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ABSTRACT Metaheuristics are computational procedures that intelligently lead the search process through
the efficient exploration of the search space associated with an optimization problem. With the progressive
outburst of problems with large data sets in various fields, there is an ongoing quest for enhancing existing
metaheuristic algorithms as well as developing new ones with greater accuracy and efficiency. In general,
a powerful and efficient metaheuristic algorithm is based on a rich inspiration source, implemented
effectively through a precise mathematical model. Aiming to develop a highly efficient, nature-inspired
optimization algorithm, here we propose a novel metaheuristic called Crystal Structure Algorithm (CryStAl).
This method is chiefly inspired by the principles underlying the formation of crystal structures from the
addition of the basis to the lattice points, which is a natural phenomenon that can be seen in the symmetric
arrangement of constituents (i.e. atoms, molecules, or ions) in crystalline minerals such as quartz. A total
number of 239 mathematical functions which are categorized into four different groups are utilized to
evaluate the overall performance of the proposed method. To validate the results of this novel algorithm,
12 different classical and modern metaheuristic algorithms are selected from the literature. The minimum,
mean, and standard deviation values alongside the number of function evaluations for CryStAl and the other
metaheuristics for a specific tolerance are calculated and presented accordingly. The obtained results, further
supported by a complete statistical analysis, demonstrated that the proposed algorithm is capable of providing
very competitive results, outperforming the other metaheuristics in most cases.

INDEX TERMS Crystal Structure Algorithm (CryStAl), lattice, function, metaheuristic, optimization,

statistical analysis.

I. INTRODUCTION

Many design problems in nature can be considered as opti-
mization problems that demand appropriate optimization
techniques and methods to be dealt with. Nowadays, design
problems have become extremely complex for which classi-
cal optimization methods based on mathematical principles
are incapable of providing satisfactory results in a reasonable
period of time. Gradient-based methods, which utilize the
gradient of the objective function for the configuration of
the optimization problem, are a type of these mathematical
methods. Over the past few decades, exploring the deficien-
cies of classical optimization methods and introducing new
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efficient optimization algorithms have been of great interest.
Based on recent technological advances, there is a grow-
ing interest in introducing new optimization methods with
enhanced efficiency, accuracy, and increased speed rate for
tackling difficult optimization problems. Besides, some other
concerns in dealing with some specific issues such as the local
optima issues alongside the smoothness and convexity of the
search spaces have been of great importance for a long period
of time.

The presented concerns about the classical optimiza-
tion algorithms have led optimization experts to a new
methodology in solving different optimization problems
called “Metaheuristic”. Glover [1] firstly proposed this term
in 1986 which is comprised of the main word, i.e. heuristics,
and a prefix, i.e. meta, which both have Greek origins. The
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term “‘heuristic” comes from heuriskein which is an old
Greek word meaning ‘“‘to discover”, while “meta” means
“beyond the normal or natural limits of something”. Meta-
heuristics are solution techniques that implement higher-level
strategies into search processes in order to guide an optimiza-
tion process to perform a powerful search into the search
space with some special capabilities such as avoiding local
optima.

As presented by Sorensen [2], the history of utilizing
metaheuristics as the solution methods for dealing with
real-world problems can generally be categorized into five
distinct periods. In the first period which is named the “‘pre-
theoretical” period (until 1940), there was not any formal pre-
sentation of heuristics and metaheuristics methods. Despite
that, these methods had been used for solving some simple
optimization problems in this period. In the second period
which is from 1940 to 1980 and known as the “early” period,
some studies were conducted on heuristics which was the
first formal introduction and discussion in this field. In the
third period which is called the ‘“method-centric”’ period
(1980 to 2000), multiple metaheuristics were proposed and
developed for specific applications which extended the field
of heuristics and metaheuristics. In the fourth period, which is
from 2000 until now and known as the “‘framework-centric”
period, the methodology of utilizing metaheuristics as frame-
works alongside methods has been successfully presented
with considerable growth of intuition in this field. In the fifth
or last period which is named the “scientific” or “future”
period, the design and introduction of new metaheuristics will
turn into a matter of science rather than art. A summary of the
abovementioned historical periods is presented in Table 1.

TABLE 1. Summary of the historical periods of metaheuristics evolution.

No. Name Duration Details

. . No formal presentation with limited
1 Pre-theoretical Until 1940 applications.

Heuristics were formally introduced and

2 Early 1940 to 1980

discussed.
Method- 1980 to 2000 Multiple metaheuristics were proposed and
centric developed for specific applications.
_ The methodologies of utilizing metaheuristics
Fra:gs:vrizrk 2000 to now as frameworks alongside various methods have

been successfully presented.

The design and introduction of new
metaheuristics will turn into a matter of
science rather than art.

Scientific or

future Future

Considering the development of various metaheuristic
algorithms, four classifications can be made in terms of their
inspiration. The first category is entitled ““‘evolutionary algo-
rithms” including the Memetic Algorithm (MA) [3], Genetic
Algorithm (GA) [4], Differential Evolution (DE) [5], and the
Evolution Strategies (ES) [6], which were developed based on
the biological evolution and reproduction. The second cate-
gory contains swarm intelligence-based algorithms that were
formed based on the cooperative behavior of decentralized
and self-organized natural or artificial systems. The Particle
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Swarm Optimization (PSO) [7], Ant Colony Optimization
(ACO) [8], Attificial Bee Colony (ABC) [9], Cat Swarm
Optimization (CSA) [10], Firefly Algorithm (FA) [11],
Krill Herd (KH) algorithm [12], and Slap Swarm Algo-
rithm (SSA) [13] are some of the well-known methods
in this category. The third category consists of algorithms
motivated by physical laws. The Simulated Annealing
(SA) [14], Magnetic Optimization Algorithm (MOA) [15],
Gravitational Search Algorithm (GSA) [16], Charged
System Search (CSS) algorithm [17], Ray Optimization
Algorithm (ROA) [18], Colliding Bodies Optimization
(CBO) [19], Multiverse Algorithm (MVO) [20], and the Sine
Cosine Algorithm (SCA) [21] are some methods belonging
to this category. Beyond these methods, some other meta-
heuristic algorithms were presented based on the lifestyle of
humans and animals (the fourth category) such as the Har-
mony Search (HS) [22], Teaching—learning-based Optimiza-
tion (TLBO) [23], Creativity-Oriented Optimization Algo-
rithm (COOA) [24], Human Behavior-Based Optimization
(HBBO) [25], and the Gaining Sharing Knowledge-based
algorithm (GSK) [26]. In addition to these standard algo-
rithms, some other challenges in developing, upgrad-
ing, or hybridizing standard algorithms have also been
achieved [27]-[38]. A summary of these metaheuristic algo-
rithms is presented in Table 2.

TABLE 2. Summary of the classification of the metaheuristic algorithms.

Classification Algorithm PY ear of

roposal
Memetic Algorithm (MA) [3] 1989
. Genetic Algorithm (GA) [4 1992
Evolution Differential évolutim(*l (Dg []5] 1997
Evolution Strategies (ES) [6] 2002
Particle Swarm Optimization (PSO) [7] 1995
Ant Colony Optimization (ACO) [8] 1996
Swarm Artificial Bee Colony (ABC) [9] 2006
. . Cat swarm Optimization (CSA) [10] 2006
intelligence Firefly Algorithm (FA) [11] 2010
Krill Herd (KH) algorithm [12] 2012
Slap Swarm Algorithm (SSA) [13] 2017
Simulated Annealing (SA) [14] 1983
Magnetic Optimization Algorithm (MOA) [15] 2008
Gravitational Search Algorithm (GSA) [16] 2009
Physical Charged System Search (CSS) algorithm [17] 2010
laws Ray Optimization Algorithm (ROA) [18] 2012
Colliding bodies Optimization (CBO) [19] 2014
Multi-verse Algorithm (MVO) [20] 2016
Sine Cosine Algorithm (SCA) [21] 2016
Harmony Search (HS) [22] 2001
Teaching—learning-based optimization (TLBO) [23] 2011
Lifestyle Creativity-Oriented Optimization Algorithm (COOA) [24] 2015
Human Behavior-Based Optimization (HBBO) [25] 2017

Gaining Sharing Knowledge-based algorithm (GSK) [26] 2019

In this paper, a novel metaheuristic optimization method
called Crystal Structure Algorithm (CryStAl) is proposed
which is inspired by the principles underlying the formation
of crystal structures from the addition of the basis to the
lattice points. A total number of 239 mathematical functions
which are categorized into four different groups are utilized
to evaluate the overall performance of the proposed method.
To validate the results of CryStAl, 12 different classical
and modern metaheuristic algorithms are selected from the
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literature. The minimum, mean, and standard deviation values
alongside the number of function evaluations for CryStAl and
the other metaheuristics for a specific tolerance are calculated
and presented accordingly.

In general, the efficiency of novel metaheuristic algorithms
in producing improved solutions to well-known optimization
problems has been a significant research challenge for algo-
rithm developers in recent decades. Considering the source
of inspiration and the mathematical model as the two foun-
dations of metaheuristic algorithms, this mission can gener-
ally be accomplished by utilizing solid mathematical models
developed based on suitable inspirational concepts.

In this regard, this paper proposes CryStAl as a meta-
heuristic algorithm conceptualized based on the princi-
ples underlying the formation of crystal structures as a
well-known physical paradigm in nature. This method is
implemented using a fully-detailed mathematical model com-
prised of the details of crystalline configurations which have
been established by crystallographers over the past few cen-
turies. By developing a metaheuristic based on such a rich
inspiration source followed by a precise mathematical model,
we have shown that excellent results in dealing with different
optimization problems can be achieved.

It should be also noted that the proposed approach,
i.e. CryStAl, is a parameter-free metaheuristic algorithm
in which there is no internal parameter to be determined
throughout the optimization procedure. In other words,
anotable feature of this algorithm is its parameter-free frame-
work in which the exploitation and exploration phases of
optimization are adjusted through the main loop of the algo-
rithm. Besides, the position updating process of candidate
solutions in this method is conducted in four separate phases
in which the local and global searches of the entire search
space are satisfied in a more precise way that results in
excellent responses.

A summary of this paper is as follows. In section 2, the
inspirational background of the proposed algorithm alongside
the mathematical model of the new optimization algorithm
is presented. In section 3, some mathematical functions with
different characteristics are presented for further utilization in
evaluating the proposed metaheuristic algorithm along with
some other alternative approaches. In section 4, the selected
alternative metaheuristic algorithms for comparative pur-
poses are presented in detail. In section 5, the results of
CryStAl alongside the other metaheuristics in dealing with
mathematical test functions are presented. In section 6, a
comprehensive statistical analysis is conducted to compare
the results of the new algorithm with the other metaheuristic
approaches. In section 7, the main findings of this paper
including the conclusions alongside some suggestions for
future challenges are presented accordingly.

Il. CRYSTAL STRUCTURE ALGORITHM (CryStaAl)

A. INSPIRATION

Solid minerals the constituent components (molecules,
atoms, or ions) of which are regularly and repeatedly arranged
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in three spatial directions or have a crystallographic order are
called crystals. Crystalline solids are highly diverse and can
have isotropic or anisotropic properties. The word crystal has
Greek roots and means “‘frozen by cold”. They believed that
if water was kept at very low temperatures for some time,
it would become stable at high temperatures. “Crystal” is
also an Arabic word derived from the Greek word “‘berlis”
meaning emerald [39]. A representative example of a typical
crystal is depicted in Fig. 1a.
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FIGURE 1. (a) An example of a natural crystal called Galena.

(b) Definition of a crystal as a basis added to a lattice. (c) Various lattice
configuration options. (d) Three common varieties of the cubic crystal
system (Parts a, c, and d are adapted from [39]).

The earliest references to the regular arrangement of par-
ticles that make up crystals can be found in the works of
Johannes Kepler in 1619 and Robert Hooke in 1665. Some-
time later in 1690, Christine Hogens studied the optical prop-
erties of calcite crystals and hypothesized that the crystals
were made of very small particles with a definite shape. Since
then, different physical and chemical formulations for crys-
tals have been proposed and investigated experimentally [39].
Furthermore, crystals and their rich symmetries have inspired
the conception and design of many man-made structures,
mechanisms, and artworks [40]-[80].

The underlying component of a crystal is a ““lattice” which
represents a periodic array of points in predefined spaces,
though it is not capable of defining the specific locations
of atoms in the material. On the other hand, the location
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of atoms in the structure of crystals is determined by the
“basis’ associated with each lattice point. Hence, crystals are
determined by the combination of these two elements, i.e. the
basis and the lattice, as illustrated in Fig 1b.

Since the lattice determines only the overall shape of the
crystal, different geometrical shapes can be composed con-
sidering the fact that infinite geometrical shapes are found
in nature; however, here we consider some of the most
well-known regular shapes, as represented in Fig. 1c.

For the basis, different configurations of atoms in the lattice
can be considered in which the location of atoms can be in the
corner points alongside other irregular patterns. In Fig. 1d,
this aspect is represented in a simple cubic crystal system.

As a mathematical representation of these aspects
should be defined for numerical investigations, the Bravais
model [39] is considered in this paper for defining crystal
configurations. In this model, a periodic crystal structure is
defined by considering infinite lattice shape in which any
lattice pint is described by the location of their lattice point
with a vector as follows:

r=Y na, ()

where n; is an integer, a; is the shortest vector along the
principal crystallographic directions, and i is the number of
crystal corners.

B. MATHEMATICAL MODEL

In this section, the mathematical model of CryStAl is pre-
sented in which the basic concepts of crystals are utilized
with necessary modifications. In this model, each candidate
solution of the optimization algorithm is considered as a
single crystal in the space. For iterative purposes, a number
of crystals are randomly determined for initialization.

F
Cry
Cr = .
Cr,-
| Cry
1 2 j d ]
X x12 x{ xll
1
X X xé X
= 1 2 j d |’
X X xf X
1 2 j d
_'xl’l xn xﬁl 'x}’l -
i=1,2,...,n @)
ji=1,2....d

where 7 is the number of crystals (i.e., candidate solutions)
and d is the dimension of the problem. The initial positions
of these crystals are randomly determined in the search space
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as follows:

i i i i i=1,2,...,n
X{(O) szl,min_‘_g( i,max _xz]',min)’ {]: 1.2,....d 3)

where x{(O) determines the initial position of the crystals;

x/ . and x/

i,min i,max
able values, respectively, for the j decision variable of the
i candidate solution; and £ is a random number in the
interval [0,1].

Based on the concept of ‘basis’ in crystallography, all the
crystals at the corners are considered as the main crystals,
CVinain, determined randomly by considering the initially-
created crystals (candidate solutions). It should be noted that
the random selection process for each step is determined
by omitting the current Cr. The crystal with the best con-
figuration is determined as Cr, while the mean values of
randomly-selected crystals are denoted by F.

To update the positions of the candidate solutions in the
search space, basic lattice principles are considered in which
four kinds of updating process are determined as follows:

are the minimum and maximum allow-

(i) Simple cubicle:
Crnew = Crotd + rCrimain, 4)
(ii) Cubicle with the best crystals:
Crnew = Crola + 11 Crimain + r2Cryp, )
(iii) Cubicle with the mean crystals:
Crnew = Crotag + 11Crpain + r2Fe, (6)
(iv) Cubicle with the best and mean crystals:
Crnew = Croig + 11Cryain + r2Crp + r3F¢,  (7)

where, in the four equations above, Cry,,, is the new position,
Croiq is the old position, and r, ry, » and r3 are random
numbers.

It should be mentioned that exploration and exploitation,
as two critical features of metaheuristics, have been con-
sidered in this algorithm through (4) to (7) in which local
and global searches are conducted simultaneously. In order
to deal with the solution variables xf violating the boundary
conditions of the variables, a mathematical flag is defined in
which for the x,’ outside the variables range, the flag orders a
boundary change for the violating variables. The terminating
criterion is considered based on the maximum number of
iterations in which the optimization process is terminated
after a fixed number of iterations. The pseudo-code of the
algorithm is presented in Fig. 2.

IIl. MATHEMATICAL TEST FUNCTIONS

In this section, a number of mathematical functions are
selected to be utilized as test functions for the perfor-
mance evaluation of the proposed algorithm. A total number
of 239 mathematical functions are tested which are cate-
gorized into four different groups based on their specific
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procedure Crystal Structure Algorithm (CryStAl)

Create random values for initial positions (xl. ) of initial

crystals (C}”l)

Evaluate fitness values for each crystal

while (t < maximum number of iterations)
Sfor i=1: number of initial crystals
Create Cl”ma,-,,
Create new crystals by Eq. 4
Create Cr;
Create new crystals by Eq. 5
Create I

Create new crystals by Eq. 6
Create new crystals by Eq. 7
if new crystals violate boundary conditions
Control the position constraints for new crystals and
amend them
end if
Evaluate the fitness values for new crystals
Update Global Best (GB) if a better solution is found
end for
t=t+1
end while
Return GB
end procedure

FIGURE 2. The pseudo-code of the Crystal Structure Algorithm (CryStAl).

characteristics. These functions have been derived from var-
ious references [41]-[45] in which different mathematical
functions with different characteristics had been reviewed and
presented for utilization in the validation of novel metaheuris-
tic algorithms.

In the first group, 117 mathematical functions are pre-
sented which have minimum and maximum dimensions of 2
and 10, respectively. Among these functions, which are
named Fi to F117, the first 90 functions have 2 dimensions
whereas the other 27 functions have dimensions of 3 to 10.
In this paper, these functions are called the ‘two-dimensional
(2D)’ test functions and are presented in Table 3. The second
group of mathematical functions consists of 58 test functions
in which the dimensions of functions are variable due to
their specific formulations and are called the ‘N-dimensional
(ND)’ test functions. A maximum number of dimensions
of 50 is considered in dealing with the functions of this
group, called the 50-dimensional (50D) test functions, which
are named Fii3 to Fi75 and presented in Table 4. For the
third group, the mathematical functions of the second group
are considered with the maximum dimension of 100 and
are called the 100-dimensional (100D) test functions; these
functions, named F75 to F»33, are presented in Table 5. For
the fourth group, three composite and three hybrid mathemat-
ical functions are considered which are named F»33 to F»39,
presented in Table 6. In these tables, C, NC, D, ND, S, NS,
Sc, NSc, U, and M denote Continuous, Non-Continuous, Dif-
ferentiable, Non-Differentiable, Separable, Non-Separable,
Scalable, Non-Scalable, Unimodal, and Multi-modal, respec-
tively. Furthermore, R, D, and Min. represent the variables

71248

range, variables dimension, and the global minimum of the
functions.

Based on the fact that a larger number of mathematical
functions (239 functions) are considered in this paper, the 3D
plots for some of these functions are presented in the follow-
ing. The 3D plots for some of the 2D functions are shown
in Fig. 3, while those of the 50D and 100D functions are
depicted in Figs. 4 and 5, respectively. The complete math-
ematical formulations of these test functions are presented in
Refs. [81]-[85].

IV. ALTERNATIVE METAHEURISTICS FOR COMPARISON
In order to evaluate the overall performance of the proposed
algorithm, some different optimization algorithms are uti-
lized as alternative approaches to provide a valid compara-
tive study. The utilized metaheuristics for this purpose are
the ABC, ACO, BA, FA, GA, HS, MFO, MVO, PSO, SA,
SCA, and SSA. Based on the fact that some of the selected
optimization algorithms are recently proposed or developed
for special purposes, the most recent and improved versions
of these algorithms are used in this paper. Knowing that the
internal parameters of the optimization algorithms have the
most vital role in their convergence performance, a parameter
summary of the selected algorithms is presented in Table 7.
The values of these parameters have been determined using
the reference-based parameter identification process in which
the internal parameters of these algorithms are selected based
on relevant previously published research papers.

In many metaheuristic algorithms, some specific param-
eters are utilized for tuning the exploration and exploita-
tion rates during the optimization process which are often
problem-dependent parameters and so they should be tuned
for each specific optimization problem. The mentioned
parameters for the alternative algorithms in Table 7 were
derived from the latest and most successful configurations of
these algorithms available in the literature which resulted in
acceptable optimum results in most of the previously consid-
ered optimization problems.

Knowing that such algorithms are potentially vulnerable
to entrapment in local optima or even having convergence
problems, we have proposed CryStAl as a simple algorithm
without any internal or external parameters to be tuned. This
characteristic can be considered as the major advantage of this
algorithm over competing algorithms. In fact, as mentioned
earlier in this section, CryStAl considers exploration and
exploitation through (4) to (7) where local and global searches
are performed simultaneously.

V. NUMERICAL RESULTS

In this section, the obtained results of the optimization run for
CryStAl alongside the alternative metaheuristic approaches
in dealing with the mathematical test functions are presented.
The optimization problem is formulated with the maximum
population size taken as 50 and the maximum number of
Function Evaluations (FEs) selected to be 150000 for all of
the metaheuristics. The maximum number of iterations in
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FZ(xl,xz)

FIGURE 3. The 3D plots of the 2D mathematical functions.
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FIGURE 4. The 3D plots of the 50D mathematical functions.

each algorithm is adjusted based on the selected maximum
number of FEs. As collecting quantitative results are of great
importance in dealing with different optimization problems,
CryStAl and the other algorithms are utilized 100 times with
different initializations and the mean and standard devia-
tion (std) of the best approximated solutions in the last itera-
tion are reported. A tolerance of 1 x 10712 is also considered
for the convergence results of the algorithms in which the
optimization runs are stopped at this tolerance of the Global
Best (GB). It is assumed that the GB results are achieved by
these optimization runs within this tolerance and the results
of the GB are utilized instead of the final results of the
optimization runs. The number of FEs are also calculated
based on the selected tolerance. It should be noted that the
above-mentioned is utilized as the stopping criterion in order
to save time from a computational complexity perspective.
In other words, if the algorithm reaches to this tolerance of
the global best for the considered problem, the global best is
reported as the final solution of the algorithm which requires
less computational time. Therefore, the computational time
for the considered 100 optimization runs will be reasonable.

71250

Fl4(xl,x1)

F35(x1,x1)

F54(x1,x1)

100

w
=

100

X -100 -100 %
1

3
=

@
=

40

2
=

Besides, the initial random state of each optimization run for
each alternative algorithm has been selected equally in order
to form a fair judgment about the performance of the proposed
and alternative algorithms.

The detailed results of CryStAl and the other selected
methods are presented in the Supplementary Materials which
includes the convergence history of the proposed algorithm.
It turned out that CryStAl can find the exact global results
of 156 functions (65%); moreover, its result is very close
to the global best result for 83 problems. Further investiga-
tions into the results of CryStAl compared to those of the
other methods are performed in the next sections using some
advanced statistical approaches. Moreover, the convergence
curves of the proposed algorithm in dealing with some of the
considered mathematical test functions are provided in the
Supplementary Materials.

VI. STATISTICAL ANALYSIS

In this section, the maximum error values of the optimization
convergence data have been calculated and utilized for statis-
tical analysis. To this end, the difference between the Global

VOLUME 9, 2021



S. Talatahari et al.: CryStAl: Metaheuristic Optimization Method

IEEE Access

FS(xl,XZ)
"

et
X -500 500 X,

FIGURE 5. The 3D plots of the 100D mathematical functions.

Best (GB) of the functions and the obtained optimal values
resulted from the optimization runs are considered as the
error values. For statistical analysis purposes, four statistical
tests have been conducted in which the Kolmogorov-Smirnov
(K-S) test is utilized for normality issues, the Mann-Whitney
U (M-W) test is implemented for comparing the summation
of the ranks of different metaheuristics in a two-by-two com-
paring manner, the Kruskal-Wallis (K-W) test is conducted
for comparing the overall rankings of the metaheuristics by
considering the mean of their rankings, and the Post-Hoc
(P-H) analysis is conducted based on the results of the K-W
tests for further investigations.

A. KOLMOGOROV-SMIRNOV TEST

There are two kinds of statistical tests which are applicable
to all of the obtained statistical data from multiple applica-
tions, known as the parametric and non-parametric statistical
tests. One of the most important criteria which demonstrates
the possibility of utilizing each method in a specific situa-
tion is the Kolmogorov-Smirnov test. This test shows that
the distribution of data is either normal or non-normal in
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F32(x|,x1)

FS5(x,,%,)

which the distribution of each sample among the statistical
data are considered and checked accordingly. If the K-S test
is rejected, the data are normally distributed, and there is
the possibility of using parametric statistical tests for the
research. Conversely, if the K-S test is confirmed, the data
do not have a normal distribution, so the nonparametric tests
should be used in the study.

The results of the K-S test for the error values of the
minimum, mean, standard deviation, and maximum function
evaluations of the optimization runs for the 2D, 50D, and
100D functions are presented in Table 8. This test is con-
ducted as a two-sample test in which the distributions of the
CryStAl data are compared with the data obtained from other
metaheuristics. It should be noted that if the Asymptotic Sig-
nificance (Asymp. Sig.) value is less than 0.05, the presented
data are not distributed normally, so the non-parametric statis-
tical tests should be conducted for further investigations. The
obtained results of the K-S test demonstrate that the Asymp.
Sig. values in most of the investigated cases are less than 0.05,
so the non-parametric statistical tests should be utilized for
further considerations.
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TABLE 3. Details of the 2D to 10D mathematical functions (First group).

No. Name Type R D Min. No. Name Type R D Min.
Fi Ackley 2 C, D, NS, Se,M [-35, 35] 2 =200 Fe: Ripple 1 NS [0, 1] 2 22
F> Ackley 3 C, D, NS, NSc,U [-32, 32] 2 -195.629 Fs> Ripple 25 NS [0, 1] 2 2
F; Adjiman C D, NS, NSe, M [-1,2] &[-1,1] 2 -2.02181 Fg  Rosenbrock Modified C, D, NS, NS¢, M [-2,2] 2 343712
Fy Bartels Conn . C, ND, NS, NSc, M [-500, 500] 2 1 Fey Rotated Ellipse ~ C, D, NS, NS¢, U [-500, 500] 2 0
Fs Beale C D, NS, NS¢, U [-4.5,4.5] 20 Fes  Rotated Ellipse 2 C, D, NS, NS¢, U [-500, 500] 20
Fs Becker-Lago N [-10, 10] 20 Fess Rump C, D, NS, NS¢, U [-500, 500] 2 0
Fr Biggs EXP2 C, D, NS, NS¢, M 0, 20] 2.0 Fer Scahffer 1 C, D, NS, NS¢, U [-100, 100] 20
Fs Bird C, D, NS, NS¢, M [-2m, 7] 2 -106.765 Fas Scahffer 2 C. D, NS, NSc, U [-100, 100] > 0
Py Bohachevsky I C D, S, NS¢ M [-100,100] 20 Fay Scahffer 3 C D,NS, NS, U~ [-100,100] 2 0.001567
Fio  Bohachevsky 2 C, D, NS, NS¢, M [-100,100] 20 Fr Scahffer 4 C D,NS, NS, U [-100,100] 2 0292579
Fn Bohachevsky 3 C, D, NS, NS¢, M [-100, 100] 2 0 Fn Schwefel 2.6 C. D, NS, NS¢, U [-100, 100] 2 0
F12 Booth C, D, NS, NS¢, U [-10, 10] 2 0 Fr Schwefel 2.36 CD,S, S, M [0, 500] 2 3456
Fi13 Branin RCOS C,D,NS, NSeM  [-5,10] &[0, 15] 2 0.397887 Fr;  Table 1/ Holder Table I C, D, S, NS¢, M [-10, 10] 2 6.9203
Fus Branin RCOS 2 C, D, NS, NS¢, M [-5, 15] 2 5.559037 Fr4 Table 2/Holder Table 2 C, D, S, NS¢, M [-10, 10] 2 -19.2085
Fis Brent C D, NS, NSc, U [-10, 10] 2.0 Frs  Table 3/Carrom Table C, D, NS, NS¢, M [-10, 10] 2 -24.1568
Fis Bukin 4 G ND, S NS¢, M [-15,-5]&[-3,3] 2 0 Fr  Testube Holder — C, D, S, NSe. M 10, 10} 2 -10.8723
Fir Bukin 6 C ND,NS, NS¢, M [15,-5]&[3,3] 2 0 Frr Trecanni ¢ DS NSe U [5. 5] > o
Fis Camel - 3 Hump C, D, NS, NS¢, M [-5, 5] 2 0 Frs Trefethen C D, NS, NS¢, M [-10, 10] 2 330687
Fro Camel - 6 Hump C, D, NS, NS¢, M [-5, 5] 2 -1.0316 Fro Tripod C. D, NS, NSc, M [-100, 100] 2 0
F2 Carrom table NS [-10, 10] 2 -24.1568 Fso Ursem 1 S [2.5,3] & [-2,2] 2 481681
Fa Chen Bird C, D, NS, NS¢, M [-500, 500] 2 2000 Fay Ursem 3 NS (2.2 &[15,15 2 25
F» Chen V C, D, NS, NS¢, M [-500, 500] 2 22000 Far Ursem 4 NS [2.2] > s
1;23 CChichi"a;fze Cc L])\} SS ]\il\gsa Afy Hg ?8} ; -42.9444 Fs3 Ursem Waves NS [-09,12]&[-1.2,1.2] 2 -7.307
24 ross-in-Tray » INO, NOC, -10, -2.06261 Venter Sobiezcczanski-
Fos Cube C D, NS, NS¢, U [-10, 10] 2 0 Fas Sobieski G D, § NSe [-50. 50] 2 400
Fz Damavandi C, D, NS, NS¢, M [0, 14] 2 0 Fss Wayburn Seader 1 C, D, NS, Sc, U [-500, 500] 2 0
F2; Deckkers-Aarts C, D, NS, NS¢, M [-20, 20] 2 -24771.1 Fss Wayburn Seader 2 C, D, NS, Sc, U [-500, 500] 2 0
Fas Easom C, D, S, NS¢, M [-100, 100] 2 -1 Fs;  Wayburn Seader 3 C, D, NS, Sc, U [-500, 500] 2 2135
F»9  El-Attar-Vidyasagar-Dutta C, D, NS, NS¢, M [-500, 500] 2 1.7128 Fss Zettl C, D, NS, NS¢, U [-5, 10] 2 -0.00379
F3 Egg Crate C, D, NS, S¢, M [-5, 5] 2 0 Fso  Zirilli or Aluffi-Pentini  C, D, S, NS¢, U [-10, 10] 2 -0.3523
Fs3; Exp 2 N [0, 20] 2 0 Fo Zirilli 2 C DS SM [-500, 500] 2 0
F3;  Freudenstein Roth  C, D, NS, NS¢, M [-10, 10] 2 0 Fo; Biggs EXP3 C, D, NS, NS¢, M [0, 20] 3 0
Fs; Giunta CD,S, S, M [-1,1] 2 0.060447 . ) [0.1, 100] & [0, 25.6]
Fs Goldstein Price  C, D, NS, NSc, M (-2 2] 2 3 Foz  Gulf Research Problem C, D, NS, NS¢, M &[0, 6.5] 30
Fss Hansen C, D, S, NS¢, M [-10, 10] 2 -165.953 Fo3 Hartman 3 C, D, NS, NS¢, M [0, 1] 3 -3.86278
Fs Himmelblau C, D, NS, NS¢, M [-5, 5] 2 0 Foy Helical Valley C, D, NS, S¢c, M [-10, 10] 3 0
Fs; Hosaki C, D, NS, NS¢, M [0, 5] & [0, 6] 2 -2.3458 Fos Meyer-Roth NS [0, 1] 3 4.00E-05
Fss  Jennrich-Sampson  C, D, NS, NS¢, M [-1, 1] 2 124.3612 Fos Mishra 9 C, D, NS, NS¢, M [-10, 10] 3 0
Fs9 Keane C, D, NS, NS¢, M [0, 10] 2 -0.67367 Fo7 Wolfe C D,S, Se, M [0, 2] 3 0
Fu Leon C, D, NS, NS¢, U [-1.2,1.2] 2 0 Fos Biggs EXP4 C, D, NS, NS¢, M [0, 20] 4 0
Fu Levy 3 N [-10, 10] 2 -176.542 Fyy Colville C, D, NS, NS¢, M [-10, 10] 4 0
Fy Levy 5 NS [-10, 10] 2 -176.138 Fipo Corana DC, ND, S, Se, M [-500, 500] 4 0
Fy Matyas C, D, NS, NS¢, U [-10, 10] 2 0 Fio1  DeVilliers Glasser I C, D, NS, NS¢, M [1, 100] 4 0
Fu McCormick C, D, NS NSe, M [-1.5,4] &[-3,3] 2 -19133 Fioz Gear NS [12, 60] 4 2.70E-12
Fys Mexican hat NS [-10, 10] 2 -19.6683 Fios Kowalik NS [-5, 5] 4 0.000308
Fus Michaelewicz 2 N [0, ] 2 -1.8013 Firo4 Miele Cantrell C, D, NS, NS¢, M [-1, 1] 4 0
Fy; Mishra 3 C, D, NS, NS¢, M [-10, 10] 2 -0.18465 Fros Shekel 5 C, D, NS, Se, M [0, 10] 4 -10.1532
Fy Mishra 4 C, D, NS, NS¢, M [-10, 10] 2 -0.19941 Fros Shekel 7 C, D, NS, Se, M [0, 10] 4 -10.4029
Fy Mishra 5 C, D, NS, NS¢, M [-10, 10] 2 -1.01983 Fro7 Shekel 10 C, D, NS, Se, M [0, 10] 4 -10.5364
Fso Mishra 6 C, D, NS, NS¢, M [-10, 10] 2 -2.28395 Fios Biggs EXP5 C, D, NS, NS¢, M [0, 20] 5 0
Fs1 Mishra 8 C, D, NS, NS¢, M [-10, 10] 2 0 Fuy DeVilliers Glasser 2 C, D, NS, NS¢, M [1, 60] 5 0
Fs; Mishra 10 C, D, NS, NS¢, M [-10, 10] 2 0 Fino Dolan C, D, NS, NS¢, M [-100, 100] 5 -529.871
Fs3 Parsopoulos C DS Sc, M [-5, 5] 2 0 Fi Langerman-5 C, D, NS, Sc, M [0, 10] 5 -0.965
Fsq Pen Holder C, D, NS, NS¢, M [-11, 11] 2 -0.96354 Fiiz Biggs EXP6 C, D, NS, NS¢, M [-20, 20] 6 0
Fss Periodic S [-10, 10] 2 09 Fi3 Hartman 6 C, D, NS, NS¢, M [0, 1] 6 -3.32236
Fss Price 1 C, ND, S, NS¢, M [-500, 500] 2 0 Fiy Trid 6 C, D, NS, NS¢, M [-36, 36] 6 -50
Fs7 Price 2 C, D, NS, NS¢, M [-10, 10] 2 09 Fus Ann-XOR NS [-1, 1] 9 0.95979
Fss Price 3 C, D, NS, NS¢, M [-500, 500] 2 0 Fus Paviani C, D, NS, S¢, M [2.0001, 10] 10 -45.778
Fs Price 4 C, D, NS, NS¢, M [-500, 500] 2 0 Firy Trid 10 C, D, NS, NS¢, M [-IOOTIOO] 10 -210
Feo Quadratic C, D, NS, NSc [-10, 10] 2 -3873.72 |

In Table 9, the maximum difference between the statistical

B. MANN-WHITNEY U TEST

data of CryStAl and the other metaheuristics are also pre-
sented in order to have an initial judgment about the obtained
results of the new algorithm. The maximum and minimum
differences of CryStAl with the alternative algorithms are
represented by bold font-weight and underlined font, respec-
tively. The bolded values designate those algorithms which
have the maximum difference with CryStAl among other
metaheuristics, while the underlined values show the algo-
rithms which have the minimum difference with CryStAl
among other metaheuristics.
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The Mann-Whitney U (M-W) test is a non-parametric test
that allows two groups of data to be compared in which
the null hypothesis denotes that it is equally likely that a
randomly-selected value from one sample will be less than or
greater than a randomly-selected value from a second sample.
This test can be used to investigate whether two independent
samples were selected from populations having the same
distribution. This test provides the summation of the ranks
for two sets of statistical data considered for comparative
analysis. As an essential criterion, if the summation of the
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TABLE 4. Details of the 50D mathematical functions (Second group).

TABLE 5. Details of the 100D mathematical functions (Third group).

No. Name Type R D  Min.
Fis Ackley 1 C, D, NS, Se,M [-35, 35] 50 0
Fry Alpine 1 C, ND, S, NSc,U [-10, 10] 50 0
Fiz Brown C, D, NS, Sc, U [-1, 4] 50 0
Fi2 Chung Reynolds C, D, PS, Sc, U [-100, 100] 50 0
Fi22 Csendes C D,S, Sec, M [-1, 1] 50 0
Fi; Deb 1 C D,S, Se, M [-1, 1] 50 -1
Fiz4 Deb 3 C D,S, Se, M [0, 1] 50 -1
Fizs Dixon & Price C, D, NS, Sc, U [-10, 10] 50 0
Fi Extended Easom C, D, S, NS¢, M [-2m, 2] 50 -1
Fir27 Exponential C, D, NS, S¢, M [-1, 1] 50 -1
Fizs Griewank C, D, NS, S¢, M [-100,100] 50 0
Fi2 Holzman 2 S [-10, 10] 50 0
Fiz Hyper-ellipsoid cCU [-500, 500] 50 0
Fi31  Inverted cosine wave NS [-10, 10] 50 -49
Fis2 Levy 8 NS [-10, 10] 50 0
Fis3 Mishra 1 C, D, NS, Sc, M [0, 1] 50 2
Fi34 Mishra 2 C, D, NS, S¢, M [0, 1] 50 2
Fiss Mishra 7 C, D, NS, NS¢, M [-10, 10] 50 0
Fis6 Mishra 11 C, D, NS, NS¢, M [-10, 10] 50 0
Fi37 Pathological C, D, NS, NS¢, M [-100, 100] 50 0
Fiss Pint’er C, D, NS, S¢, M [-10, 10] 50 0
Fi39 Powell Singular C, D, NS, Sc, U [-4, 5] 50 0
) Powell Singular 2 C, D, NS, Sc, U [-4, 5] 50 0
Fiu Powell Sum C D,S, Sc, U [-1, 1] 50 0
Fis2 Rastrigin C, D SM [-5.12,5.12] 50 0
Fis Qing C D, S, Se, M [-500, 500] 50 0
Fiuy Quintic C, D, S, NS¢, M [-10, 10] 50 0
Fiss Rosenbrock C, D, NS, Sc, U [-30, 30] 50 0
Fuys Salomon C, D, NS, Sc, M [-100, 100] 50 0
Fuy7 Schumer Steiglitz C D,S Sc, U [-100, 100] 50 0
Frus Schwefel C, D, PS, Sc, U [-100, 100] 50 0
Fiy Schwefel 1.2 C, D, NS, S¢, U [-100, 100] 50 0
Fis0 Schwefel 2.4 C, D, S, NS¢, M [0, 10] 50 0
Fisi Schwefel 2.20 C,ND, S, Sc, U [-100, 100] 50 0
Fis2 Schwefel 2.21 C, ND, S, Sc, U [-100, 100] 50 0
Fis3 Schwefel 2.22 C, D, NS, Sc, U [-100, 100] 50 0
Fisq Schwefel 2.23 C, D, NS, Sc, U [-10, 10] 50 0
Fiss Schwefel 2.25 C, D, S, NS¢, M [0, 10] 50 0
Fiss Schwefel 2.26 C D,S, Se, M [-500, 500] 50 -418.98
Fis7 Sphere C D, S, S¢, M [0, 10] 50 0
Fiss Step DC, ND, S, Sc, U [-100, 100] 50 0
Fisy Step 2 DC, ND, S, Sc, U [-100, 100] 50 0
Fieo Step 3 DC, ND, S, Sc, U [-100, 100] 50 0
Fie1 Stepint DC, ND, S, Sc, U [-5.12,5.12] 50 =275
Fi62 Stretched V Sine Wave C, D, NS, Sc, U [-10, 10] 50 0
Fie3 Sum Squares C, D, S, Sc, U [-10, 10] 50 0
Fre4 Styblinski-Tang C, D, NS, NSc, M [-5, 5] 50 -1958.3
Fies Trid C, D, NS, NS¢, U [-D"2,D"2] 50 -22050
Fies Trigonometric 1 C, D, NS, Sc, M [0, m] 50 0
Fi67 Trigonometric 2 C, D, NS, Sc, M [-500, 500] 50 1
Fies W/ Wavy C D,S, Sec, M [-m, m] 50 0
Fis9  Xin-She Yang (1) DC, ND, NS, Sc, M [-20, 20] 50 -1
Fi170  Xin-She Yang (2) DC, ND, NS, Sc, M [-10, 10] 50 0
Fi171 Xin-She Yang (3) DC, ND, NS, S¢, M [-2m, 2] 50 0
Fi172  Xin-She Yang (4) DC, ND, NS, Sc, M [-5, 5] 50 0
Fi73 Xin-She Yang (5) DC, ND, NS, S¢, M [-10, 10] 50 -1
Fin Xin-She Yang (6) DC, ND, NS, Sc, M [-5, 5] 50 0
Fi7s Zakharov C, D, NS, S¢, M [-5, 10] 50 0

ranks for one sample has lower values than the other one,
the one with a smaller sum of ranks has better statistical

No. Name Type R D Min.
Fr7s Ackley 1 C, D, NS, Se,M [-35, 35] 100 0
Fi77 Alpine 1 C,ND, S, NS¢, U  [-10,10] 100 0
Fi7s Brown C, D, NS, Sc, U [-1, 4] 100 0
Frr Chung Reynolds C, D, PS, Sc, U [-100, 100] 100 0
Fiso Csendes C D,S, Se, M [-1, 1] 100 0
Fis1 Deb 1 C D,S, Se, M [-1, 1] 100 -1
Fis2 Deb 3 C D,S, Se, M [0, 1] 100 -1
Fiss Dixon & Price C, D, NS, Sc, U [-10, 10] 100 0
Fisq Extended Easom C D, S NSc, M [-2m, 27] 100 -1
Fiss Exponential C, D, NS, Sc, M [-1, 1] 100 -1
Fiss Griewank C, D, NS, Sc, M [-100,100] 100 0
Fis7 Holzman 2 S [-10,10] 100 0
Fiss Hyper-ellipsoid CU [-500, 500] 100 0
Fiso Inverted cosine wave NS [-10,10] 100 -99
Fi90 Levy 8 NS [-10,10] 100 0
Fio1 Mishra 1 C, D, NS, S¢c, M [0, 1] 100 2
Fio2 Mishra 2 C, D, NS, S¢c, M [0, 1] 100 2
Fro3 Mishra 7 C, D, NS, NS¢, M [-10, 10] 100 0
Fro4 Mishra 11 C, D, NS, NS¢, M [-10, 10] 100 0
Fros Pathological C, D, NS, NS¢, M [-100, 100] 100 0
Fi96 Pint'er C, D, NS, Sc, M [-10,10] 100 0
Fro7 Powell Singular C, D, NS, Sc, U [-4, 5] 100 0
Fros Powell Singular 2 C, D, NS, Sc, U [-4, 5] 100 0
Fre9 Powell Sum C D,S, S, U [-1, 1] 100 0
F200 Rastrigin C,D S M [-5.12,5.12] 100 0
Fzo1 Qing C D,S, Se, M [-500,500] 100 0
F32 Quintic C D, S, NS¢, M [-10,10] 100 0
F203 Rosenbrock C,D, NS, S¢c, U [-30,30] 100 0
Fao4 Salomon C, D, NS, S¢, M [-100, 100] 100 0
Faos Schumer Steiglitz C D, S, S¢, U [-100,100] 100 0
F06 Schwefel C, D, PS, Sc, U [-100,100] 100 0
Fz97 Schwefel 1.2 C, D, NS, S¢, U [-100, 100] 100 0
Fs Schwefel 2.4 C, D, S, NS¢, M [0, 10] 100 0
F99 Schwefel 2.20 C, ND, S, Sc, U [-100, 100] 100 0
Fzro Schwefel 2.21 C,ND, S, S¢, U [-100, 100] 100 0
Fa Schwefel 2.22 C, D, NS, S¢, U [-100, 100] 100 0
Fz12 Schwefel 2.23 C, D, NS, Se, U [-10,10] 100 0
F3 Schwefel 2.25 C, D, S, NSc, M [0, 10] 100 0
Fay Schwefel 2.26 C, D,S, S¢, M [-500,500] 100 -418.98
Fas Sphere C D,S, Se, M [0, 10] 100 0
Fg Step DC, ND, S, Sc, U [-100,100] 100 0
Far Step 2 DC, ND, S, Sc, U [-100,100] 100 0
Fs Step 3 DC, ND, S, Sc, U [-100,100] 100 0
Fay Stepint DC, ND, S, Sc¢, U [-5.12,5.12] 100 =575
F29  Stretched V Sine Wave C,D,NS, Sc, U [-10,10] 100 0
Faz Sum Squares C D,S, Sc, U [-10, 10] 100 0
Fz Styblinski-Tang C, D, NS, NSe, M [-5,5] 100 -3916.6
Fz3 Trid C, D, NS, NS¢, U [-D*2,D”2] 100 -171600
F224 Trigonometric 1 C, D, NS, Sc, M [0, 7] 100 0
F2s Trigonometric 2 C, D, NS, S¢, M [-500, 500] 100 1
F22 W/ Wavy C D,S, Se, M [-mt, @] 100 0
F227 Xin-She Yang (1) DC, ND, NS, Sc, M [-20, 20] 100 -1
F22s Xin-She Yang (2) DC, ND, NS, Sc, M [-10, 10] 100 0
F229 Xin-She Yang (3) DC, ND, NS, S¢, M [-2m, 2x] 100 0
F230 Xin-She Yang (4) DC, ND, NS, S¢c, M [-5,5] 100 0
F231 Xin-She Yang (5) DC, ND, NS, S¢, M [-10, 10] 100 -1
F;; Xin-She Yang (6) DC, ND, NS, S¢, M [-5, 5] 100 0
Fs3 Zakharov C, D, NS, S¢, M [-5, 10] 100 0

C. KRUSKAL-WALLIS TEST

results and the utilized metaheuristic is superior to the other
one. The results of the M-W test for different mathematical
functions based on the obtained results of the optimization
runs are presented in Tables 10 to 12. In these tables, the upper
and lower values are the summation of the ranks related to the
alternative metaheuristics and CryStAl, respectively. Based
on the statistical results, the related values of CryStAl for the
summation of the ranks in most cases are lower than those
of the other metaheuristics (bolded values in the table) which
demonstrates the superiority of CryStAl to its competitors in
dealing with optimization functions.

VOLUME 9, 2021

The Kruskal-Wallis (K-W) test is a non-parametric method
for testing whether or not different statistical samples are
originated from the same distribution. It is used for comparing
two or more independent samples of equal or different sample
sizes. It extends the Mann-Whitney U test, which is used for
comparing only two groups. A significant K-W test indicates
that at least one sample stochastically dominates another
sample. This test provides the mean of the ranks for multiple
sets of statistical data which are considered for comparative
analysis. As an important criterion, if the mean of the ranks
for one sample has lower values than the other ones, the one
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TABLE 6. Details of the composite and hybrid mathematical functions
(Fourth group).

No. Descriptions R D  Min.

Basic Functions: Sphere Function

f1. /2 f5 .., fio= Sphere Function

[o1, 02 05 ...,000]=[1, 1,1, ..., 1]

[A1, 22, s, ..., A10) = [5/100, 5/100, 5/100, ..., 5/100]

Fa34 [-5, 5] 10 0

Basic Functions: Griewank Function
11, 12 f5, ..., fio = Griewank Function
Foss —
[o1, 02, 03, ..., 000] = [1, 1, 1, ..., 1]
[A1, 22, 23, ..., A10] = [5/100, 5/100, 5/100, ..., 5/100]

[-5.5] 10 0

Basic Functions: Griewank Function

Fass 1. /2, f5, ., f10 = Griewank Function
= o1, 02 05 ...,010]=[1, 1,1, ..., 1]
[An, A2, A3, oo, Ao =[1, 1,1, ..., 1]

[-55 10 0

Basic Functions: Ackley, Rastrigin, Weierstrass,
Griewank, and Sphere Functions

f1, > = Ackley Function

f3, f1 = Rastrigin Function

/5, fs = Weierstrass Function

17, fs = Griewank Function

fo, fio = Sphere Function

[o1, 02 05 ...,00]=[1, 1,1, ..., 1]

[As 22, A3, oonr 2a0] = [5/32, 5.32, 1, 1, 5/0.5, 5/0.5,
5/100, 5/100, 5/100, 5/100]

F237

Basic Functions: Ackley, Rastrigin, Weierstrass,
Griewank, and Sphere Functions

f1, /> = Rastrigin Function

f3, fa = Weierstrass Function

/5, fs = Griewank Function

f7, fs = Ackley Function

fo, fio = Sphere Function

[o1, 02 05 ..., 00]=[1, 1,1, ..., 1]

[A1, 22, 23, ..., A10) = [1/5, 1/5, 5/0.5, 5/0.5, 5/100,
5/100, 5/32, 5/32, 5/100, 5/100]

Fiss [-5, 5] 10 0

Basic Functions: Ackley, Rastrigin, Weierstrass,
Griewank, and Sphere Functions

f1, f> = Rastrigin Function

f3, fa = Weierstrass Function

[, f6 = Griewank Function

f7, fs = Ackley Function

fo, f10 = Sphere Function

[o1, 02, 03, ..., 010] =[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7
0.8,0.9, 1]

[A1, A2, 23, ..., A10] =[0.1x1/5, 0.2x1/5, 0.3x5/0.5,
0.4x5/0.5, 0.5%5/100, 0.6x5/100, 0.7x5/32,
0.8x5/32, 0.9x5/100, 1x5/100]

F2;9 [-5, 5] 10 0

with a smaller mean of ranks has better statistical results and
the utilized metaheuristic is superior to the other one. The
results of the K-W test for different studied functions based
on the obtained results of the optimization runs have been
presented in Tables 13 to 15. Based on the results, the CryStAl
related values for the mean of the ranks in most of the cases
are lower than the related values for the other metaheuristics
which represents the superiority of CryStAl. In these tables,
the bolded values are related to the metaheuristic which is
superior to the other ones while the values related to CryStAl
are all underlined.

D. POST-HOC ANALYSIS
Post-hoc is a Latin phrase, meaning “after this” or ‘“‘after
the event”. In a scientific study, a Post-Hoc (P-H) analysis

71254

TABLE 7. Parameter summary of the alternative metaheuristic algorithms.

Metaheuristic Par Description Value
Npop Colony Size 50
ABC N, Number of Onlooker Bees 50
L Abandonment Limit Parameter 60
a Acceleration Coefficient Upper Bound 1
Npop Archive Size 50
4CO Ny Sample Size 50
q Intensification Factor 0.5
{ Deviation-Distance Ratio 1
Npop Number of Scout Bees 50
Ny Number of Selected Sites 25
Nge Number of Selected Elite Sites 10
BA Nyg Number of Recruited Bees for Selected Sites 25
Nye Number of Recruited Bees for Elite Sites 50
r Neighborhood Radius 0.1
Tdamp Neighborhood Radius Damp Rate 0.95
Npop Number of Fireflies (Swarm Size) 50
4 Light Absorption Coefficient
Fd B Attraction Coefficient Base Value 2
a Mutation Coefficient 0.2
Qaamp Mutation Coefficient Damping Ratio 0.98
) Uniform Mutation Range +0.05
G4 Pe Crossover Percentage 0.8
Pm Mutation Percentage 0.3
u Mutation Rate 0.02
B Roulette wheel selection pressure 1
HMS Harmony Memory Size 50
Npew Number of New Harmonies 20
HMCR Harmony Memory Consideration Rate 0.9
as PAR Pitch Adjustment Rate 0.1
FW Fret Width (Bandwidth) +0.02
FWaamp Fret Width Damp Ratio 0.995
Npop Swarm Size 50
w Inertia Weight 1
PSO wy Inertia Weight Damping Ratio 0.99
c1 Personal Learning Coefficient
[ Global Learning Coefficient 2
Npop Population Size 50
Mgupit Maximum Number of Sub-iterations 15
To Initial Temperature 0.025
SA a Temperature Reduction Rate 0.99
Ny Number of Neighbors per Individual 5
u Mutation Rate 0.5
o Mutation Range (Standard Deviation) 0.1

consists of statistical analyses that were not specified before
the data was seen. A P-H analysis involves looking at
the data after a study has been concluded, and trying to
find patterns that were not the primary objectives of the
study.

In this section, the P-H analysis is conducted in order
to derive the overall rankings of the metaheuristic algo-
rithms for all of the 2D, 50D, and 100D functions based
on the achieved results of the K-W test. The over-
all rankings of the metaheuristics obtained by the P-H
analysis are presented in Table 16. It should be noted
that CryStAl provides a success estimation of 100 per-
cent in outranking the other metaheuristics, which demon-
strates the superiority of this proposed novel optimization
algorithm.
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TABLE 8. The K-S test results (Asymp. Sig.) for different algorithms.

Main  Function Data Alternative Metaheuristic Algorithms
Algorithm  Type  Type ABC ACO BA FA GA HS MFO MVO PSO SA SCA SSA
Min.  6.92E-07 8.66E-01 8.09E-11 1.79E-21 2.07E-01 3.51E-01 9.97E-01 2.35E-13 1E+00 3.61E-16 4.92E-10 2.72E-01
- Mean 1.30E-04 8.66E-01 1.11E-15 1.15E-16 2.91E-14 5.04E-03 8.19E-02 4.73E-12 4.04E-02 8.35E-14 1.56E-07 7.92E-03
Std.  2.01E-10 2.07E-01 6.59E-21 5.04E-25 4.80E-22 6.95E-04 1.14E-01 8.43E-20 4.04E-02 1.26E-22 8.35E-14 2.09E-05
Fun. Evl. 6.47E-09 1.14E-01 9.99E-15 4.80E-22 4.73E-12 8.35E-14 2.07E-01 1.79E-21 2.76E-02 1.00E-18 3.20E-11 1.79E-21
Min. 2.48E-14 1.09E-15 4.17E-17 3.23E-11 1.40E-03 1.12E-13 6.67E-04 4.69E-07 1.05E-02 2.17E-16 1.40E-03 3.06E-04
Crystal 50D Mean  9.37E-06 4.69E-07 1.69E-08 6.67E-04 6.07E-01 3.06E-04 5.76E-05 3.24E-01 7.65E-01 9.37E-06 2.22E-01 3.24E-01
Std.  3.06E-04 3.06E-04 1.32E-06 1.46E-01 9.99E-01 9.30E-02 6.67E-04 7.65E-01 7.65E-01 1.05E-02 4.54E-01 6.07E-01
Fun. Evl. 1.40E-03 6.67E-04 1.35E-04 1.35E-04 2.22E-01 1.35E-04 8.99E-01 6.67E-04 7.65E-01 5.76E-05 1.46E-01 3.37E-02
Min.  2.04E-12 4.87E-13 2.48E-14 1.21E-10 5.76E-05 8.27E-12 5.31E-08 1.61E-07 1.40E-03 1.12E-13 4.69E-07 3.06E-04
1oop Mean 3.58E-06 3.58E-06 1.61E-07 6.67E-04 6.07E-01 1.35E-04 2.37E-05 2.22E-01 3.24E-01 5.76E-05 5.58E-03 8.99E-01
Std.  3.06E-04 3.06E-04 5.76E-05 3.37E-02 9.99E-01 5.58E-03 1.35E-04 8.99E-01 6.07E-01 2.85E-03 1.05E-02 6.07E-01
Fun. Evl. 1.92E-02 1.05E-02 6.67E-04 6.67E-04 5.70E-02 6.67E-04 9.30E-02 6.67E-04 3.24E-01 6.67E-04 5.58E-03 5.70E-02
TABLE 9. The K-S test results (the overall difference between data) for different algorithms.
Main  Function Data Alternative Metaheuristic Algorithms
Algorithm  Type Type ABC ACO BA FA GA HS MFO MVO PSO SA SCA SSA
Min. 03504  0.0769  0.4444  0.6325  0.1368  0.1197  0.0513  0.4957  0.0427 0.5470  0.4274  0.1282
2D Mean  0.2821  0.0769  0.5385  0.5556  0.5128  0.2222  0.1624 0.4701  0.1795 0.5043  0.3675  0.2137
Std. 04359  0.1368  0.6239  0.6838  0.6410  0.2564  0.1538  0.6068  0.1795  0.6496  0.5043  0.3077
Fun. Evl. 0.4017  0.1538  0.5214  0.6410  0.4701  0.5043  0.1368  0.6325  0.1880  0.5897  0.4530  0.6325
Min.  0.7241  0.7586  0.7931  0.6379  0.3448  0.7069  0.3621  0.5000  0.2931  0.7759  0.3448  0.3793
CryStAl 50D Mean  0.4483  0.5000  0.5517 03621  0.1379 03793 04138 0.1724  0.1207 0.4483  0.1897  0.1724
Std. 03793 03793  0.4828 0.2069  0.0690  0.2241 03621  0.1207  0.1207  0.2931  0.1552  0.1379
Fun. Evl.  0.3448  0.3621  0.3966  0.3966  0.1897 03966  0.1034  0.3621  0.1207  0.4138  0.2069  0.2586
Min.  0.6724  0.6897  0.7241  0.6207  0.4138  0.6552  0.5345 0.5172  0.3448  0.7069  0.5000  0.3793
100D Mean  0.4655  0.4655  0.5172  0.3621 0.1379  0.3966  0.4310  0.1897  0.1724 04138  0.3103  0.1034
Std. 0.3793 03793  0.4138 0.2586  0.0690  0.3103  0.3966  0.1034  0.1379 03276 02931  0.1379
Fun.Evl.  0.2759  0.2931 03621 03621  0.2414  0.3621  0.2241 03621  0.1724 03621 03103  0.2414
TABLE 10. The M-W test results (summation of the ranks) for 2D mathematical functions.
Main  Function Data Alternative Metaheuristic Algorithms
Algorithm  Type  Type ABC ACO BA FA GA HS MFO MVO PSO SA SCA SSA4
Min. 16014.00 14047.50 16845.50 18294.50 14779.00 14616.50 14146.50 16896.50 14064.00 17406.50 16912.50 14595.00
11481.00 13447.50 10649.50 9200.50 12716.00 12878.50 13348.50 10598.50 13431.00 10088.50 10582.50 12900.00
Mean 15181.00 14235.50 17494.00 17703.00 17137.00 15344.00 14945.50 16680.00 14752.00 16954.00 16323.00 14893.00
CryStal D 12314.00 13259.50 10001.00 9792.00 10358.00 12151.00 12549.50 10815.00 12743.00 10541.00 11172.00 12602.00
Std. 16016.50 14528.00 17779.00 18090.50 17774.00 15501.00 14778.50 17393.00 14751.00 17583.50 16729.00 15552.50
11478.50 12967.00 9716.00 9404.50 9721.00 11994.00 12716.50 10102.00 12744.00 9911.50 10766.00 11942.50
Fun. Evl. 15657.00 13306.00 17180.00 18550.00 16372.00 16576.00 14609.00 18323.00 14689.00 18335.00 17293.00 17633.00
11838.00 14189.00 10315.00 8945.00 11123.00 10919.00 12886.00 9172.00 12806.00 9160.00 10202.00 9862.00
TABLE 11. The M-W test results (summation of the ranks) for 50D mathematical functions.
Main  Function Data Alternative Metaheuristic Algorithms
Algorithm — Type  Type ABC ACO BA FA GA HS MFO MVO PSO SA SCA SSA4
Min. 4570.00 4632.00 4753.00 4563.00 3995.00 4610.00 3765.00 4308.00 3625.00 4702.00 3870.00 4003.00
2216.00 2154.00 2033.00 2223.00 2791.00 2176.00 3021.00 2478.00 3161.00 2084.00 2916.00 2783.00
Mean 4210.00 4292.50 4468.50 4089.50 3545.00 4060.00 4080.50 3681.00 3390.50 4268.00 3710.00 3539.00
CryStAl 50D 2576.00 2493.50 2317.50 2696.50 3241.00 2726.00 2705.50 3105.00 3395.50 2518.00 3076.00 3247.00
Std. 3943.00  4002.00 4209.00 3795.00 3384.50 3760.50 3953.00 3530.50 3289.00 3938.00 3562.50 3387.50
2843.00 2784.00 2577.00 2991.00 3401.50 3025.50 2833.00 3255.50 3497.00 2848.00 3223.50 3398.50
Fun. Evl. 3937.00  3968.00 4069.00 4063.00 3697.00 4048.00 3536.00 3983.00 3355.00 4079.00 3748.00 3816.00
2849.00 2818.00 2717.00 2723.00 3089.00 2738.00 3250.00 2803.00 3431.00 2707.00 3038.00 2970.00

VII. CEC 2017 COMPETITION RESULTS

In order to evaluate the overall performance of the
proposed algorithm, CryStAl, it is necessary to con-
sider state-of-the-art mathematical test functions alongside
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state-of-the-art algorithms. To this end, a recent competition
on single-objective real-parameter numerical optimization
named “CEC 2017 [86] is considered in this section. In this
regard, a list of 30 mathematical functions are studied and
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TABLE 12. The M-W test results (summation of the ranks) for 100D mathematical functions.

Main  Function Data Alternative Metaheuristic Algorithms
Algorithm  Type Type ABC ACO BA FA GA HS MFO MVO PSO SA4 SCA 854
Min. 4516.00 4555.00 4712.00 4571.00 4113.00 4610.00 4251.00 4381.00 3943.00 4650.00 4303.00 4047.00
2270.00 2231.00 2074.00 2215.00 2673.00 2176.00 2535.00 2405.00 2843.00 2136.00 2483.00 2739.00
Mean 4163.00 4193.00 4360.00 4069.00 3517.00 4145.00 4171.00 3688.00 3587.00 4208.00 3987.00 3469.00
CryStAl 100D 2623.00 2593.00 2426.00 2717.00 3269.00 2641.00 2615.00 3098.00 3199.00 2578.00 2799.00 3317.00
Std. 3889.00 3918.00 4071.00 3756.00 3347.00 3865.00 4042.00 3485.00 3461.00 3916.00 3824.00 3325.00
2897.00 2868.00 2715.00 3030.00 3439.00 2921.00 2744.00 3301.00 3325.00 2870.00 2962.00 3461.00
Fun. EVL. 3825.50 3858.00 3995.00 3995.00 3766.50 3989.00 3739.00 3989.00 3655.50 3997.00 3888.50 3775.50
2960.50 2928.00 2791.00 2791.00 3019.50 2797.00 3047.00 2797.00 3130.50 2789.00 2897.50 3010.50
TABLE 13. The K-W test results (mean of the ranks) for 2D mathematical functions.
2D
Ranking Min. Mean Std. Fun. Evl.
Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks
1 CryStAl 558.8803 CryStAl 533.0342 CryStAl 491.7137 CryStAl 474.2222
2 PSO 595.5940 ACO 592.4744 ACO 580.1197 ACO 484.2607
3 ACO 601.7350 SSA 631.2607 SSA 622.9487 PSO 545.1838
4 MFO 608.3205 ABC 649.4615 MFO 629.0043 MFO 555.2906
5 854 648.7650 PSO 668.5684 PSO 630.4573 HS 698.1624
6 HS 659.7521 MFO 687.2735 ABC 685.3034 GA 700.3162
7 GA 682.7180 HS 727.0556 HS 701.8889 ABC 768.0342
8 ABC 793.7863 SC4 829.2863 SC4 843.2094 SSA 817.4274
9 MVO 875.8120 MVO 830.9573 MVO 860.1026 Nl 884.8205
10 BA 905.4060 S4 870.3333 S4 899.4744 B4 903.0769
11 SCA 927.8162 GA 897.7094 GA 931.0171 MVO 1000.7521
12 SA 950.4103 FA 983.9444 FA 992.2222 SA 1004.3590
13 FA 1084.0043 B4 991.6410 B4 1025.5385 F4 1057.0940
Chi-sq. 253.8161 168.4093 225.9612 332.7130
Prob>Chi-sq. 2.1883E-47 1.0096E-29 1.3755E-41 6.1870E-64
TABLE 14. The K-W test results (mean of the ranks) for 50D mathematical functions.
50D
Ranking Min. Mean Std. Fun. Evl.
Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks
1 CryStAl 193.3621 CryStAl 263.3879 PSO 290.0776 PSO 280.4397
2 PSO 244.8793 PSO 269.4224 CryStAl 307.8707 CryStAl 281.2414
3 MFO 297.6034 GA 296.2586 GA 308.6638 MFO 313.6552
4 SCA 299.5000 SS4 298.9310 SS4 312.3190 GA 351.0603
5 GA 300.1638 MVO 321.7931 MVO 337.1121 SC4 359.1983
6 SSA 309.4655 SC4 332.7845 SC4 348.0776 SSA 377.9138
7 MVO 348.3276 HS 389.2241 HS 380.3190 ABC 404.4828
8 HS 429.8621 FA4 413.8190 FA 396.2500 MVO 406.4828
9 FA 449.7500 MFO 423.7672 S4 420.7500 ACO 411.5000
10 SA 489.8362 S4 450.6207 MFO 433.0259 HS 427.7328
11 ABC 490.7586 ABC 456.6638 ABC 434.9483 FA 429.3707
12 ACO 508.1121 ACO 473.9224 ACO 447.7500 B4 429.9569
13 BA 545.8793 BA 516.9052 BA 490.3362 S4 434.4655
Chi-sq. 189.8568 105.8629 61.5589 99.1510
Prob>Chi-sq. 4.0193E-34 3.9241E-17 1.1716E-08 8.1644E-16

presented in Table 17; the mathematical details of these
functions have been presented by the CEC 2017 competition
committee [86].

The statistical results of the CryStAl algorithm in dealing
with these test functions (CEC 2017) with 10 dimensions
are presented in the Supplementary Materials where the
results of three other successful algorithms are also pre-
sented. It should be noted that the error values, rather than
the global best values, of each run are considered in this
competition and the statistical results are based on the best
error values of 51 independent runs. The results show that
the proposed CryStAl algorithm is capable of providing
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eminently acceptable results in dealing with these test func-
tions of different dimensions.

VIil. COMPUTATIONAL COST AND COMPLEXITY
ANALYSIS

In this section, the computational cost and complexity of
the proposed CryStAl method are examined and analyzed
where three different approaches are considered to acquire a
better understanding of these properties. In the first approach,
the computational cost procedure of the CEC 2017 bench-
mark suite is determined while the results of three other
state-of-the-art algorithms are also considered to form a fair
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TABLE 15. The K-W test results (mean of the ranks) for 100D mathematical functions.

100D
Ranking Min. Mean Std. Fun. Evl.
Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks
1 CryStAl 171.7069 CryStAl 259.5517 MY 298.1638 CryStAl 278.2328
2 PSO 274.6810 S84 283.4741 G4 299.2241 PSO 340.7586
3 SSA 291.4397 GA 285.7414 CryStAl 305.3793 MFO 358.7500
4 GA 307.5172 PSO 304.1983 PSO 323.3362 GA 364.9741
5 MVO 342.7672 MVO 314.6724 MVO 327.7759 S84 366.7328
6 SCA 349.0948 SCA 389.4483 FA 387.4310 ABC 375.9569
7 MFO 350.9914 FA 405.6379 Nl 400.7069 ACO 382.9741
8 F4 438.8103 HS 417.7241 HS 403.2586 SCA 389.6810
9 HS 451.3190 MFO 427.6121 S4 413.5862 HS 409.3276
10 S4 466.2414 S4 435.2241 ABC 420.7759 MVo 409.4569
11 ABC 472.2845 ABC 445.9655 ACO 426.6810 B4 410.1379
12 ACO 479.4483 ACO 452.9741 MFO 441.4052 FA 410.1897
13 B4 511.1983 B4 485.2759 BA 459.7759 S4 410.3276
Chi-sq. 149.9211 86.7540 50.0012 65.2723
Prob>Chi-sq. 5.8829E-26 2.0918E-13 1.3965E-06 2.4278E-09
TABLE 16. The P-H analysis results for all of the mathematical functions.
2D & 50D & 100D
Ranking Min. Mean Std. Fun. Evl.
Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks Algorithms Mean of Ranks
1 CryStAl 1011.2554 CryStAl 1167.9185 CryStAl 1213.4700 CryStAl 1077.0343
2 PSO 1181.8820 SSA 1262.1524 SSA 1271.1373 PSO 1198.1524
3 MFO 1301.1180 PSO 1296.0794 PSO 1304.7704 MFO 1253.2403
4 SSA 1322.7361 GA 1463.3519 ACO 1467.9335 ACO 1306.1953
5 GA 1358.6159 MVO 1492.2876 ABC 1507.1803 GA 1403.3948
6 SCA 1552.6202 ACO 1520.1352 GA 1510.8391 SSA4 1506.7189
7 HS 1575.1717 ABC 1523.9678 HS 1516.0665 HS 1507.9700
8 ACO 1577.6159 Nl 1542.6180 MFO 1517.6009 ABC 1555.5579
9 MVO 1591.6459 MFO 1543.5536 MVO 1526.1524 SCA 1632.6674
10 ABC 1679.0107 HS 1553.2382 Nl 1566.9571 BA 1739.8498
11 S4 1818.0408 S4 1697.1931 SA 1679.9893 MVo 1792.3734
12 B4 1847.7639 FA 1759.9850 FA 1738.1974 S4 1834.5622
13 FA 1877.5236 BA 1872.5193 BA 1874.7060 FA 1887.2833
Chi-sq. 270.5922 141.3699 125.5517 334.3474
Prob>Chi-sq. 6.8410E-51 3.1677E-24 4.8084E-21 2.7999E-64

judgment. In the CEC 2017 computational scenario, four

different computational times, namely Ty, T, 7> and 7A"2, are
considered based on four specific mathematical procedures.
Ty refers to the running time of a predefined mathematical
procedure [46], T| denotes the computational time for eval-
uation of the Gg test function considering 200000 function
evaluations, 75 represents the computational time of the con-
sidered metaheuristic algorithm (CryStAl in this paper) for
evaluation of the Gig test function considering 200000 func-
tion evaluations, and fz refers to the mean values of five
different assessments of 7. The results of this scenario
for the proposed and alternative algorithms are presented
in Table 18 which demonstrates the capability of the proposed
CryStAl algorithm in producing competitive results.

In computer science, “Big O notation” is a mathematical
notation that determines the required running time and mem-
ory space of an algorithm by considering its growth rate in
dealing with different inputs. In the following, the computa-
tional cost of the proposed CryStAl method is presented using
this notation which is the second approach for testing the
complexity of the proposed algorithm. For CryStAl, the ran-
dom selection process in the initialization phase of the algo-
rithm has a computational complexity of O(NPxD) where
NP is the initial population size and D is the dimension of
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the problem. The computational complexity of the objective
function evaluation in the initialization phase of the algorithm
is calculated as O(NP)x O(F(x)) where F(x) demonstrates
the objective function value. After the initialization phase, the
main loop of the algorithm is started based on the previously
determined maximum number of iterations (MaxlIter). By the
consideration of the worst-case scenario, each line has a
computational complexity of MaxlIter in the main loop of the
algorithm. In this loop, four new position vectors are created
for each of the current vectors so the position updating pro-
cess of the problem will have a computational complexity of
OMaxlter x NP xDx 4). In addition, the objective function
evaluation in the main loop has a computational complexity
of O(MaxlIter x NP x 4)x O(F (x)).

In general, the overall capacity of a metaheuristic algo-
rithm depends on the balance between exploration and
exploitation while the convergence speed is also an impor-
tant factor in its evaluation. In order to demonstrate these
properties for the proposed CryStAl algorithm, as the third
complexity approach, the diversity graphs of CryStAl are
plotted for functions F, Fg1, and Fg3 in the Supplementary
Materials. As can be seen from these results, the population
in the optimization process by CryStAl tends to localize the
search for achieving better results.
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TABLE 17. Summary of the CEC 2017 test functions [46].

Func. . . Func.
No. Function details Min.

G Shifted and Rotated Bent Cigar Function 100
Shifted and Rotated Sum of Different Power 200
Function

Function type

Unimodal G

functions
Gs Shifted and Rotated Zakharov Function 300
Gy Shifted and Rotated Rosenbrock’s Function 400
G;s Shifted and Rotated Rastrigin’s Function 500
Ge Shifted and Rotated Exganded Schaffer’s F6 600
Simple Shifted and Ratailsqz::z;lcek Bi_Rastrigin
multimodal ~ G7 ’ Function e 700
Sunctions Gs Shifted and RlOtt'II?:d Non-Continuous 300
Rastrigin’s Function
Gy Shifted and Rotated Levy Function 900
G Shifted and Rotated Schwefel’s Function 1000
Gn Hybrid Function 1 (N = 3) 1100
G2 Hybrid Function 2 (N = 3) 1200
G13 Hybrid Function 3 (N = 3) 1300
Gu Hybrid Function 4 (N = 4) 1400
Hybrid Gis Hybrid Function 5 (N =4) 1500
functions Gis Hybrid Function 6 (N = 4) 1600
Gi7 Hybrid Function 6 (N =5) 1700
Gis Hybrid Function 6 (N=15) 1800
Gy Hybrid Function 6 (N=15) 1900
G2 Hybrid Function 6 (N = 6) 2000
G2 Composition Function 1 (N=3) 2100
G2 Composition Function 2 (N=3) 2200
G2 Composition Function 3 (N=4) 2300
G2 Composition Function 4 (N = 4) 2400
Composition G5 Composition Function 5 (N=5) 2500
Junctions Gz Composition Function 6 (N=5) 2600
G327 Composition Function 7 (N = 6) 2700
G2 Composition Function 8 (N = 6) 2800
G2y Composition Function 9 (N = 3) 2900
Gso Composition Function 10 (N = 3) 3000

Search range: [-100,100]°

IX. REAL-WORLD OPTIMIZATION PROBLEMS

In this section, the applicability of the proposed algorithm,
CryStAl, is investigated by considering some real-world
optimization problems which can be a great challenge for
the proposed method. In this regard, we have considered six
difficult power electronics problems on synchronous optimal
pulse-width modulation (SOPWM) which is used to regulate
medium-voltage (MV) drives. This approach provides a sig-
nificant decrease of switching frequency without raising the
distortion, which leads to the reduction of switching losses
that enhances the performance of the inverter. Generally,
switching angles are calculated by reducing the distortion of
current. In this study, this problem is considered as a con-
strained optimization problem which is benchmarked by CEC
2020 [90] regarding real-world constrained optimization.
In this paper, six configurations of this problem are deter-
mined and solved by the proposed CryStAl with a simple
penalty approach for constrained handling purposes. A brief
explanation of these problems is presented in Table 19 while
the comparative results are provided in the Supplementary
Materials. The findings of this study demonstrated that the
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TABLE 18. Computational complexity results of CryStAl compared to
other approaches.

Metaheuristics Properties Results (sec)
T 0.0413
T 0.8218
EBO with CMAR [47] ~
]; 7.5794
(T-T)/T; 163.6223
0 0.1093
T 0.8391
LSHADE-cnEpSin [48] ~
7; 2.1835
(I,-T)/T, 12.30009
1, 2.157784
T 0.146416
MM-OED [49] _
7; 6.704923
(T,-T)/T, 3.039417
1, 0.027387
T 0.144345
CryStAl !
(the present study) T 5378017
) .
(I,-T)/T; 191.10059
TABLE 19. Description of the investigated real-world design problems.
No.
(CEC No.) Name b 8 h
M; (RC 45) SOPWM for 3-level Inverters 25 24 1
M: (RC 46) SOPWM for 5-level Inverters 25 24 1
M; (RC 47) SOPWM for 7-level Inverters 25 24 1
My (RC 48) SOPWM for 9-level Inverters 30 29 1
Ms (RC 49) SOPWM for 11-level Inverters 30 29 1
M; (RC 50) SOPWM for 13-level Inverters 30 29 1

proposed method is capable of producing eminently accept-
able and even better results in dealing with these challenging
problems.

Based on the presented results in this and previous sections,
it can be concluded that the proposed algorithm produces
excellent results in most of the considered cases. One of the
key aspects of this study is the conducted statistical analysis
to evaluate the capability of this algorithm in dealing with an
extensive set of test problems. The employed benchmark test
problems of CEC and the competitive results of CryStAl in
dealing with these problems demonstrate that this algorithm
can be considered as a successful metaheuristic approach.

X. CONCLUSION

This paper proposed a novel metaheuristic method called
Crystal Structure Algorithm (CryStAl), inspired by the under-
lying principles of the formation of crystal structures from
the addition of the basis to the lattice points. Four groups
of mathematical test functions were selected in order to
efficiently evaluate the performance of CryStAl with a total

VOLUME 9, 2021



S. Talatahari et al.: CryStAl: Metaheuristic Optimization Method

IEEE Access

number of 12 different metaheuristic algorithms. A complete
statistical analysis was conducted to provide a valid judgment
about the performance of this method. The most important
findings of this paper are as follows:

(i) CryStAl is superior to the other metaheuristics in con-

(ii)

(iii)

(v)

(v)

(vi)

(vii)

verging to the global bests of the mathematical func-
tions based on the selected tolerance.

The results of the K-S test demonstrated that the max-
imum difference between CryStAl and the other meta-
heuristics is about FA and BA in most of the cases.
The results of the M-W test showed that the summation
of the ranks for CryStAl in most of the cases is lower
than those of the other metaheuristics.

The results of the K-W test manifested that CryStAl is
100% successful in outranking the other metaheuristics
for the 2D functions in all of the cases such as the min-
imum, mean, and standard deviation values alongside
the number of function evaluations.

The results of the K-W test showed that CryStAl has
the first rank in the minimum and mean values of the
50D test functions while the PSO outranks CryStAl in
the standard deviation and function evaluation.

The results of the K-W test showed that CryStAl has the
first rank in the minimum and mean values alongside
the number of function evaluations of the 100D test
functions while the SSA and GA outrank CryStAl in
the standard deviation values.

The overall comparison of CryStAl and the alterna-
tive metaheuristics considering all of the 2D, 50D,
and 100D test functions demonstrated that CryStAl is
100 percent successful in outranking the other meta-
heuristics in all of the cases.

As future challenges, different applications of CryStAl can
be explored and its capabilities in dealing with difficult test
problems can be examined. Besides, new configurations of
this algorithm can be considered as other researchers may
have different viewpoints on the presented methodology.

CODE AVAILABILITY

The MATLAB implementation of CryStAl is accessible
at: https://www.mathworks.com/matlabcentral/fileexchange/
91850-crystal-structure-algorithm-crystal
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