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ABSTRACT Metaheuristics are computational procedures that intelligently lead the search process through
the efficient exploration of the search space associated with an optimization problem. With the progressive
outburst of problems with large data sets in various fields, there is an ongoing quest for enhancing existing
metaheuristic algorithms as well as developing new ones with greater accuracy and efficiency. In general,
a powerful and efficient metaheuristic algorithm is based on a rich inspiration source, implemented
effectively through a precise mathematical model. Aiming to develop a highly efficient, nature-inspired
optimization algorithm, here we propose a novel metaheuristic called Crystal Structure Algorithm (CryStAl).
This method is chiefly inspired by the principles underlying the formation of crystal structures from the
addition of the basis to the lattice points, which is a natural phenomenon that can be seen in the symmetric
arrangement of constituents (i.e. atoms, molecules, or ions) in crystalline minerals such as quartz. A total
number of 239 mathematical functions which are categorized into four different groups are utilized to
evaluate the overall performance of the proposed method. To validate the results of this novel algorithm,
12 different classical and modern metaheuristic algorithms are selected from the literature. The minimum,
mean, and standard deviation values alongside the number of function evaluations for CryStAl and the other
metaheuristics for a specific tolerance are calculated and presented accordingly. The obtained results, further
supported by a complete statistical analysis, demonstrated that the proposed algorithm is capable of providing
very competitive results, outperforming the other metaheuristics in most cases.

INDEX TERMS Crystal Structure Algorithm (CryStAl), lattice, function, metaheuristic, optimization,
statistical analysis.

I. INTRODUCTION
Many design problems in nature can be considered as opti-
mization problems that demand appropriate optimization
techniques and methods to be dealt with. Nowadays, design
problems have become extremely complex for which classi-
cal optimization methods based on mathematical principles
are incapable of providing satisfactory results in a reasonable
period of time. Gradient-based methods, which utilize the
gradient of the objective function for the configuration of
the optimization problem, are a type of these mathematical
methods. Over the past few decades, exploring the deficien-
cies of classical optimization methods and introducing new
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efficient optimization algorithms have been of great interest.
Based on recent technological advances, there is a grow-
ing interest in introducing new optimization methods with
enhanced efficiency, accuracy, and increased speed rate for
tackling difficult optimization problems. Besides, some other
concerns in dealingwith some specific issues such as the local
optima issues alongside the smoothness and convexity of the
search spaces have been of great importance for a long period
of time.

The presented concerns about the classical optimiza-
tion algorithms have led optimization experts to a new
methodology in solving different optimization problems
called ‘‘Metaheuristic’’. Glover [1] firstly proposed this term
in 1986 which is comprised of the main word, i.e. heuristics,
and a prefix, i.e. meta, which both have Greek origins. The
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term ‘‘heuristic’’ comes from heuriskein which is an old
Greek word meaning ‘‘to discover’’, while ‘‘meta’’ means
‘‘beyond the normal or natural limits of something’’. Meta-
heuristics are solution techniques that implement higher-level
strategies into search processes in order to guide an optimiza-
tion process to perform a powerful search into the search
space with some special capabilities such as avoiding local
optima.

As presented by Sörensen [2], the history of utilizing
metaheuristics as the solution methods for dealing with
real-world problems can generally be categorized into five
distinct periods. In the first period which is named the ‘‘pre-
theoretical’’ period (until 1940), there was not any formal pre-
sentation of heuristics and metaheuristics methods. Despite
that, these methods had been used for solving some simple
optimization problems in this period. In the second period
which is from 1940 to 1980 and known as the ‘‘early’’ period,
some studies were conducted on heuristics which was the
first formal introduction and discussion in this field. In the
third period which is called the ‘‘method-centric’’ period
(1980 to 2000), multiple metaheuristics were proposed and
developed for specific applications which extended the field
of heuristics andmetaheuristics. In the fourth period, which is
from 2000 until now and known as the ‘‘framework-centric’’
period, the methodology of utilizing metaheuristics as frame-
works alongside methods has been successfully presented
with considerable growth of intuition in this field. In the fifth
or last period which is named the ‘‘scientific’’ or ‘‘future’’
period, the design and introduction of newmetaheuristics will
turn into a matter of science rather than art. A summary of the
abovementioned historical periods is presented in Table 1.

TABLE 1. Summary of the historical periods of metaheuristics evolution.

Considering the development of various metaheuristic
algorithms, four classifications can be made in terms of their
inspiration. The first category is entitled ‘‘evolutionary algo-
rithms’’ including the Memetic Algorithm (MA) [3], Genetic
Algorithm (GA) [4], Differential Evolution (DE) [5], and the
Evolution Strategies (ES) [6], whichwere developed based on
the biological evolution and reproduction. The second cate-
gory contains swarm intelligence-based algorithms that were
formed based on the cooperative behavior of decentralized
and self-organized natural or artificial systems. The Particle

Swarm Optimization (PSO) [7], Ant Colony Optimization
(ACO) [8], Artificial Bee Colony (ABC) [9], Cat Swarm
Optimization (CSA) [10], Firefly Algorithm (FA) [11],
Krill Herd (KH) algorithm [12], and Slap Swarm Algo-
rithm (SSA) [13] are some of the well-known methods
in this category. The third category consists of algorithms
motivated by physical laws. The Simulated Annealing
(SA) [14], Magnetic Optimization Algorithm (MOA) [15],
Gravitational Search Algorithm (GSA) [16], Charged
System Search (CSS) algorithm [17], Ray Optimization
Algorithm (ROA) [18], Colliding Bodies Optimization
(CBO) [19], Multiverse Algorithm (MVO) [20], and the Sine
Cosine Algorithm (SCA) [21] are some methods belonging
to this category. Beyond these methods, some other meta-
heuristic algorithms were presented based on the lifestyle of
humans and animals (the fourth category) such as the Har-
mony Search (HS) [22], Teaching–learning-based Optimiza-
tion (TLBO) [23], Creativity-Oriented Optimization Algo-
rithm (COOA) [24], Human Behavior-Based Optimization
(HBBO) [25], and the Gaining Sharing Knowledge-based
algorithm (GSK) [26]. In addition to these standard algo-
rithms, some other challenges in developing, upgrad-
ing, or hybridizing standard algorithms have also been
achieved [27]–[38]. A summary of these metaheuristic algo-
rithms is presented in Table 2.

TABLE 2. Summary of the classification of the metaheuristic algorithms.

In this paper, a novel metaheuristic optimization method
called Crystal Structure Algorithm (CryStAl) is proposed
which is inspired by the principles underlying the formation
of crystal structures from the addition of the basis to the
lattice points. A total number of 239 mathematical functions
which are categorized into four different groups are utilized
to evaluate the overall performance of the proposed method.
To validate the results of CryStAl, 12 different classical
and modern metaheuristic algorithms are selected from the
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literature. Theminimum,mean, and standard deviation values
alongside the number of function evaluations for CryStAl and
the other metaheuristics for a specific tolerance are calculated
and presented accordingly.

In general, the efficiency of novel metaheuristic algorithms
in producing improved solutions to well-known optimization
problems has been a significant research challenge for algo-
rithm developers in recent decades. Considering the source
of inspiration and the mathematical model as the two foun-
dations of metaheuristic algorithms, this mission can gener-
ally be accomplished by utilizing solid mathematical models
developed based on suitable inspirational concepts.

In this regard, this paper proposes CryStAl as a meta-
heuristic algorithm conceptualized based on the princi-
ples underlying the formation of crystal structures as a
well-known physical paradigm in nature. This method is
implemented using a fully-detailedmathematical model com-
prised of the details of crystalline configurations which have
been established by crystallographers over the past few cen-
turies. By developing a metaheuristic based on such a rich
inspiration source followed by a precise mathematical model,
we have shown that excellent results in dealing with different
optimization problems can be achieved.

It should be also noted that the proposed approach,
i.e. CryStAl, is a parameter-free metaheuristic algorithm
in which there is no internal parameter to be determined
throughout the optimization procedure. In other words,
a notable feature of this algorithm is its parameter-free frame-
work in which the exploitation and exploration phases of
optimization are adjusted through the main loop of the algo-
rithm. Besides, the position updating process of candidate
solutions in this method is conducted in four separate phases
in which the local and global searches of the entire search
space are satisfied in a more precise way that results in
excellent responses.

A summary of this paper is as follows. In section 2, the
inspirational background of the proposed algorithm alongside
the mathematical model of the new optimization algorithm
is presented. In section 3, some mathematical functions with
different characteristics are presented for further utilization in
evaluating the proposed metaheuristic algorithm along with
some other alternative approaches. In section 4, the selected
alternative metaheuristic algorithms for comparative pur-
poses are presented in detail. In section 5, the results of
CryStAl alongside the other metaheuristics in dealing with
mathematical test functions are presented. In section 6, a
comprehensive statistical analysis is conducted to compare
the results of the new algorithm with the other metaheuristic
approaches. In section 7, the main findings of this paper
including the conclusions alongside some suggestions for
future challenges are presented accordingly.

II. CRYSTAL STRUCTURE ALGORITHM (CryStAl)
A. INSPIRATION
Solid minerals the constituent components (molecules,
atoms, or ions) of which are regularly and repeatedly arranged

in three spatial directions or have a crystallographic order are
called crystals. Crystalline solids are highly diverse and can
have isotropic or anisotropic properties. The word crystal has
Greek roots and means ‘‘frozen by cold’’. They believed that
if water was kept at very low temperatures for some time,
it would become stable at high temperatures. ‘‘Crystal’’ is
also an Arabic word derived from the Greek word ‘‘berlis’’
meaning emerald [39]. A representative example of a typical
crystal is depicted in Fig. 1a.

FIGURE 1. (a) An example of a natural crystal called Galena.
(b) Definition of a crystal as a basis added to a lattice. (c) Various lattice
configuration options. (d) Three common varieties of the cubic crystal
system (Parts a, c, and d are adapted from [39]).

The earliest references to the regular arrangement of par-
ticles that make up crystals can be found in the works of
Johannes Kepler in 1619 and Robert Hooke in 1665. Some-
time later in 1690, Christine Hogens studied the optical prop-
erties of calcite crystals and hypothesized that the crystals
were made of very small particles with a definite shape. Since
then, different physical and chemical formulations for crys-
tals have been proposed and investigated experimentally [39].
Furthermore, crystals and their rich symmetries have inspired
the conception and design of many man-made structures,
mechanisms, and artworks [40]–[80].

The underlying component of a crystal is a ‘‘lattice’’ which
represents a periodic array of points in predefined spaces,
though it is not capable of defining the specific locations
of atoms in the material. On the other hand, the location
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of atoms in the structure of crystals is determined by the
‘‘basis’’ associated with each lattice point. Hence, crystals are
determined by the combination of these two elements, i.e. the
basis and the lattice, as illustrated in Fig 1b.

Since the lattice determines only the overall shape of the
crystal, different geometrical shapes can be composed con-
sidering the fact that infinite geometrical shapes are found
in nature; however, here we consider some of the most
well-known regular shapes, as represented in Fig. 1c.

For the basis, different configurations of atoms in the lattice
can be considered in which the location of atoms can be in the
corner points alongside other irregular patterns. In Fig. 1d,
this aspect is represented in a simple cubic crystal system.

As a mathematical representation of these aspects
should be defined for numerical investigations, the Bravais
model [39] is considered in this paper for defining crystal
configurations. In this model, a periodic crystal structure is
defined by considering infinite lattice shape in which any
lattice pint is described by the location of their lattice point
with a vector as follows:

r =
∑

niai, (1)

where ni is an integer, ai is the shortest vector along the
principal crystallographic directions, and i is the number of
crystal corners.

B. MATHEMATICAL MODEL
In this section, the mathematical model of CryStAl is pre-
sented in which the basic concepts of crystals are utilized
with necessary modifications. In this model, each candidate
solution of the optimization algorithm is considered as a
single crystal in the space. For iterative purposes, a number
of crystals are randomly determined for initialization.

Cr =



Cr1
Cr2
...

Cri
...

Crn



=



x11 x21 . . . x j1 . . . xd1
x12 x22 . . . x j2 . . . xd2
...

...
...

...
...

...

x1i x2i . . . x ji . . . xdi
...

...
...

...
...

...

x1n x2n . . . x jn . . . xdn


,

{
i = 1, 2, . . . , n
j = 1, 2, . . . , d

(2)

where n is the number of crystals (i.e., candidate solutions)
and d is the dimension of the problem. The initial positions
of these crystals are randomly determined in the search space

as follows:

x ji (0) = x ji,min + ξ (x
j
i,max − x

j
i,min),

{
i = 1, 2, . . . , n
j = 1, 2, . . . , d

(3)

where x ji (0) determines the initial position of the crystals;
x ji,min and x ji,max are the minimum and maximum allow-
able values, respectively, for the jth decision variable of the
ith candidate solution; and ξ is a random number in the
interval [0,1].

Based on the concept of ‘basis’ in crystallography, all the
crystals at the corners are considered as the main crystals,
Crmain, determined randomly by considering the initially-
created crystals (candidate solutions). It should be noted that
the random selection process for each step is determined
by omitting the current Cr . The crystal with the best con-
figuration is determined as Crb while the mean values of
randomly-selected crystals are denoted by Fc.
To update the positions of the candidate solutions in the

search space, basic lattice principles are considered in which
four kinds of updating process are determined as follows:
(i) Simple cubicle:

Crnew = Crold + rCrmain, (4)

(ii) Cubicle with the best crystals:

Crnew = Crold + r1Crmain + r2Crb, (5)

(iii) Cubicle with the mean crystals:

Crnew = Crold + r1Crmain + r2Fc, (6)

(iv) Cubicle with the best and mean crystals:

Crnew = Crold + r1Crmain + r2Crb + r3Fc, (7)

where, in the four equations above, Crnew is the new position,
Crold is the old position, and r , r1, r2 and r3 are random
numbers.

It should be mentioned that exploration and exploitation,
as two critical features of metaheuristics, have been con-
sidered in this algorithm through (4) to (7) in which local
and global searches are conducted simultaneously. In order
to deal with the solution variables x ji violating the boundary
conditions of the variables, a mathematical flag is defined in
which for the x ji outside the variables range, the flag orders a
boundary change for the violating variables. The terminating
criterion is considered based on the maximum number of
iterations in which the optimization process is terminated
after a fixed number of iterations. The pseudo-code of the
algorithm is presented in Fig. 2.

III. MATHEMATICAL TEST FUNCTIONS
In this section, a number of mathematical functions are
selected to be utilized as test functions for the perfor-
mance evaluation of the proposed algorithm. A total number
of 239 mathematical functions are tested which are cate-
gorized into four different groups based on their specific
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FIGURE 2. The pseudo-code of the Crystal Structure Algorithm (CryStAl).

characteristics. These functions have been derived from var-
ious references [41]–[45] in which different mathematical
functionswith different characteristics had been reviewed and
presented for utilization in the validation of novel metaheuris-
tic algorithms.

In the first group, 117 mathematical functions are pre-
sented which have minimum and maximum dimensions of 2
and 10, respectively. Among these functions, which are
named F1 to F117, the first 90 functions have 2 dimensions
whereas the other 27 functions have dimensions of 3 to 10.
In this paper, these functions are called the ‘two-dimensional
(2D)’ test functions and are presented in Table 3. The second
group of mathematical functions consists of 58 test functions
in which the dimensions of functions are variable due to
their specific formulations and are called the ‘N -dimensional
(ND)’ test functions. A maximum number of dimensions
of 50 is considered in dealing with the functions of this
group, called the 50-dimensional (50D) test functions, which
are named F118 to F175 and presented in Table 4. For the
third group, the mathematical functions of the second group
are considered with the maximum dimension of 100 and
are called the 100-dimensional (100D) test functions; these
functions, named F175 to F233, are presented in Table 5. For
the fourth group, three composite and three hybrid mathemat-
ical functions are considered which are named F233 to F239,
presented in Table 6. In these tables, C, NC, D, ND, S, NS,
Sc, NSc, U, andM denote Continuous, Non-Continuous, Dif-
ferentiable, Non-Differentiable, Separable, Non-Separable,
Scalable, Non-Scalable, Unimodal, andMulti-modal, respec-
tively. Furthermore, R, D, and Min. represent the variables

range, variables dimension, and the global minimum of the
functions.

Based on the fact that a larger number of mathematical
functions (239 functions) are considered in this paper, the 3D
plots for some of these functions are presented in the follow-
ing. The 3D plots for some of the 2D functions are shown
in Fig. 3, while those of the 50D and 100D functions are
depicted in Figs. 4 and 5, respectively. The complete math-
ematical formulations of these test functions are presented in
Refs. [81]–[85].

IV. ALTERNATIVE METAHEURISTICS FOR COMPARISON
In order to evaluate the overall performance of the proposed
algorithm, some different optimization algorithms are uti-
lized as alternative approaches to provide a valid compara-
tive study. The utilized metaheuristics for this purpose are
the ABC, ACO, BA, FA, GA, HS, MFO, MVO, PSO, SA,
SCA, and SSA. Based on the fact that some of the selected
optimization algorithms are recently proposed or developed
for special purposes, the most recent and improved versions
of these algorithms are used in this paper. Knowing that the
internal parameters of the optimization algorithms have the
most vital role in their convergence performance, a parameter
summary of the selected algorithms is presented in Table 7.
The values of these parameters have been determined using
the reference-based parameter identification process in which
the internal parameters of these algorithms are selected based
on relevant previously published research papers.

In many metaheuristic algorithms, some specific param-
eters are utilized for tuning the exploration and exploita-
tion rates during the optimization process which are often
problem-dependent parameters and so they should be tuned
for each specific optimization problem. The mentioned
parameters for the alternative algorithms in Table 7 were
derived from the latest and most successful configurations of
these algorithms available in the literature which resulted in
acceptable optimum results in most of the previously consid-
ered optimization problems.

Knowing that such algorithms are potentially vulnerable
to entrapment in local optima or even having convergence
problems, we have proposed CryStAl as a simple algorithm
without any internal or external parameters to be tuned. This
characteristic can be considered as themajor advantage of this
algorithm over competing algorithms. In fact, as mentioned
earlier in this section, CryStAl considers exploration and
exploitation through (4) to (7) where local and global searches
are performed simultaneously.

V. NUMERICAL RESULTS
In this section, the obtained results of the optimization run for
CryStAl alongside the alternative metaheuristic approaches
in dealing with the mathematical test functions are presented.
The optimization problem is formulated with the maximum
population size taken as 50 and the maximum number of
Function Evaluations (FEs) selected to be 150000 for all of
the metaheuristics. The maximum number of iterations in
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FIGURE 3. The 3D plots of the 2D mathematical functions.
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FIGURE 4. The 3D plots of the 50D mathematical functions.

each algorithm is adjusted based on the selected maximum
number of FEs. As collecting quantitative results are of great
importance in dealing with different optimization problems,
CryStAl and the other algorithms are utilized 100 times with
different initializations and the mean and standard devia-
tion (std) of the best approximated solutions in the last itera-
tion are reported. A tolerance of 1× 10−12 is also considered
for the convergence results of the algorithms in which the
optimization runs are stopped at this tolerance of the Global
Best (GB). It is assumed that the GB results are achieved by
these optimization runs within this tolerance and the results
of the GB are utilized instead of the final results of the
optimization runs. The number of FEs are also calculated
based on the selected tolerance. It should be noted that the
above-mentioned is utilized as the stopping criterion in order
to save time from a computational complexity perspective.
In other words, if the algorithm reaches to this tolerance of
the global best for the considered problem, the global best is
reported as the final solution of the algorithm which requires
less computational time. Therefore, the computational time
for the considered 100 optimization runs will be reasonable.

Besides, the initial random state of each optimization run for
each alternative algorithm has been selected equally in order
to form a fair judgment about the performance of the proposed
and alternative algorithms.

The detailed results of CryStAl and the other selected
methods are presented in the Supplementary Materials which
includes the convergence history of the proposed algorithm.
It turned out that CryStAl can find the exact global results
of 156 functions (65%); moreover, its result is very close
to the global best result for 83 problems. Further investiga-
tions into the results of CryStAl compared to those of the
other methods are performed in the next sections using some
advanced statistical approaches. Moreover, the convergence
curves of the proposed algorithm in dealing with some of the
considered mathematical test functions are provided in the
Supplementary Materials.

VI. STATISTICAL ANALYSIS
In this section, the maximum error values of the optimization
convergence data have been calculated and utilized for statis-
tical analysis. To this end, the difference between the Global
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FIGURE 5. The 3D plots of the 100D mathematical functions.

Best (GB) of the functions and the obtained optimal values
resulted from the optimization runs are considered as the
error values. For statistical analysis purposes, four statistical
tests have been conducted in which the Kolmogorov-Smirnov
(K-S) test is utilized for normality issues, the Mann-Whitney
U (M-W) test is implemented for comparing the summation
of the ranks of different metaheuristics in a two-by-two com-
paring manner, the Kruskal-Wallis (K-W) test is conducted
for comparing the overall rankings of the metaheuristics by
considering the mean of their rankings, and the Post-Hoc
(P-H) analysis is conducted based on the results of the K-W
tests for further investigations.

A. KOLMOGOROV-SMIRNOV TEST
There are two kinds of statistical tests which are applicable
to all of the obtained statistical data from multiple applica-
tions, known as the parametric and non-parametric statistical
tests. One of the most important criteria which demonstrates
the possibility of utilizing each method in a specific situa-
tion is the Kolmogorov-Smirnov test. This test shows that
the distribution of data is either normal or non-normal in

which the distribution of each sample among the statistical
data are considered and checked accordingly. If the K-S test
is rejected, the data are normally distributed, and there is
the possibility of using parametric statistical tests for the
research. Conversely, if the K-S test is confirmed, the data
do not have a normal distribution, so the nonparametric tests
should be used in the study.

The results of the K-S test for the error values of the
minimum, mean, standard deviation, and maximum function
evaluations of the optimization runs for the 2D, 50D, and
100D functions are presented in Table 8. This test is con-
ducted as a two-sample test in which the distributions of the
CryStAl data are compared with the data obtained from other
metaheuristics. It should be noted that if the Asymptotic Sig-
nificance (Asymp. Sig.) value is less than 0.05, the presented
data are not distributed normally, so the non-parametric statis-
tical tests should be conducted for further investigations. The
obtained results of the K-S test demonstrate that the Asymp.
Sig. values in most of the investigated cases are less than 0.05,
so the non-parametric statistical tests should be utilized for
further considerations.
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TABLE 3. Details of the 2D to 10D mathematical functions (First group).

In Table 9, the maximum difference between the statistical
data of CryStAl and the other metaheuristics are also pre-
sented in order to have an initial judgment about the obtained
results of the new algorithm. The maximum and minimum
differences of CryStAl with the alternative algorithms are
represented by bold font-weight and underlined font, respec-
tively. The bolded values designate those algorithms which
have the maximum difference with CryStAl among other
metaheuristics, while the underlined values show the algo-
rithms which have the minimum difference with CryStAl
among other metaheuristics.

B. MANN-WHITNEY U TEST
The Mann-Whitney U (M-W) test is a non-parametric test
that allows two groups of data to be compared in which
the null hypothesis denotes that it is equally likely that a
randomly-selected value from one sample will be less than or
greater than a randomly-selected value from a second sample.
This test can be used to investigate whether two independent
samples were selected from populations having the same
distribution. This test provides the summation of the ranks
for two sets of statistical data considered for comparative
analysis. As an essential criterion, if the summation of the
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TABLE 4. Details of the 50D mathematical functions (Second group).

ranks for one sample has lower values than the other one,
the one with a smaller sum of ranks has better statistical
results and the utilized metaheuristic is superior to the other
one. The results of the M-W test for different mathematical
functions based on the obtained results of the optimization
runs are presented in Tables 10 to 12. In these tables, the upper
and lower values are the summation of the ranks related to the
alternative metaheuristics and CryStAl, respectively. Based
on the statistical results, the related values of CryStAl for the
summation of the ranks in most cases are lower than those
of the other metaheuristics (bolded values in the table) which
demonstrates the superiority of CryStAl to its competitors in
dealing with optimization functions.

TABLE 5. Details of the 100D mathematical functions (Third group).

C. KRUSKAL-WALLIS TEST
The Kruskal-Wallis (K-W) test is a non-parametric method
for testing whether or not different statistical samples are
originated from the same distribution. It is used for comparing
two or more independent samples of equal or different sample
sizes. It extends the Mann-Whitney U test, which is used for
comparing only two groups. A significant K-W test indicates
that at least one sample stochastically dominates another
sample. This test provides the mean of the ranks for multiple
sets of statistical data which are considered for comparative
analysis. As an important criterion, if the mean of the ranks
for one sample has lower values than the other ones, the one
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TABLE 6. Details of the composite and hybrid mathematical functions
(Fourth group).

with a smaller mean of ranks has better statistical results and
the utilized metaheuristic is superior to the other one. The
results of the K-W test for different studied functions based
on the obtained results of the optimization runs have been
presented in Tables 13 to 15. Based on the results, the CryStAl
related values for the mean of the ranks in most of the cases
are lower than the related values for the other metaheuristics
which represents the superiority of CryStAl. In these tables,
the bolded values are related to the metaheuristic which is
superior to the other ones while the values related to CryStAl
are all underlined.

D. POST-HOC ANALYSIS
Post-hoc is a Latin phrase, meaning ‘‘after this’’ or ‘‘after
the event’’. In a scientific study, a Post-Hoc (P-H) analysis

TABLE 7. Parameter summary of the alternative metaheuristic algorithms.

consists of statistical analyses that were not specified before
the data was seen. A P-H analysis involves looking at
the data after a study has been concluded, and trying to
find patterns that were not the primary objectives of the
study.

In this section, the P-H analysis is conducted in order
to derive the overall rankings of the metaheuristic algo-
rithms for all of the 2D, 50D, and 100D functions based
on the achieved results of the K-W test. The over-
all rankings of the metaheuristics obtained by the P-H
analysis are presented in Table 16. It should be noted
that CryStAl provides a success estimation of 100 per-
cent in outranking the other metaheuristics, which demon-
strates the superiority of this proposed novel optimization
algorithm.
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TABLE 8. The K-S test results (Asymp. Sig.) for different algorithms.

TABLE 9. The K-S test results (the overall difference between data) for different algorithms.

TABLE 10. The M-W test results (summation of the ranks) for 2D mathematical functions.

TABLE 11. The M-W test results (summation of the ranks) for 50D mathematical functions.

VII. CEC 2017 COMPETITION RESULTS
In order to evaluate the overall performance of the
proposed algorithm, CryStAl, it is necessary to con-
sider state-of-the-art mathematical test functions alongside

state-of-the-art algorithms. To this end, a recent competition
on single-objective real-parameter numerical optimization
named ‘‘CEC 2017’’ [86] is considered in this section. In this
regard, a list of 30 mathematical functions are studied and
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TABLE 12. The M-W test results (summation of the ranks) for 100D mathematical functions.

TABLE 13. The K-W test results (mean of the ranks) for 2D mathematical functions.

TABLE 14. The K-W test results (mean of the ranks) for 50D mathematical functions.

presented in Table 17; the mathematical details of these
functions have been presented by the CEC 2017 competition
committee [86].

The statistical results of the CryStAl algorithm in dealing
with these test functions (CEC 2017) with 10 dimensions
are presented in the Supplementary Materials where the
results of three other successful algorithms are also pre-
sented. It should be noted that the error values, rather than
the global best values, of each run are considered in this
competition and the statistical results are based on the best
error values of 51 independent runs. The results show that
the proposed CryStAl algorithm is capable of providing

eminently acceptable results in dealing with these test func-
tions of different dimensions.

VIII. COMPUTATIONAL COST AND COMPLEXITY
ANALYSIS
In this section, the computational cost and complexity of
the proposed CryStAl method are examined and analyzed
where three different approaches are considered to acquire a
better understanding of these properties. In the first approach,
the computational cost procedure of the CEC 2017 bench-
mark suite is determined while the results of three other
state-of-the-art algorithms are also considered to form a fair
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TABLE 15. The K-W test results (mean of the ranks) for 100D mathematical functions.

TABLE 16. The P-H analysis results for all of the mathematical functions.

judgment. In the CEC 2017 computational scenario, four
different computational times, namely T0, T1, T2 and

_

T 2, are
considered based on four specific mathematical procedures.
T0 refers to the running time of a predefined mathematical
procedure [46], T1 denotes the computational time for eval-
uation of the G18 test function considering 200000 function
evaluations, T2 represents the computational time of the con-
sidered metaheuristic algorithm (CryStAl in this paper) for
evaluation of the G18 test function considering 200000 func-
tion evaluations, and

_

T 2 refers to the mean values of five
different assessments of T2. The results of this scenario
for the proposed and alternative algorithms are presented
in Table 18 which demonstrates the capability of the proposed
CryStAl algorithm in producing competitive results.

In computer science, ‘‘Big O notation’’ is a mathematical
notation that determines the required running time and mem-
ory space of an algorithm by considering its growth rate in
dealing with different inputs. In the following, the computa-
tional cost of the proposed CryStAlmethod is presented using
this notation which is the second approach for testing the
complexity of the proposed algorithm. For CryStAl, the ran-
dom selection process in the initialization phase of the algo-
rithm has a computational complexity of O(NP×D) where
NP is the initial population size and D is the dimension of

the problem. The computational complexity of the objective
function evaluation in the initialization phase of the algorithm
is calculated as O(NP)×O(F(x)) where F(x) demonstrates
the objective function value. After the initialization phase, the
main loop of the algorithm is started based on the previously
determined maximum number of iterations (MaxIter). By the
consideration of the worst-case scenario, each line has a
computational complexity of MaxIter in the main loop of the
algorithm. In this loop, four new position vectors are created
for each of the current vectors so the position updating pro-
cess of the problem will have a computational complexity of
O(MaxIter× NP×D× 4). In addition, the objective function
evaluation in the main loop has a computational complexity
of O(MaxIter × NP × 4)×O(F(x)).

In general, the overall capacity of a metaheuristic algo-
rithm depends on the balance between exploration and
exploitation while the convergence speed is also an impor-
tant factor in its evaluation. In order to demonstrate these
properties for the proposed CryStAl algorithm, as the third
complexity approach, the diversity graphs of CryStAl are
plotted for functions F1, F61, and F83 in the Supplementary
Materials. As can be seen from these results, the population
in the optimization process by CryStAl tends to localize the
search for achieving better results.
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TABLE 17. Summary of the CEC 2017 test functions [46].

IX. REAL-WORLD OPTIMIZATION PROBLEMS
In this section, the applicability of the proposed algorithm,
CryStAl, is investigated by considering some real-world
optimization problems which can be a great challenge for
the proposed method. In this regard, we have considered six
difficult power electronics problems on synchronous optimal
pulse-width modulation (SOPWM) which is used to regulate
medium-voltage (MV) drives. This approach provides a sig-
nificant decrease of switching frequency without raising the
distortion, which leads to the reduction of switching losses
that enhances the performance of the inverter. Generally,
switching angles are calculated by reducing the distortion of
current. In this study, this problem is considered as a con-
strained optimization problemwhich is benchmarked byCEC
2020 [90] regarding real-world constrained optimization.
In this paper, six configurations of this problem are deter-
mined and solved by the proposed CryStAl with a simple
penalty approach for constrained handling purposes. A brief
explanation of these problems is presented in Table 19 while
the comparative results are provided in the Supplementary
Materials. The findings of this study demonstrated that the

TABLE 18. Computational complexity results of CryStAl compared to
other approaches.

TABLE 19. Description of the investigated real-world design problems.

proposed method is capable of producing eminently accept-
able and even better results in dealing with these challenging
problems.

Based on the presented results in this and previous sections,
it can be concluded that the proposed algorithm produces
excellent results in most of the considered cases. One of the
key aspects of this study is the conducted statistical analysis
to evaluate the capability of this algorithm in dealing with an
extensive set of test problems. The employed benchmark test
problems of CEC and the competitive results of CryStAl in
dealing with these problems demonstrate that this algorithm
can be considered as a successful metaheuristic approach.

X. CONCLUSION
This paper proposed a novel metaheuristic method called
Crystal Structure Algorithm (CryStAl), inspired by the under-
lying principles of the formation of crystal structures from
the addition of the basis to the lattice points. Four groups
of mathematical test functions were selected in order to
efficiently evaluate the performance of CryStAl with a total
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number of 12 different metaheuristic algorithms. A complete
statistical analysis was conducted to provide a valid judgment
about the performance of this method. The most important
findings of this paper are as follows:
(i) CryStAl is superior to the other metaheuristics in con-

verging to the global bests of the mathematical func-
tions based on the selected tolerance.

(ii) The results of the K-S test demonstrated that the max-
imum difference between CryStAl and the other meta-
heuristics is about FA and BA in most of the cases.

(iii) The results of the M-W test showed that the summation
of the ranks for CryStAl in most of the cases is lower
than those of the other metaheuristics.

(iv) The results of the K-W test manifested that CryStAl is
100% successful in outranking the other metaheuristics
for the 2D functions in all of the cases such as the min-
imum, mean, and standard deviation values alongside
the number of function evaluations.

(v) The results of the K-W test showed that CryStAl has
the first rank in the minimum and mean values of the
50D test functions while the PSO outranks CryStAl in
the standard deviation and function evaluation.

(vi) The results of the K-W test showed that CryStAl has the
first rank in the minimum and mean values alongside
the number of function evaluations of the 100D test
functions while the SSA and GA outrank CryStAl in
the standard deviation values.

(vii) The overall comparison of CryStAl and the alterna-
tive metaheuristics considering all of the 2D, 50D,
and 100D test functions demonstrated that CryStAl is
100 percent successful in outranking the other meta-
heuristics in all of the cases.

As future challenges, different applications of CryStAl can
be explored and its capabilities in dealing with difficult test
problems can be examined. Besides, new configurations of
this algorithm can be considered as other researchers may
have different viewpoints on the presented methodology.

CODE AVAILABILITY
The MATLAB implementation of CryStAl is accessible
at: https://www.mathworks.com/matlabcentral/fileexchange/
91850-crystal-structure-algorithm-crystal
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