastic residual.
It is termed BEADS, for Baseline Estimation andDenoisingWith Sparsity.
To this end, we pose an optimization problemwherein the terms of the
objective function encapsulate the foregoing model. We develop a fast-
converging iterative numerical algorithm, drawing on techniques of
convex optimization. Due to its formulation as a convex problem, its so-
lution is unique and the proposed algorithm is guaranteed to converge
to the unique solution regardless of its initialization. Furthermore, we
express the algorithm exclusively in terms of banded matrices, such
that the proposed iterative algorithm can be implemented with high
computational efficiency and low memory. Accordingly, the proposed
algorithm is suitable for long data series.

2. Preliminaries

In this paper, lower and upper case bold are used to denote vectors
andmatrices, respectively, e.g., vector x andmatrixA. TheN point signal
x is denoted as x= [x0, x1, …, xN − 1]. The n-th element of the vector x
is denoted as xn or [x]n. The element (i,j) of thematrixA is denoted asAi,j

or [Ai,j].
The setting of this work is in the discrete-data domain, so all deriva-

tives will be expressed by finite differences and the words ‘derivative’
and ‘difference’ are used interchangeably. The first-order differencema-
trix of size (N − 1) × N is defined as:

D1 ¼
−1 1

−1 1
⋱ ⋱

−1 1

2
664

3
775 ð1Þ

and similarly, the second-order difference matrix of size (N− 2) × N is
defined as:

D2 ¼
−1 2 −1

−1 2 −1
⋱ ⋱ ⋱

−1 2 −1

2
664

3
775: ð2Þ

Generally, the difference operator of order k, of size (N − k) × N, is
denoted as Dk. For convenience, when k = 0, we define D0 as the iden-
tity matrix, i.e., D0 = I.

The ‘1 and ‘2 norms of x are defined as the sums:

xk k1 ¼
X
n

xnj j; xk k22 ¼
X
n

xnj j2: ð3Þ

To minimize a challenging cost function F, the majorization–
minimization (MM) approach [18,30] solves a sequence of simplermin-
imization problems,

x kþ1ð Þ ¼ arg min
x

G x;x kð Þ� �
ð4Þ

where k ⩾ 0 denotes the iteration counter. The MM method requires
that in each iteration a convex function G(x, v) be a majorizer of
F(x) and that it coincides with F(x) at x = v. That is,

G x; vð Þ⩾F xð Þ for all x ð5aÞ

G v; vð Þ ¼ F vð Þ: ð5bÞ
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With initialization x(0) and under suitable assumptions, theMM up-
date Eq. (4) produces a sequence x(k) converging to the minimizer of
F(x).

3. Baseline estimation and denoising: problem formulation

The proposed approach is based on modeling an N-point noise-free
chromatogram data vector as

s ¼ x þ f; s∈ℝN
: ð6Þ

The vector x, consisting of numerous peaks, is modeled as a sparse-
derivative signal (i.e., x and its first several derivatives are sparse). The
vector f, representing the baseline, is a low-pass signal. We further
model the observed (noisy) chromatogram data as

y ¼ sþw ð7Þ
¼ x þ f þw; y∈ℝN ð8Þ
where w is a stationary white Gaussian process with variance σ2. Our
goal is to estimate the baseline, f, and peaks, x, simultaneously, from ob-
servation y.

We assume that if peaks are absent, then the baseline can be approx-
imately recovered from a noise-corrupted observation by low-pass fil-
tering, i.e., f≈L y þ x̂ð Þ where L is a suitable low-pass filter. Hence,
given an estimate x̂ of the peaks, we may obtain an estimate f̂ of the
baseline by filtering y in (7) with low-pass filter L,

f̂ ¼ L y−x̂ð Þ: ð9Þ

In this case, we may obtain an estimate ŝ by adding x̂,

ŝ ¼ f̂ þ x̂ ð10Þ

¼ L y−x̂ð Þ þ x̂ ð11Þ

¼ Ly þHx̂ ð12Þ

where H is the high-pass filter,

H ¼ I−L: ð13Þ

In order to obtain an estimate x̂ of the chromatogrampeaks from the
observed data y, we will formulate an inverse problem with the qua-
dratic data fidelity term y−ŝk k22. Note that

y−ŝk k22 ¼ y−Ly−Hx̂k k22 ð14Þ

¼ H y−x̂ð Þk k22: ð15Þ
Hence, the data fidelity term in the proposed formulation depends
on the high-pass filter H. Also note that the data fidelity term does not
depend on the baseline estimate f̂. The optimization problem, formulat-
ed below, produces an estimate of the chromatogrampeaks x̂. The base-
line estimate is then obtained by (9).

3.1. Low-pass and high-pass filters

We take the filters L and H to be zero-phase, non-causal, recursive
filters. In other words, they filter relatively symmetric signals (such as
chromatogram peaks), without introducing shifts in peak locations. A
procedure for defining such filters is given in [45]. A filter is specified
by two parameters: its order 2d and its cutoff frequency fc. The high-
pass filter H described in [45] is of the form

H ¼ A−1B ð16Þ

where A and B are banded convolution (Toeplitz) matrices. Expressing
H in terms of banded matrices leads [45] to the development of algo-
rithms that utilize fast solvers for banded linear systems [39, Sec. 2.4].
Being convolution matrices, A and B represent linear, time-invariant
(LTI) systems, and H represents a cascade of LTI systems where the LTI
system B is followed by the LTI system A−1. Using the commutative
property of LTI systems, in this paper we define H as

H ¼ BA−1
: ð17Þ

Due to A and B being finite matrices, they are not exactly commuta-
tive. However, the difference between (17) and (18) is confined to the
beginning and end of the signal and hence, for long signals, is negligible.
In Sections 4.1 and 4.2, we will see that (18) serves our purposes better
than (17), allowing the derivation of a computationally efficient optimi-
zation algorithm.

3.2. Compound sparse derivative modeling

According to (6), the first i derivatives, i=0, …, M, of the estimated
peaks, x̂, should be sparse. In sparse signal processing, sparse signal be-
havior is typically achieved through the use of suitable non-quadratic
regularization terms. Therefore, to obtain an estimate x̂, the following
optimization problem is proposed:

x̂ ¼ arg min
x

F xð Þ ¼ 1
2

H y−xð Þk k22 þ
XM
i¼0

λiRi Dixð Þ
( )

: ð18Þ

The assumption that the observed data is corrupted by additivewhite
Gaussian noise (AWGN) is reflected in the use of a quadratic data fitting
term as is classical. The quadratic data fidelity term is given by (15).

In (18), Di is the order-i difference operator defined in Section 2.
Functions Ri : ℝN − i → ℝ, are of the form

Ri vð Þ ¼
X
n

ϕ vnð Þ ð19Þ

where the function ϕ : ℝ → ℝ, referred to as a penalty function, is de-
signed to promote sparsity. Substituting (19) in (18), we obtain

x̂ ¼ arg min
x

F xð Þ ¼ 1
2

H y−xð Þk k22 þ
XM
i¼0

λi

XNi−1

n¼0

ϕ Dix½ �n
� �( )

ð20Þ

where Ni denotes the length of Dix. The constants λi ≥ 0 are regulariza-
tion parameters. Increasing λi has the effect of makingDix more sparse.
More discussion of how to specify λi will be given in Section 5.

Compared with [45], this work introduces several modifications to
adapt the approach therein to chromatograms. The novel features of
the approach proposed here include: 1) an M-term compound
regularizer to model chromatogram peaks. 2) The modeling of the pos-
itivity of chromatogram peaks by non-symmetric penalties. 3) An im-
proved algorithm based on MM (in contrast to ADMM as in [45]) for
compound regularization. The improved algorithm converges faster
and does not require any user-specified step-size parameter as does
the earlier algorithm of [45].

3.3. Symmetric penalty functions

For many applications, samples of the target signal x and its deriva-
tive Dix are positive or negative with equal probability, or this informa-
tion is not available. In such cases, the penalty function should be



Table 1
Symmetric penalty functions and their derivatives.

ϕ(x) ϕ′(x)

ϕA(x) |x| Signal (x)
ϕB(x)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ ϵ

p xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ ϵ

p
ϕC(x) |x| − ϵlog(|x| + ϵ) x

jxj þ ϵ
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symmetric about x = 0. One such function is the absolute value
function,

ϕA xð Þ ¼jxj ð21Þ

which leads to ‘1 norm regularization. While widely used, one draw-
back of (21) is that it is non-differentiable at zero, which can lead to nu-
merical issues, depending on the utilized optimization algorithm. To
address this issue, we utilize a smoothed (differentiable) approximation
of the ‘1 penalty function, for example, the hyperbolic function

ϕB xð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jxj2 þ ϵ

q
ð22Þ

or

ϕC xð Þ ¼ jxj − ϵlog jxj þ ϵð Þ: ð23Þ

As the constant ϵ N 0 approaches zero, the functions ϕB and ϕC

approach the absolute value function. When ϵ = 0, then ϕB and ϕC

reduce to the absolute value function. Functions ϕA, ϕB, and ϕC are illus-
trated in Fig. 2 for comparison. The penalty functions and their first-
order derivatives are listed in Table 1.

In order that the smoothed penalty functions maintain the effective
sparsity-promoting behavior of the original non-differentiable penalty
function, ϵ should be set to a sufficiently small value. On the other
hand, ϵ should be large enough so as to avoid the afore-mentioned nu-
merical issues arising in some optimization algorithms (in particular,
the MM algorithm developed below). Fortunately, we have found that
the numerical issues are reliably avoided with ϵ small enough so that
its impact on the optimal solution is negligible. The same holds true
for the asymmetric functions discussed below. We have found that
ϵ = 10−5 works well with both ϕB and ϕC.

3.4. Asymmetric penalty functions

For some applications, the signal xmay be known to be sparse in an
asymmetric manner. For example, it is known that chromatogram data
have positive peaks above a relatively flat baseline. In such cases, it is
preferable to use an asymmetric penalty function that penalizes positive
and negative values differently, as in [14,33,32]. We start with the func-
tion θ : ℝ → ℝ defined by

θ x; rð Þ ¼ x; x ⩾ 0
−rx; x b 0

�
ð24Þ

where r N 0 is a parameter. The function θ(x; r) is convex in x and penal-
izes the positive and negative amplitudes asymmetrically. If r=1, then
θ(x; r) = ϕA(x) = |x|.

The definition (24) has the same drawback as (21), that is, it is non-
differentiable at x=0. To alleviate this, a differentiable version of (24) is
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Fig. 2. Penalty functions ϕ A(x), ϕ B(x), and ϕ C(x).
also proposed. In contrast to the differentiable symmetric penalties ϕB

and ϕA, the function we propose is of the form

θϵ x; rð Þ ¼
x; x N ϵ
f xð Þ; jxj ⩽ ϵ
−rx; x b − ϵ:

8<
: ð25Þ

The function θϵ(x; r) differs from θ(x; r) in away that, in the small in-
terval [−ϵ, ϵ], a function f(x) is defined. In Section 4.2, wewill set f(x) to
be a fixed second-order polynomial function andwith thismodification,
1) θϵ(x; r) will remain convex in (−∞, + ∞); 2) θϵ(x; r) will be continu-
ously differentiable on (−∞, + ∞).

Asymmetric penalty functions are also used in algorithm backcor
[33,32] to reflect the positivity of the peaks. We note that backcor uses
non-convex penalties, while the method described here uses convex
penalties (although, it can be modified to use non-convex penalties).

4. Algorithms

4.1. Symmetric penalty functions

The first form of the proposed approach, BEADS, is defined through
theminimization of the objective function F in (21), where ϕ is a differ-
entiable symmetric penalty function as in Table 1. In this section,we use
theMMprocedure (4) to derive an iterative algorithm for this optimiza-
tion. Hence, we seek a majorizer G(x, v) of F(x). First, we find a
majorizer g(x, v) for ϕ(x) : ℝ → ℝ such that

g x; vð Þ ⩾ ϕ xð Þ; ð26aÞ

g v; vð Þ ¼ ϕ vð Þ; for all x; v ∈ ℝ: ð26bÞ

Since ϕ(x) is symmetric, we set g(x, v) to be an even second-order
polynomial,

g x; vð Þ ¼ mx2 þ b ð27Þ

wherem and c are to be determined so as to satisfy (26). From (26), we
have

g v; vð Þ ¼ ϕ vð Þ and g0 v; vð Þ ¼ ϕ0 vð Þ; ð28Þ

that is, g(x, v) and its derivative should agree with ϕ(x) at x = v. Using
(27) and (28), (26) becomes

mv2 þ b ¼ ϕ vð Þ and 2mv ¼ ϕ0 vð Þ: ð29Þ

Solving for m and b we obtain

m ¼ ϕ0 vð Þ
2v

and b ¼ ϕ vð Þ− v
2
ϕ0 vð Þ: ð30Þ

Substituting (30) in (27), we obtain

g x; vð Þ ¼ ϕ0 vð Þ
2v

x2 þ ϕ vð Þ− v
2
ϕ0 vð Þ ð31Þ
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which gives

X
n

g xn; vnð Þ ¼
X
n

ϕ0 vnð Þ
2vn

x2n þ ϕ vnð Þ− vn
2
ϕ0 vnð Þ

� 	
ð32Þ

¼ 1
2
xT Λ vð Þ½ �x þ c vð Þ ð33Þ
⩾
XNi−1

ϕ xnð Þ ð34Þ
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The majorizer g(x, v) for the penalty function θ(x; r), r = 3
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Fig. 3. Asymmetric penalty function and its majorizer (v = 0.8, r = 3).
n¼0

where Λ(v) denotes a diagonal matrix with diagonal elements

Λ vð Þ½ �n;n ¼ ϕ0 vnð Þ
vn

ð35Þ

and c(v) is the scalar,

c vð Þ ¼
X
n

ϕ vnð Þ− vn
2
ϕ0 vnð Þ

h i
: ð36Þ

Using (32) to (36), we can write

XM
i¼0

λi

XNi−1

n¼0

g Dix½ �n; Div½ �n
� � ¼XM

i¼0

λi

2
Dixð ÞT Λ Divð Þ½ � Dixð Þ þ ci vð Þ

� 	

⩾
XM
i¼0

λi

XNi−1

n¼0

ϕ Dix½ �n
� � ð37Þ

where Λ(Div) are diagonal matrices,

Λ Divð Þ½ �n;n ¼ ϕ0 Div½ �n
� �
Div½ �n

ð38Þ

and ci(v) are scalars,

ci vð Þ ¼
X
n

ϕ Div½ �n
� �

− Div½ �n
2

ϕ0 Div½ �n
� �� 	

: ð39Þ

Equality holds when x = v. Eq. (37) implies that

G x; vð Þ ¼ 1
2

H y−xð Þk k22 þ
XM
i¼0

λi

2
Dixð ÞT Λ Divð Þ½ � Dixð Þ

� 	
þ c vð Þ ð40Þ

is a majorizer for F in (20). Minimizing G(x, v) with respect to x leads to
the explicit solution

x ¼ HTHþ
XM
i¼0

λiD
T
i Λ Divð Þ½ �Di

 !−1

HTHy: 41

Eq. (41) explains why we use a differentiable penalty function. Sup-
pose that the penalty function ϕ was taken to be the absolute value
function, i.e., ϕ(x) = |x|, then (38) becomes

Λ Divð Þ½ �n;n ¼ 1
Div½ �n

sign Div½ �n
� �

: ð42Þ

As the iterative algorithms progress, some values [Div]n go to zero
due to the sparsifying property of the penalty. Consequently, ‘divide-
by-zero errors’ are encountered in the implementation of (42). This is
due to the absolute value function being non-differentiable at zero.
The use of smoothed (differentiable) penalty functions such as those
in Table 1, avoids this issue. For example, if we let ϕ= ϕ, then (38) be-
comes

Λ Divð Þ½ �n;n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Div½ �n


 

2 þ ϵ

q ð43Þ
and if we let ϕ = ϕC, we obtain

Λ Divð Þ½ �n;n ¼ 1
Div½ �n


 

þ ϵ

: ð44Þ

Another issue in implementing (41) resides in the computational
complexity of solving the linear system represented by the matrix in-
verse. The computational cost increases dramatically with the length
of the signal y. To address this, recall from (17) that we take the high-
pass filter H to have the form H= BA−1. Hence, (41) can be written as

x ¼ A−TBTBA−1 þ
XM
i¼0

λiD
T
i Λ Divð Þ½ �Di

 !−1

A−TBTBA−1y ð45Þ

¼ A BTBþAT XM
λiD

T
i Λ Divð Þ½ �Di

 !
A

 !−1

BTBA−1y ð46Þ

i¼0

¼ AQ−1BTBA−1y ð47Þ
where

Q ¼ BTBA þ AT XM
i¼0

λiD
T
i Λ Divð Þ½ �Di

 !
A: ð48Þ

Note thatQ is a bandedmatrix. (Sums and product of bandedmatri-
ces are bandEd.) Hence, x can be obtained with high computational ef-
ficiency and lowmemory using fast solvers for banded systems [39, Sec.
2.4]. Note that this cannot be achieved when H is written H= H−1B as
in [45]. The complete algorithm for solving cost function (20) is detailed
in Table 2.

4.2. Asymmetric and symmetric penalty functions

To account for the positivity of the chromatogrampeaks, we propose
a second form of BEADS which uses an asymmetric penalty that penal-
izes negative values of x more than positive values. Hence, in this sec-
tion we use the MM approach to derive an algorithm solving the
problem:

x̂ ¼ arg min
x

F xð Þ ¼ 1
2
∥H y−xð Þ∥22 þ λ0

XN−1

n¼0

θϵ xn; rð Þ þ
XM
i¼1

λi

XNi−1

n¼0

ϕ Dix½ �n
� �( )

:

ð49Þ

The penalty θϵ(xn; r), given by (25), is a differentiable version of the
asymmetric penalty function θ(xn; r). The function ϕ is a differentiable
symmetric penalty function such as ϕB or ϕC in Table 1.
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Table 3
BEADS algorithm to minimize cost function (49).

Input: y, r ≥ 1, A, B, λi, i = 0, …, M

1. b½ �n ¼ 1−r
2

2. d = BTBA−1y − λ0ATb
3. x = y (Initialization)
Repeat

4. Γ½ �n;n ¼
1þr
4 xnj j ; xnj j≥ε
1þr
4ε ; xnj j≤ε

(

5. Λi½ �n;n ¼ ϕ0 Dix½ �nð Þ
Dix½ �n ; i ¼ 0;…;M;

6. M ¼ 2λ0Γþ∑
M

i−1
λiD

T
i ΛiDi

7. Q = BTB + ATMA
8. x = AQ−1d
Until converged
9. f = y − x − BA−1(y − x)
Output: x, f
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To obtain amajorizer for F, wefirstfind amajorizer for θ(x; r) :ℝ→ℝ,
defined in (24). We seek a majorizer as illustrated in Fig. 3, i.e., a func-
tion of the form

g x; vð Þ ¼ ax2 þ bxþ c ð50Þ

which is anupper bound of θ(x; r) that not only coincideswith θ(x; r) at
x= v, but also coincideswith θ(x; r) at x= s on the opposite side of zero
as illustrated in Fig. 3. That is,

g v; vð Þ ¼ θ v; rð Þ; g0 v; vð Þ ¼ θ0 v; rð Þ; ð51Þ

g s; vð Þ ¼ θ s; rð Þ; g0 s; vð Þ ¼ θ0 s; rð Þ: ð52Þ

The differentiation is with respect to the first argument. Note that a,
b, c, and s are all functions of v. Solving for them gives

a ¼ 1þ r
4jvj ; b ¼ 1−r

2
; c ¼ 1þ rð Þjvj

4
; s ¼ −v: ð53Þ

Substituting (53) in (50), we obtain a majorizer for θ(x; r),

g x; vð Þ ¼ 1þ r
4jvj x

2 þ 1−r
2

xþ 1þ rð Þjvj
4

: ð54Þ

Again, an issue with (54) is that, as v approaches zero, ‘divide-by-
zero’ numerical errors arise. To address this issue, we define θϵ(x; r) to
be a continuously differentiable approximation to θ(x; r). In a neighbor-
hood of x=0,we define θϵ(x; r) to be the second order polynomial (54)
Table 2
Algorithm to minimize cost function
(21).

Input : y;A ;B ;λi; i ¼ 0;…;M
1:b ¼ BTBA‐1y
2:x ¼ y Initializationð Þ

Repeat

3: Λi½ �n;n ¼ ϕ0 Dix½ �n
� �
Dix½ �n

; i ¼ 0;…;M;

4:M ¼ ∑
M

i¼0
λiDiΛiDi

5:Q ¼ BTBþ ATMA
6:x ¼ AQ ‐1b

Until converged
8:f ¼ y‐x‐BA‐1 y‐xð Þ

Output : x; f
with v = ϵ, i.e.,

θϵ x; rð Þ ¼
x; x N ϵ
1þ r
4ϵ

x2 þ 1−r
2

xþ ϵ
1þ r
4

; jxj ⩽ ϵ
−rx; x b −ϵ

8><
>: ð55Þ

where ϵ N 0 is a small constant. The new function θϵ(x; r), illustrated in
Fig. 4, behaves similarly to θ(x; r) but is continuously differentiable.

The majorizer given by (54) is still valid for (55) in the domain of
(−∞, ϵ) and (−ϵ, +∞). In the domain [−ϵ, ϵ], we use θϵ(x; r) itself as
its majorizer. Hence, a majorizer of θϵ(x; r) is found to be

g0 x; vð Þ ¼
1þ r
4jvj x

2 þ 1−r
2

xþ jvj1þ r
4

; jvj N ϵ

1þ r
4ϵ

x2 þ 1−r
2

xþ ϵ
1þ r
4

; jvj ⩽ ϵ:

8><
>: ð56Þ

A proof that g0(x, v) is a majorizer of θϵ(x; r) is given in Appendix A.
Using (56), we then have

XN−1

n¼0

g0 xn; vnð Þ ¼ xT Γ vð Þ½ �x þ bTx þ c vð Þ ð57Þ

⩾
XN−1

n¼0

θϵ xn; rð Þ ð58Þ

where Γ(v) is a diagonal matrix with diagonal elements

Γ vð Þ½ �n;n ¼
1þ r
4jvnj

; jvnj ⩾ ϵ

1þ r
4ϵ

; jvnj ⩽ ϵ

8>><
>>: ð59Þ

and b is a vector with elements

b½ �n ¼ 1−r
2

ð60Þ

and c(v) is a scalar that does not depend on x.
Table 4
Run-time (in sec.) of for N-point data.

N 102 103 104 105

BEADS 0.040 0.124 0.677 7.266
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Fig. 7. Experiment 1. Output SNR as a function of input SNR.
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Fig. 5. Simulated chromatograms with Type 1 baseline [27].
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Using (37) and (57), we find that a majorizer for F in (49) is given
by:

G x; vð Þ ¼ 1
2
∥H y−xð Þ∥22 þ λ0x

T Γ vð Þ½ �x þ λ0b
Tx

þ
XM
i¼1

λi

2
Dixð ÞT Λ Divð Þ½ � Dixð Þ

� 	
þ c vð Þ: ð61Þ

Minimizing G(x, v) with respect to x yields

x ¼ HTHþ 2λ0 Γ vð Þ þ
XM
i¼1

λiD
T
i Λ Divð ÞDi½ �−1 HTHy−λ0b

� �" #
: ð62Þ
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Fig. 6. Simulated chromatograms with Type 2 baseline.
Using H = BA−1 as in (45), we can write (62) as

x ¼ AQ−1 BTBA−1y−λ0A
Tb

� �
ð63Þ

where Q is the banded matrix,

Q ¼ BTBþ ATMA; ð64Þ

and M is the banded matrix,

M ¼ 2λ0Γ vð Þ þ
XM
i¼1

λiD
T
i Λ Divð Þ½ �Di: ð65Þ

As above, the systemof equations represented byQ in (63) is banded
and thus a fast solver for banded systems can be used to implement the
MM update equation.

Using the above equations, the MM iteration takes the form:

M kð Þ ¼ 2λ0Γ x kð Þ� �
þ
XM
i¼1

λiD
T
i Λ Dix

kð Þ� �h i
Di: ð66Þ

Q kð Þ ¼ BTBþ ATM kð ÞA ð67Þ

x kþ1ð Þ ¼ A Q kð Þh i−1
BTBA−1y−λ0A

Tb
� �

ð68Þ

The complete BEADS algorithm for solving cost function (49) is de-
tailed in Table 3. The run-time of BEADS, with a fixed number of 30 iter-
ations, as implemented in MATLAB, is tabulated in Table 4. Note that
applying the algorithm to a signal of length of 10,000 requires b 1 s of
computation. Run-times were measured using MATLAB version 2010b
on an i7 3.2 GHz PC with 8 GB of RAM. (See Table 4.)

The convergence property of the MM approach is discussed in [25,
30]. In particular, when the objective function is strictly convex, as is
the case in (20) and (49), the MM algorithm is guaranteed to converge
to the unique optimum.
Table 5
Experiment 1. The mean and standard deviation (std) of SNR. The table shows the result
when input SNR is 0 dB, 10 dB and 20 dB.

0 dB 10 dB 20 dB

Mean Std Mean Std Mean Std

BEADS 28.1 8.52 32.64 8.02 38.33 6.74
backcor 24.91 9.75 31.27 8.33 36.47 6.53
airLPS 20.26 9.65 22.54 10.15 26.71 7.76
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5. Experiments

5.1. Baseline correction of simulated chromatograms in Gaussian noise

This example illustrates the use of the removal of baselines in simu-
lated chromatograms. The algorithm is compared with two other
methods, airPLS [59] and backcor [32,33].We conduct two experiments.
In both experiments, the chromatogram peaks are generated as de-
scribed in [27] (similar also peak simulation of [59,32,33]). Namely,
the signal x is created as a superposition of Gaussian functions with dif-
ferent amplitudes, positions and widths. For Experiments 1 and 2, we
simulate the baseline in two ways, respectively:

1. Type 1 simulated baseline: as in [27,33], a baseline signal is generated
as the sum of an order-p polynomial and a sinusoidal signal of fre-
quency f. Specifically, for each realization, the order p and frequency
f are uniformly distributed in a prescribed range.

2. Type 2 simulated baseline: a baseline is generated as a stationary ran-
dom process with a power spectrum limited to a low-pass range of
[0, fc] Hz. Specifically, such a signal is obtained by applying a low-
pass filter with cut-off frequency fc to a white Gaussian process.

Sample realizations are illustrated in Figs. 5 and 6 for Experiments 1
and 2, respectively. White Gaussian noise is added to each realization.
We generate 500 realizations and vary the variance of the signal such
that the SNR ranges from −5 dB to 25 dB. For each realization and
SNR level, we apply the BEADS, airPLS, and backcor algorithms to esti-
mate the baseline. The accuracy of the baseline estimation is evaluated
by computing the SNR of the output, i.e., the energy of the generated
baseline divided by the energy of the difference between the generated
and the estimated baselines, measured in decimal.

For Type 1 simulated baselines (Experiment 1), the results are
shown in Fig. 7 and Table 5. Algorithm backcor and BEADS outperform
airPLS. Since the morphology of Type 1 baselines is relatively simple,
backcor and BEADS perform quite similarly; however, BEADS yields a
slightly smaller error on average. For Type 2 simulated baselines (Exper-
iment 2), the results are shown in Fig. 8 and Table 6. As in Experiment 1,
airPLS yields the greatest error and BEADS the least error, on average;
but, the improvement of BEADS in comparison with backcor and airPLS
is more significant than in Experiment 1. BEADS is better able to
estimate the more challenging Type 2 baseline, because it models the
Table 6
Experiment 2. The mean and standard deviation (std) of SNR. The table shows the result
when input SNR is 0 dB, 10 dB and 20 dB.

0 dB 10 dB 20 dB

Mean Std Mean Std Mean Std

BEADS 18.75 3.71 19.99 3.17 20.89 3.32
backcor 17.20 4.57 18.93 3.74 19.54 3.18
airLPS 16.71 4.80 17.52 5.54 17.98 4.82
baseline as a low-pass signal rather than as a parametric function
(e.g., polynomial).

To clarify the use of BEADS as applied in this example:wehave set the
low-pass filter L= I−H to be a second order filter (d=1 in [45])with a
cut-off frequency of fc= 0.0035 cycles/sample. Although the variance of
the noise can affect the choice of fc, in practice, we have the effect
insignificant.

We model the chromatogram peaks as having two sparse deriva-
tives, i.e., we set M = 2 in the cost function F in (49). We use the
differentiable penalty ϕB with ϵ= 10−5. The regularization parameters
λi, i=0, 1, 2 should match the sparsity of x and its derivatives. For each
derivative order, i: the sparser i, the larger the corresponding λi should
be set. For an individual signal, a simple rule is to choose λi inversely
proportional to ‖Dix‖1 for i=0, 1, 2, and to set the proportionality con-
stant α according to the noise variance. In this experiment, we have set
λi to be inversely proportional to the empirical mean of ‖Dix‖1, i =
0, 1, 2, where themean is computed over the 500 realizations.Weman-
ually tune the proportionality constant α so as to minimize the average
SNR. It is also conceivable that other approaches such as cross-
validation or bootstrapping can be used to select the λi parameters.
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Fig. 10. Experiment 3. Output SNR as a function of C.
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The backcor algorithm requires two user-specified parameters: a
threshold value and the order of the approximation polynomial. To set
these parameters, we optimized them, via a search, to minimize the
SNR. The algorithm, airPLS, also requires two user-specified parameters
which we likewise set so as to minimize the SNR.
5.2. Baseline correction: Poisson observation process

With the variety of chromatographic detectors ([53], p. 277–337),
noise distributions may more aptly be characterized by Poisson statis-
tics, under the denominationof shot noise [54,55]. Gaussianfluctuations
can be regarded as a limit of a Poisson process. In modern detectors the
noise can often be modeled as Poisson distributed, proportional to the
square root of intensity (peaks + baseline). More specifically, if at
time n we denote the Poisson observation y(n), the peak signal x(n)
and the baseline f(n), then y(n) may be modeled as y(n) = (P(n)/c)2

where c is a proportionality constant and P(n) ∼ Poisson(λ(n)) is a
Poisson random variable with mean λ nð Þ ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x nð Þ þ f nð Þ

p
.

Although the proposed algorithm is developed under the assump-
tion that noise is an additive Gaussian, we also test its performance
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Fig. 12. Left column: Baselines as estimated by eachmethod. Right column: Estimated peaks (ob
estimates of the baseline, yet BEADS appears to exhibit the least distortion.
when the observed data follows a Poisson model. A simulated signal is
shown in Fig. 9(a); Fig. 9(b) and (c) shows the Poisson observation
and the difference between the observation and the noise-free simulat-
ed signal (peaks + baseline).

With this Poisson noise model, two experiments (3 and 4) are con-
ducted following the same setup as Experiments 1 and 2 respectively.
The noise level is quantified by the constant c and performance is eval-
uated using SNR. The results are detailed in Figs. 10 and 11. Similar to
Experiments 1 and 2, BEADS uniformly outperforms the two methods
to which it is compared.

5.3. Baseline correction of real chromatogram data

This example illustrates baseline correction using the proposed
method, BEADS, as applied to real chromatogram data. The chromato-
gram data, from [59], is shown in gray in Fig. 12. The algorithms,
BEADS, backcor, and airPLS, are applied to estimate the baseline. The pa-
rameters for backcor and airPLS were manually set so as to obtain their
best possible result. Fig. 12(a)–(c) displays the estimated baseline pro-
duced by each of the threemethods, and Fig. 12(d)–(f) shows the corre-
sponding estimated peaks (obtained by subtracting the estimated
baseline from the data). The threemethods are able to capture the base-
line trend. However, close examination shows that BEADS exhibits less
distortion in some regions. In the interval 2200–2500, backcor overesti-
mates the baseline, while airPLS slightly underestimates the baseline.

5.4. Joint baseline correction and denoising

Somemethods, e.g., backcor and airPLS, have been developed specif-
ically for baseline removal; while other methods have been devised for
the reduction of randomnoise. However, inmany operational scenarios,
both baseline drift and noise are present in the measured data. In this
case, BEADS can be used to jointly perform baseline correction and
noise reduction.
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tained by subtraction of estimated baseline from data). All threemethods yield reasonable
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Fig. 13. Processing of noisy chromatogramdata using BEADS. (a) Chromatogramdatawith
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For illustration, white Gaussian noise is added to the chromatogram
signal from [59] (Fig. 13(a)). The new signal exhibits both baseline
drift and additive noise. The output obtained using BEADS is illustrated
in Fig. 13(b)–(d). (We have used BEADS parameters r = 6, fc =
0.006 cycles/sample, d = 1 and ϕ = ϕ.) Note that the estimated chro-
matogram peaks, illustrated in Fig. 13(b), are well delineated. The base-
line is well estimated as illustrated in Fig. 13(c). The residual constitutes
an estimate of the noise. The cost function history of the iterative algo-
rithm, shown in Fig. 14, indicates that the algorithm converges in about
20 iterations.

6. Conclusion

This paper addresses the problems of chromatogram baseline cor-
rection and noise reduction. The approach, denoted ‘BEADS’ is based
on formulating a convex optimization problem designed to encapsulate
non-parametric models of the baseline and the chromatogram peaks.
Specifically, the baseline is modeled as a low-pass signal and the series
of chromatogram peaks is modeled as sparse and as having sparse de-
rivatives. Moreover, to account for the positivity of chromatogram
peaks, both asymmetric and symmetric penalty functions are utilized
(symmetric ones for the derivatives). In order that the iterative optimi-
zation algorithm be computationally efficient, use minimal memory,
and can be applied to very long data series, we formulate the problem
in terms of banded matrices. As such, the algorithm leverages the
availability of fast solvers for banded linear systems and the majority
of the computational work of the algorithm resides therein. Further-
more, due to the formulation of the problem as a convex problem and
the properties of the majorization–minimization (MM) approach by
which the iterative algorithm is derived, the proposed algorithm is
guaranteed to converge regardless of its initialization.

The baseline correction performance is evaluated on simulated chro-
matogram data and compared with two state-of-art methods. In partic-
ular, the proposed method, BEADS, outperforms methods based on
polynomial modeling when low-order polynomials are not efficient
representations of the baseline. Experiments suggest that BEADS can
better estimate the baselines of real chromatograms. Finally, since
BEADS jointly estimates the baseline and the chromatogram peaks, it
can be used to perform both baseline correction and noise reduction
simultaneously.

The proposed method also provides a more general framework for
different types of signals. By adjusting regularization parameters λi

and penalty functions, themodel can be customized for signals of differ-
ent kinds. For example, an electrocardiography (ECG) signal is only
sparse in its first several derivatives (the signal itself is not sparse)
[37], therefore, by setting λ0 = 0 and choosing proper λi, i = 1, 2, 3
and using symmetric penalty functions, BEADS can be used for ECG
baseline estimation and denoising.

BEADS uses symmetric/asymmetric convex penalty function to pro-
mote positivity of the estimated peaks, however, other penalty functions,
such as non-convex penalties,may provide further improvements. In ad-
dition, due to the growing interest on hyphenated techniques in analyt-
ical chemistry [51,56], with an increasing need laid on repeatability,
extensions to two-dimensional chromatography are advisable. These
will all be considered in future work.
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Appendix A

We prove that g0(x, v) in (56) is a majorizer of θϵ(x; r). Define

f xð Þ ¼ 1þ r
4ϵ

x2 þ 1−r
2

xþ ϵ
1þ r
4

; jxj ⩽ ϵ: ðA:1Þ

For θϵ(x; r) to be a majorizer of g0(x, v), we need to show that

g0 x; vð Þ ¼ 1þ r
4v

x2 þ 1−r
2

xþ v
1þ r
4

⩾ f xð Þ; v N ϵ ðA:2Þ
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g0 x; vð Þ ¼ −1þ r
4v

x2 þ 1−r
2

x−v
1þ r
4

⩾ f xð Þ; v b −ϵ: ðA:3Þ

If v N ϵ, then

g0 x; vð Þ− f xð Þ ¼ 1þ r
4v

−1þ r
4ϵ

� �
x2 þ v−ϵð Þ1þ r

4
; ðA:4Þ

which can be written as

g0 x; vð Þ− f xð Þ ¼
1þ rð Þ v−ϵð Þ vϵ−x2

� �
4vϵ

N0; ðA:5Þ

where we have used v N ϵ and |x| ≤ ϵ.
If v b − ϵ, then

g0 x; vð Þ− f xð Þ ¼ −1þ r
4v

−1þ r
4ϵ

� �
x2− vþ ϵð Þ1þ r

4
; ðA:6Þ

which can be written as

g0 x; vð Þ− f xð Þ ¼ −
1þ rð Þ vþ ϵð Þ vϵþ x2

� �
4vϵ

N0; ðA:7Þ

where we have used v b − ϵ and |x| ≤ ϵ.

Appendix B. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.chemolab.2014.09.014.

References

[1] V.J. Barwick, Sources of uncertainty in gas chromatography and high-performance
liquid chromatography, J. Chromatogr. A 849 (1) (Jul. 1999) 13–33.

[2] J.M. Bioucas-Dias, M.A.T. Figueiredo, An iterative algorithm for linear inverse prob-
lems with compound regularizers, Proc. Int. Conf. Image Process. (Oct. 12–15
2008) 685–688.

[3] H.F.M. Boelens, R.J. Dijkstra, P.H.C. Eilers, F. Fitzpatrick, J.A. Westerhuis, New back-
ground correction method for liquid chromatography with diode array detection,
infrared spectroscopic detection and Raman spectroscopic detection, J. Chromatogr.
A 1057 (1–2) (2004) 21–30.

[4] L.M. Briceño-Arias, P.L. Combettes, J.-C. Pesquet, N. Pustelnik, Proximal algorithms
for multicomponent image processing, J. Math. Imaging Vis. 41 (1) (Sep. 2011)
3–22.

[5] C.D. Brown, L. Vega-Montoto, P.D. Wentzell, Derivative preprocessing and optimal
corrections for baseline drift in multivariate calibration, Appl. Spectrosc. 54 (7)
(2000) 1055–1068.

[6] S.D. Brown, R. Tauler, B. Walczak (Eds.), Comprehensive Chemometrics: Chemical
and Biochemical Data Analysis, Elsevier, 2009.

[7] S. Cappadona, F. Levander, M. Jansson, P. James, S. Cerutti, L. Pattini, Wavelet-based
method for noise characterization and rejection in high-performance liquid chro-
matography coupled to mass spectrometry, Anal. Chem. 80 (13) (2008) 4960–4968.

[8] T.F. Chan, S. Osher, J. Shen, The digital TV filter and nonlinear denoising, IEEE Trans.
Image Process. 10 (2) (Feb. 2001) 231–241.

[9] F.-T. Chau, A.K.-M. Leung, Application of wavelet transform in processing chromato-
graphic data, in: B. Walczak (Ed.), Wavelets in Chemistry, Volume 22 of Data Han-
dling in Science and Technology, Elsevier, 2000, pp. 205–223, (chapter 9).

[10] S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit, SIAM
J. Sci. Comput. 20 (1) (1998) 33–61.

[11] R. Danielsson, D. Bylund, K.E. Markides, Matched filtering with background suppres-
sion for improved quality of base peak chromatograms and mass spectra in liquid
chromatography–mass spectrometry, Anal. Chim. Acta. 454 (2) (2002) 167–184.

[12] J.J. de Rooi, P.H.C. Eilers, Mixture models for baseline estimation, Chemometr. Intell.
Lab. Syst. 117 (Aug. 2012) 56–60.

[13] P.H.C. Eilers, A perfect smoother, Anal. Chem. 75 (14) (May 2003) 3631–3836.
[14] P.H.C. Eilers, Unimodal smoothing, J. Chemom. 19 (5–7) (May 2005) 317–328.
[15] M. Elad, J.-L. Starck, P. Querre, D.L. Donoho, Simultaneous cartoon and texture image

inpainting using morphological component analysis (MCA), Appl. Comp. Harm.
Anal. 19 (3) (2005) 340–358.

[16] M.J. Fadili, J.-L. Starck, J. Bobin, Y. Moudden, Image decomposition and separation
using sparse representations: an overview, Proc. IEEE 98 (6) (Jun. 2010) 983–994.

[17] A. Felinger (Ed.), Data Analysis and Signal Processing in Chromatography, Elsevier,
1998.

[18] M.A.T. Figueiredo, J.M. Bioucas-Dias, R.D. Nowak, Majorization–minimization algo-
rithms for wavelet-based image restoration, IEEE Trans. Image Process. 16 (12)
(Dec. 2007) 2980–2991.
[19] R. Fischer, K. Hanson, V. Dose, W. von der Linden, Background estimation in exper-
imental spectra, Phys. Rev. E. 61 (2) (Feb. 2000) 1152–1160.

[20] M. Fredriksson, P. Petersson, M. Jörntén-Karlsson, B.-O. Axelsson, D. Bylund, An ob-
jective comparison of pre-processing methods for enhancement of liquid chroma-
tography–mass spectrometry data, J. Chromatogr. A 1172 (2) (2007) 135–150.

[21] F. Gan, G. Ruan, J. Mo, Baseline correction by improved iterative polynomial fitting
with automatic threshold, Chemometr. Intell. Lab. Syst. 82 (1–2) (2006) 59–65.

[22] L. Granai, P. Vandergheynst, Sparse decomposition over multi-component redun-
dant dictionaries, IEEE Workshop Multimedia Signal Process., Siena, Italy, 29 Sep.–
1 Oct, 2004, pp. 494–497.

[23] S. Gulam Razul, W.J. Fitzgerald, C. Andrieu, Bayesian model selection and parameter
estimation of nuclear emission spectra using RJMCMC, Nucl. Instrum. Meth. Phys.
Res. A 497 (2–3) (Feb. 2003) 492–510.

[24] Y. Hu, T. Jiang, A. Shen, W. Li, X. Wang, J. Hu, A background elimination method
based on wavelet transform for Raman spectra, Chemometr. Intell. Lab. Syst. 85
(1) (2007) 94–101.

[25] D.R. Hunter, K. Lange, A tutorial on MM algorithms, Am. Stat. 58 (1) (Feb. 2004)
30–37.

[26] M.A. Kneen, H.J. Annegarn, Algorithm for fitting XRF, SEM and PIXE X-ray spectra
backgrounds, Nucl. Instrum. Methods Phys. Res. Sect. B 109 (1996) 201–213.

[27] Ł. Komsta, Comparison of severalmethods of chromatographic baseline removalwith
a new approach based on quantile regression, Chromatographia 73 (2011) 721–731.

[28] G. Kutyniok, Geometric separation by single-pass alternating thresholding, Appl.
Comp. Harm. Anal. 36 (1) (Jan. 2014) 23–50.

[29] J.M. Laeven, H.C. Smit, Optimal peak area determination in the presence of noise,
Anal. Chim. Acta. 176 (1985) 77–104.

[30] K. Lange, D.R. Hunter, I. Yang, Optimization transfer using surrogate objective func-
tions, J. Comput. Graph. Stat. 9 (1) (Mar. 2000) 1–20.

[31] Y. Liu, W. Cai, X. Shao, Intelligent background correction using an adaptive lifting
wavelet, Chemometr. Intell. Lab. Syst. 125 (Jun. 2013) 11–17.

[32] V. Mazet, D. Brie, J. Idier, Baseline spectrum estimation using half-quadratic minimi-
zation, Proc. Eur. Sig. Image Proc. Conf., Vienna, Austria, Sep. 7–10 2004, pp.
305–308.

[33] V. Mazet, C. Carteret, D. Brie, J. Idier, B. Humbert, Background removal from spectra
by designing and minimising a non-quadratic cost function, Chemometr. Intell. Lab.
Syst. 76 (2) (2005) 121–133.

[34] A.D. Mcnaught, A. Wilkinson, IUPAC. Compendium of chemical terminology, The
“Gold Book”2nd ed., Wiley Blackwell, Aug. 2009.

[35] D.A.McNulty, H.J.H. MacFie, The effect of different baseline estimators on the limit of
quantification in chromatography, J. Chemom. 11 (1) (Jan. 1997) 1–11.

[36] A.W. Moore, J.W. Jorgenson, Median filtering for removal of low-frequency back-
ground drift, Anal. Chem. 65 (2) (1993) 188–191.

[37] X. Ning, I.W. Selesnick, ECG enhancement and QRS detection based on sparse deriv-
atives, Biomed. Signal Process. Control 8 (6) (Nov. 2013) 713–723.

[38] G.A. Pearson, A general baseline-recognition and baseline-flattening algorithm, J.
Magn. Reson. 27 (2) (1977) 265–272.

[39] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes: The Art
of Scientific Computing, 3rd ed. Cambridge University Press, 2007.

[40] M.A. Rasmussen, R. Bro, A tutorial on the lasso approach to sparse modeling,
Chemometr. Intell. Lab. Syst. 119 (Oct. 2012) 21–31.

[41] A.F. Ruckstuhl, M.P. Jacobson, R.W. Field, J.A. Dodd, Baseline subtraction using robust
local regression estimation, J. Quant. Spectrosc. Radiat. Transf. 68 (2) (2001)
179–193.

[42] G. Schulze, A. Jirasek, M.M.L. Yu, A. Lim, R.F.B. Turner, M.W. Blades, Investigation of
selected baseline removal techniques as candidates for automated implementation,
Appl. Spectrosc. 59 (5) (May 2005) 545–574.

[43] I.W. Selesnick, Resonance-based signal decomposition: a new sparsity-enabled sig-
nal analysis method, Signal Process. 91 (12) (Dec. 2011) 2793–2809.

[44] I.W. Selesnick, S. Arnold, V.R. Dantham, Polynomial smoothing of time series with
additive step discontinuities, IEEE Trans. Signal Process. 60 (12) (Dec. 2012)
6305–6318.

[45] I.W. Selesnick, H.L. Graber, D.S. Pfeil, R.L. Barbour, Simultaneous low-pass filtering
and total variation denoising, IEEE Trans. Signal Process. 62 (5) (Mar. 2014)
1109–1124.

[46] H.C. Smit, Specification and estimation of noisy analytical signals: part I. Character-
ization, time invariant filtering and signal approximation, Chemometr. Intell. Lab.
Syst. 8 (1) (1990) 15–27.

[47] H.C. Smit, Specification and estimation of noisy analytical signals: part II. Curve
fitting, optimum filtering and uncertainty determination, Chemometr. Intell. Lab.
Syst. 8 (1) (1990) 29–41.

[48] H.C. Smit, H. Steigstra, Noise and detection limits in signal-integrating analytical
methods, in: L.A. Currie (Ed.), Detection in Analytical Chemistry: Importance, Theory,
and Practice, ACS Symposium Series, Chapter 7, American Chemical Society, 1988,
pp. 126–148.

[49] J.-L. Starck, M. Elad, D.L. Donoho, Image decomposition via the combination of
sparse representations and a variational approach, IEEE Trans. Image Process. 14
(10) (Oct. 2005) 1570–1582.

[50] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B 58
(1) (1996) 267–288.

[51] C. Vendeuvre, F. Bertoncini, L. Duval, J.-L. Duplan, D. Thiébaut, M.-C. Hennion, Com-
parison of conventional gas chromatography and comprehensive two-dimensional
gas chromatography for the detailed analysis of petrochemical samples, J.
Chromatogr. A 1056 (1–2) (2004) 155–162.

[52] C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, Comprehensive
two-dimensional gas chromatography for detailed characterisation of petroleum
products, Oil Gas Sci. Tech. 62 (1) (2007) 43–55.

http://dx.doi.org/10.1016/j.chemolab.2014.09.014
http://dx.doi.org/10.1016/j.chemolab.2014.09.014
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0005
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0005
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0240
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0240
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0240
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0010
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0010
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0010
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0010
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0015
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0015
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0015
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0020
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0020
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0020
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0245
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0245
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0030
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0030
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0030
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0035
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0035
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0250
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0250
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0250
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0040
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0040
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0045
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0045
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0045
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0050
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0050
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0055
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0255
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0065
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0065
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0065
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0070
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0070
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0260
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0260
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0075
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0075
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0075
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0080
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0080
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0085
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0085
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0085
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0090
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0090
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0265
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0265
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0265
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0095
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0095
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0095
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0100
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0100
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0100
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0105
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0105
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0110
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0110
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0115
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0115
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0120
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0120
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0125
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0125
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0130
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0130
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0135
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0135
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0270
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0270
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0270
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0140
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0140
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0140
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0275
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0275
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0145
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0145
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0150
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0150
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0155
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0155
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0160
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0160
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0280
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0280
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0165
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0165
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0170
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0170
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0170
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0175
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0175
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0175
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0180
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0180
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0185
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0185
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0185
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0190
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0190
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0190
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0285
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0285
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0285
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0290
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0290
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0290
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0295
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0295
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0295
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0295
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0195
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0195
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0195
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0200
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0200
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0205
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0205
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0205
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0205
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0210
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0210
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0210


167X. Ning et al. / Chemometrics and Intelligent Laboratory Systems 139 (2014) 156–167
[53] Modern Practice of Gas Chromatography, 4th ed. Wiley-Interscience, 2004.
[54] W. Schottky, Über spontane Stromschwankungen in verschiedenenElektrizitätsleitern,

Proc. Camb. Phil. Soc 15 (1909) 117–136.
[55] N. Campbell, The study of discontinuous phenomena, Ann. Phys. 362 (1918)

541–567.
[56] C. Vendeuvre, R. Ruiz-Guerrero, F. Bertoncini, L. Duval, D. Thiébaut, M.-C. Hennion,

Characterisation of middle-distillates by comprehensive two-dimensional gas chro-
matography (GC × GC): a powerful alternative for performing various standard
analysis of middle-distillates, J. Chromatogr. A 1086 (1–2) (2005) 21–28.
[57] P.D. Wentzell, C.D. Brown, Signal processing in analytical chemistry, in: R.A. Meyers

(Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, 2000.
[58] J.D.Wilson, C.A.J. McInnes, The elimination of errors due to baseline drift in themea-

surement of peak areas in gas chromatography, J. Chromatogr. A 19 (1965)
486–494.

[59] Z.-M. Zhang, S. Chen, Y.-Z. Liang, Baseline correction using adaptive iteratively
reweighted penalized least squares, Analyst 135 (5) (2010) 1138–1146.

http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0300
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0215
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0215
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0220
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0220
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0225
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0225
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0225
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0225
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0305
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0305
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0230
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0230
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0230
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0235
http://refhub.elsevier.com/S0169-7439(14)00203-2/rf0235

	Chromatogram baseline estimation and denoising using sparsity (BEADS)
	1. Introduction
	2. Preliminaries
	3. Baseline estimation and denoising: problem formulation
	3.1. Low-pass and high-pass filters
	3.2. Compound sparse derivative modeling
	3.3. Symmetric penalty functions
	3.4. Asymmetric penalty functions

	4. Algorithms
	4.1. Symmetric penalty functions
	4.2. Asymmetric and symmetric penalty functions

	5. Experiments
	5.1. Baseline correction of simulated chromatograms in Gaussian noise
	5.2. Baseline correction: Poisson observation process
	5.3. Baseline correction of real chromatogram data
	5.4. Joint baseline correction and denoising

	6. Conclusion
	Conflict of interest
	Appendix A
	Appendix B. Supplementary data
	References


