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1) The active disturbance rejection mechanism of PID controller is clarified for the first time. 

2) A new and simple disturbance rejection PID control scheme is proposed. 

3) New internal stability conditions for PID control are established. 

4) The proposed PID control systems have infinite gain margin. 
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 

Abstract—In this paper, a new disturbance rejection proportional–integral–derivative (DR-PID) scheme is proposed for a class of 

minimum phase plants with low relative order. The essential ADR mechanism that is otherwise hidden in PID control structure has been 

illuminated and clarified in this paper for the first time.The proposed DR-PID scheme is derived on the basis of a modified disturbance 

observer to embed the active disturbance rejection mechanism seamlessly in the classical PID structure. Such a DR-PID scheme is 

implemented in a typical two-degree-of-freedom control structure that contains a standard PID controller and a pre-filter. The internal 

stability condition is established by investigating the closed-loop poles according to Rouche’s theorem. The ensuing internal stability 

condition provides effective guidelines for DR-PID design that has infinite gain margin with minimum plant information. Five numerical 

comparisons are performed to illustrate the effectiveness of the new DR-PID scheme. The physical realizability of the proposed DR-PID 

scheme is also demonstrated by experiments on a magnetic levitation system. 

Index Terms—active disturbance rejection (ADR), disturbance observer (DOB), PID control, internal stability. 

 

1. INTRODUCTION 

The classical proportional–integral–derivative (PID) controller is known to be the most widely and successfully used controller 

in industry engineering owing to its simplicity and robustness. Although fruitful modern control theories have been proposed over 

the past decades, the PID controller and its variations continue to dominate over 90% of the control loops in process control [1]-[8]. 

Some famous tuning rules have been proposed to enhance the control performance of PID controllers [9]-[20], and they include the 

Ziegler-Nichols (ZN) tuning rules [9], [10], [13], direct synthesis (DS) method [15]-[18] and internal model control (IMC) method 

[19]-[23]. The latest developments are reported at the 3
rd

 IFAC conference on advances in PID control [2], [6].  

Many studies have focused on PID control in the contexts of control theory and engineering, but the principle of performance 

adjustment in PID control remains unclear. For examples, 1) the integral action in PID works to eliminate steady-state errors and 

reject disturbance, but the practical experience tells us that the control performance is hardly improved by solely tuning integral 

parameter since all the parameters are coupled in controller tuning; 2) As an error-driven approach, PID control still needs rich 

plant information for high-level control. Actually, only small amount of plant information is critical for controller design, such as 

the relative order and high-frequency input gain. How to utilize such limited plant information for PID control performance 

enhancement is still unknown.  

For many process control applications, disturbance rejection performance is more important than the purely set-point tracking. 

Thus, some modified PID controllers, called disturbance rejection PID (DR-PID), have been proposed to improve the control 

performance, along with the assumption that the plant model is known exactly [24-28]. Sensitivity function analysis is a convenient 

and classical technique for the design of disturbance rejection controllers. This method is often formulated and solved by model 

matching and model reduction. One example is the DS-PID controller design for a first-order plus time-delay model, 
1

=
sKe

s
G








; it 

can be formulated as follows [27] 
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


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I

  


 

 



.                                                                     (2) 

Different choices of the desired model in (1) lead to different PID formulations. This characteristic has popularized the research 

and application of the DR-PID method in process control [25], [29]-[33]. Sun et.al. [25] developed an optimal disturbance rejection 

PI controller with constraints on relative delay margin. Middleton et. al. [32] investigated the relationship between input 

disturbance response and robustness for some slow and stable open-loops. Lee et. al. [33] extended the standard IMC design 

approach for 2DOF controllers to shape and improve their disturbance rejection response. Obviously, the development of DR-PID 

design is mainly in the framework of sensitivity function analysis [19]-[23], [29]-[33]. Two basic problems exist in the current 

framework, including 1) it only considers the external disturbance rejection but ignores the internal disturbance/uncertainties; and 

2) it shapes the sensitivity function to limit the disturbance transmission channel but with no disturbance estimation and 

compensation.  

It is also noted that the disturbance rejection issue is effectively solved in the framework of active disturbance rejection (ADR) 

schemes because they have explicit feedback mechanisms for performance tuning. Realizing high-level control is possible with 

ADR schemes, which include active disturbance rejection control (ADRC) [34]-[36], disturbance-observer-based control (DOB) 

[37], [38], and equivalent input disturbance (EID) control [39],[40]. These ADR schemes are often considered more accurate and 

efficient than PID controllers even though they are in some cases equivalent. Thus, can a PID control system achieve the same 

performance as ADR systems? If yes, how does the disturbance rejection mechanism work in a PID controller? These fundamental 

problems remain unsolved in PID control. 

Current studies indicate that the disturbance rejection mechanism in PID controllers remains lacking. Thus, an effective DR-PID 

scheme is worth developing and studying. Such a scheme must be robust against system uncertainties and superior in the 

performance of tracking. In reference to previous work [24]-[33], this study bridges the gap between PID control and DOB control 

to explore the essential ADR mechanism in PID controller. The proposed DR tuning rules for PID controller are very simple and 

effective. This method will bring vast control performance enhancement to the PID control community. The main contributions of 

this work are summarized as follows. 

1) The essential ADR mechanism inherent in the PID structure is illuminated and clarified for the first time, in contrast to the 

current studies  [24]-[33] where the disturbance rejection property of PID controllers is mainly evaluated in term of 

sensitivity function.  

2) Very simple and practical tuning rules for PID controller are developed to realize the high-level control as ADR schemes. 

Although there exist many effective PID tuning rules, most of them are heavily dependent on rich plant information. The 

proposed DR-PID controller only utilizes some critical plant information and shares the same bandwidth tuning rules as 

the cases of ADR schemes. 

3) Internal stability for the DR-PID control system is developed and the obtained stability conditions provide guidelines for 

controller design and give deep insight into ADR mechanism of PID controller. 

The remainder of the paper is organized into six sections. In Section 2, the design problem for DR-PID is stated, and the 

formulation of DR-PID is provided in a modified DOB framework. In Section 3, the theoretical results for internal stability are 

presented. The proposed DR-PID system design is also explored here. In Section 4, numerical simulations are presented to make 
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comparisons between the DR-PID scheme and the DS-PID scheme [27]. In Section 5, the experimental results of the proposed 

DR-PID are given. In Section 6, conclusions are presented with final remarks. 

2. PROBLEM FORMULATION AND DR-PID 

The minimum phase (MP) condition on a plant is a strict physical constraint on control performance. This condition is fully 

considered in the ADR schemes to generate completely different analysis and design manners for MP and non-minimum phase 

(NMP) systems [41], [42]. As we knew, MP systems with low relative order stand for a large group of industrial plants. Thus, many 

research works have paid great attention to such systems [43], [44]. In this section, DR-PID design problem for MP plants is 

presented first. Then, the formulation of DR-PID scheme is developed on the basis of a modified DOB approach [42]. 

2.1 Problem formulation 

Throughout this work, we let ( )a s  be a polynomial with a real coefficient and the degree of ( )a s  as deg[ ]a , and the relative 

order of a transfer function ( ) ( ) / ( )G s b s a s  is denoted as .deg[ ] deg[ ] deg[ ]r G a b  . We consider plant ( )G s  with relative 

order .deg[ ] (0,2]r G   belonging to a set   defined by [37] 

1

1 0

1

1 0

( )
= ,

: [ , ], [ , ]

n l n l

n l n l

n n

n n

i i i i i i

b s b s b
G s

a s a s a

a a a b b b

  

  





   

   
 

    
 

  

                                                                   (3) 

where n  and .deg[ ]l r G  are positive integers; all , ,i i ia a b  
 and ib

 are known constants; and the intervals [ , ]n na a 
 and 

[ , ]n l n lb b 

   does not contain zero, such that the relative degree of the plant does not change. Classical examples include a spring 

oscillator, pendulum, and damped vibration [3]. 

The traditional control system based on PID is presented in Fig. 1. The system comprises a plant ( )G s , PID controller ( )C s  and 

pre-filter ( )F s  [19], [20]. We restrict our attention to the PID controller in the PI-PD form 

 ( ) 1 1 ( ) ( )i

pi pd d pi pd

k
C s k k k s C s C s

s

 
    

 
.                                                               (4) 

where 
pik , 

ik  are parameters of PI controller ( )piC s , and  
pdk  and  

dk  are parameters of PD controller ( )pdC s . The pre-filter 

( )rF s  is determined in relation to the design of the PID controller.  

The traditional PID controller provides an effective and easy manner to construct error-driven feedback but it is hard to obtain 

the relationship between the control performance and controller parameters. Many research works have paid great attention to 

solve this problem over past decades and most of the existing works often require plant model for PID controller tuning. We also 

note that, rather than the precise plant model, only some critical plant information is necessary for high-performance control in the 

framework of ADR schemes [34]-[40], because they have explicit feedback mechanisms for performance tuning, such as 

disturbance estimation and active compensation, which is exactly the most lacking in PID controller. Thus, a fundamental problem 

arises naturally: what’s the basic tuning mechanism in PID controller for reference tracking and disturbance rejection? To solve 

this problem, this study investigates the PID tuning mechanism through a modified DOB scheme, such that the PID controller and 

the pre-filter ( )rF s  in Fig.1, can be designed explicitly by disturbance rejection mechanism. 
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Figure 1. Typical 2DOF control structure with PID controller 

2.2 Formulation of DR-PID based on modified DOB 

We consider the disturbance rejection problem for the linear plant ( )G s  as 

 y G u d  ,  

where u, d, and y are the control input, external disturbance, and plant output, respectively. To achieve our goal, we introduce 

( )pdC s  for pre-compensation with pd du C u  and proceed with the treatment as follows 

 

( )

( )R d pd R d

R d

y G u d

u C H u

H

H

u

G Gd

f

 

  

 



，

 

where  

1 2

1

1

1

2

,

( ,)

,

R pd R d

R

f f f

f H C H

H d

G u

f G





  











 

and RH  is a stable and minimum-phase transfer function with a desired performance for the closed-loop system. The 

newly-defined total disturbance f  includes two components, namely, internal disturbance 
1f  due to the mismatch between the 

compensated plant pdGC  and the desired model RH  and 2f  caused by external disturbance d. A large matching error 

( )pd RCG H  causes a large 
1f , which in turn causes poor transient performance or even damages internal stability. Thus, reducing 

( )pd RCG H  helps enhance stability and performance improvement. This modified DOB scheme is motivated by the well-known 

DOB methods [38] and is well investigated in [42]. The main difference is that a stable and minimum-phase transfer function 
1

RH 
 

is used instead of the inverse of the nominal plant 
1

nG 
. Hence, the potential problems caused by unstable pole and zero 

cancellations are avoided. 

In this paper, we mainly consider the DR-PID controller design for MP plants with low relative order 0 2l  . We can find that 

.deg ][ 1pdGr C   is consistent with the proper selection of ( )pdC s  when 0 2l  . To achieve the order matching between pdGC  

and RH , we specify  

1
( )

1
R

c

H s
s




,                                                                                           (5) 

where 0c   is a specified time constant of RH . A low pass Q-filter is taken as 
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1
( )

1q

Q s
s




,                                                                                           (6) 

where 0q   is a positive time constant that determines the bandwidth of the Q-filter, such that 
1

RQH 
 is proper and can be 

implemented. A modified DOB scheme is given in Fig. 2. Then, the proposed DR-PID controller is formulated to be 

 
( )( ) 1

( ) 1 1
( ) 1 ( )

cd

c

pd

R q

d

C sQ s
C s k k s

H s Q s s



 

 
    

  
,                                                            (5) 

( )
(

1
)

1( )

R

r

q

c

H s
F s

Q s

s

s









 .                                                                                      (6) 

Thus, we have /pi c qk    and 1/i ck  . With 
c  specified previously,  q ,  pdk , and 

dk  will be designed in the following 

sections. As shown in the above deduction, PID control in 2DOF is equivalent to the modified DOB scheme and the essential 

ADR mechanism of PID controller can be clarified explicitly. In particular, we can set =0dk  to realize order matching for the 

case of 1l  , which indicates that PI controller is sufficient for disturbance rejection control in this case.  

-

-

Compensated plant

DOB

—
    Pre-filter                     PID controller

+

+

+

+

+

+

+

 

Figure 2. Proposed DR-PID under a modified DOB framework 

3 ROBUST INTERNAL STABILITY AND DR-PID DESIGN 

This section presents the internal stability theorem for the DR-PID control system. Furthermore, the design procedure is 

provided on the basis of the stability condition. 

3.1 Robust internal stability 

Internal stability is a basic requirement for a practical closed-loop system. Herein, we provide the internal stability of DR-PID 

control systems. q  is an important parameter in DOB control systems and is often required to be a small time constant for 

improved control performance, as discussed in most of the studies on disturbance rejection approaches [34]-[40]. In the current 

work, internal stability is investigated with q  in the explicit form. In Fig. 2, ( )G s , ( )pdC s , ( )RH s , and ( , )qQ s   are the coprime 
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polynomial fractions; specifically, 
( )

( )
( ) g

g

b s

a s
G s  ,  ( )

( )
( ) d

d

b s

pd a s
C s  , ( )

( )
( ) h

h

b s

R a s
H s  , and 

( )

( )
( , ) q q

q q

b s

a s
Q s




  . According to the stability 

results in [46], the feedback system is internally stable if, and only if, the characteristic polynomial is Hurwitz: 

( , ) ( ) ( , ),c q q q qp s a s s     

where 

 

   

( , ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ),

( ) 1 ( 1) .

q d g h q q q q

d g h q q

g pd cd gq

s a s a s b s a s b s

b s b s a s b s

a s k ks s sb s

   







 



  

                                                                (7) 

The closed-loop system is robust internally stable if it is internally stable for all ( )G s  . In the following discussion, robust 

internal stability conditions for 0q   are explored by assessing all roots of ( , ) 0qs   . 

Following the order matching requirements, we set 0dk   for 1l   and 0dk   for 2l  . Thus, we have deg[ ]d g hb b a n . The 

highest power of s  in ( , )qs   with 0q   is deg[ ] 1d g h qa a b a n  . Thus, 1n  roots of the ( , ) 0qs    exist.  

For the limit case 0q  , it yields ( ,0) ( ) ( ) ( )d g hs b s b s a s  , such that the Hurwitz condition of ( ,0)s  holds in nature when the 

plant has no right half plane (RHP) zeros, indicating that the control system has strong stability robustness [38]. Motivated by this 

fact, we consider all the roots of the characteristic equation ( , ) 0qs    in the limit case 0q  . 

We rewrite the formula as 1 2( , ) ( ) ( , ) 0q qs s s      , where 

   

 

1

2

( ) ( ,0) 1 ( ) ,

( )
( , ) 1 1 ( ) 1 ( ).

( ) (

1

)

pd d g

R

q

c

q q q

pd

s s k k s b s

H s
s Q s a s

G s C s

s 

  





  


  
          





 

We then let / qs S  .  0q   is equivalent to s  . On the basis of this equation, we can derive the limiting case 0q   for 

2 ( , )qs  , that is, 

 2 2
0

( ) lim ( , ) 1 ( ) 1 ( ),
q

q qS s Q S a S


   


       

where 

( )
lim 1 ,

( ) ( )

R

s
pd

H s

G s C s




 
  

  

 

Thus far, with all the components introduced, the following lemmas are used to discuss the properties of the roots of ( , ) 0qs  

.  

Lemma 1 (Rouche’s theorem, [47]): Let ( )s  and ( )s  respectively be analytic on and inside a simple closed curve C, with 

( ) ( )s s   on C. Then, ( )s  and ( ) ( )s s   have the same number of roots inside C. 

Lemma 2 Let 
* * *

1 2, , ns s s  be the roots of 1( ) 0s  . Then, for a sufficiently small 0q  , there exists n  roots of ( , ) 0qs   , say 

( )i qs  , 1, ,i n , such that *

0
lim ( )
q

i q is s





 . 

Proof: Given 0  , a constant 0     exists such that 1( ) 0s   has no root inside the closed curve  

 * *( , ) : :i iC s s s s     for each 1, ,i n , except 
*

is . 1( )s  and 1( ) ( , ) ( )qg qa s ss s     are continuous inside 
*( , )iC s  , 
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resulting in bound values   and   for 
1( )s  and ( )g qa s s , respectively; that is 

1( )s   and ( )q ga s s  , respectively. A 

positive constant q  exists, such that for 0 q q   , q    holds, with /q    inside 
*( , )iC s  . 

By applying Rouche’s theorem [47] with 
1( ) ( )s s   and ( ) ( )g qa ss s  , we conclude that ( , )qs   has the same number of 

roots as  
1( )s  inside closed curve 

*( , )iC s  . Given that 
1( ,0) ( )s s  , the claim *

0
lim ( )
q

i q is s





 , 1, ,i n  holds.  

Lemma 3 Let 
*S  be the roots of 

2 ( ) 0S  . Then, for a sufficiently small 0q  , there exists a root of ( , ) 0qs   , 1( )n qs  , 

such that *

1
0

lim ( )
q

q n qs S


 


 . 

Proof: Applying Lemma 1 with 
2( ) ( )s S   and 

 

2 2( ) ( , ) ( )

( / ) ( )
lim 1 ( ) ( ),

( / ) ( / ) ( ) ( )

q

R q R

q
s

q pd q pd

s s S

H S H s
Q S a S

G S C S G s C s

   



  

 

 
   
 
 

 

for a sufficiently small q , we have  

( / ) ( )
lim 0,

( / ) ( / ) ( ) ( )

R q R

s
q pd q pd

H S H s

G S C S G s C s



  
   

which leads to ( ) ( )s s  . Similarly to the proof in Lemma 1, ( , )qs   has a root 
1ns 
 being closed to * / qS  , satisfying 

*

1
0

lim ( )
q

q n qs S


 


 . 

The following theorem based on Lemmas 2 and 3 presents conditions for robust internal stability.  

Theorem 1. A constant 0q   exists, such that for all 0 q q   , the closed-loop system has robust internal stability if the 

following conditions hold: 

(C1)  .deg[ ] .deg[ ] .deg[ ]pd Rr C r G r H  ; 

(C2) ( )G s  has no RHP zero, or ( )gb s  is Hurwitz; 

(C3) ( )pdC s  has no RHP zero, or ( )db s  is Hurwitz; and 

(C4) 
2 ( )S  is Hurwitz for all ( )G s  . 

Proof. (C1) can be viewed as the order-matching condition; thus, det[ ] det[ ]d g h d g ha a b b b a . (C2) and (C3) guarantee 1( )s  is 

Hurwitz. With 1 2( , ) ( ) ( , )q qs s s     , (C4) indicates that the closed-loop system has robust internal stability when 0q  . Thus, 

the proof follows from Lemmas 2 and 3 that a constant 0q   exists, such that for all 0 q q   , the closed-loop system has 

robust internal stability. □  

Remark 1: Theorem 1 shows that the robust stabilization against large uncertainties comes from the high-frequency model 

matching between ( )RH s  and  ( ) ( )pdG s C s . The condition (C4) holds automatically by the design of ( )pdC s  to let 0   (or 

( ) ( )pd RG HC    ), such that 2 ( ) ( )qS a S   is Hurwitz for all ( )G s  .  

3.2 Design of DR-PID 

The internal stability conditions suggest some guidelines to design the DR-PID controller. The condition C(1) provides an 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



8 

 

order-matching constraint on ( )pdC s  such that .deg[ ] 1pdr GC  , which indicates that  

 

, 1
( )

21 ,

pd

pd

pd d

k l
C s

lk k s

 
 



. 

C(2) and C(3) require the minimum-phase of plant ( )G s  and the controller to have 0dk  . C(4) indicates how to select ( )pdC s  

with robustness. Clearly, if 0  , then the Hurwitz condition of 
2 ( )S  is satisfied for  0q  , which also provides a small 

mismatch in the sense that ( ) ( ) ( )pd RG j C j H j    . If the high-frequency gain of the plant is available, we set 

, 1

, 1, 2

n

pd

n l

n

c

c

pd d d

n l

a
k l

b

a
k k k l

b










 



   


. 

Furthermore, the stable range of q  can be determined for the nominal model. Denote 

2

1

( , )
( , ) ( , ) 1 ( ),

( )

q

q q q q

s
s s a s

s

 
   


       

where  

 
( )

( , ) 1 1 ( ) .
( ) ( )

R

q q

pd

H s
s Q s

G s C s
 

 
    

 
 

 

The Hurwitz condition for 2 ( , )qs   can be explained by the Nyquist criterion. The Nyquist plot of ( , )qs   does not touch the 

critical point (−1,0) for 0 q q   . The distance   from the critical point (−1,0) to the nearest point on the Nyquist plot of 

( , )qs   is equal to 

1

1

( ) inf 1 ( , )

1
sup

1 ( , )

1
.

1 ( , )

q q

q

q

j

j

s





   

 









  

 
 

  




 

Thus, if ( ) 0q   , then the Nyquist plot passes through the critical point and one of the roots of 2 ( , )=0qs   located at the 

imaginary axis. Thus, q  can be determined by  

1

1
inf : 0 .

1 ( , )
q q

qs
 







 
 

  
  

                                                                       (8) 

For simplicity, we can take the value of [0, )q q   as small as possible to meet the performance requirements.  

Thus, the proposed DR-PID controller can be summarized as follows: 
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/

1:

0

/

1

pi

i

n

pd

n

c q

c

cl

d

k

k

l a
k

b

k

 











 



 

,                                                                                     (9) 

    

/

1

2 :

/

pi

i

n

pd

n

c

d

c

l

q

c

k

k

l a
k

b

k

 















 



 

,                                                                                    (10) 

where 0   is a free parameter to weight P, I, D three terms in PID controller. The tuning rules (9) and (10) can be used for a wide 

class of MP plants with relative order .deg[ ] 2r G  , as well as for some high-order systems and unstable systems. If the relative 

order of plant .deg[ ] 2r G  , then we simply conduct model reduction to obtain *G G , resulting in 
*.deg[ ] 2r G  . Then, we can 

still apply (9) and (10) to *G . 

Remark 2: Based on the stability condition in Theorem 1, some specific plant information (relative order and high-order gain of 

the plant) are necessary for DR-PID controller in (9) and (10). The relative order of the plant is used to realize order matching in 

(C1) and the high-order gain plays an important role in robust stability condition (C4). These plant information have cooperated in 

DR-PID tuning rules (9) and (10).  

Remark 3: With (9) and (10), reformulate (4) in the typical PID controller form 

1
1 , 1

( ) 1 1 1 1
1 , 2

P I D

q

PP

q q

n

n l c

n n c

n l c c n l c c c

K K K

a
l

b s

C s a a
s s l

b

KK

s b s





   






    



 

  
   

 


     
           

    





.                               (11) 

Some interesting properties are observed: 1) according to the robust stability conditions (C4), the closed-loop system is table in the 

limiting case 0q  , which indicates the control system possesses infinite gain margin; 2) in the framework of DOB scheme, a 

small q  contributes the powerful ADR capability, but it also brings large derivative gain in DR-PID. Thus, there will be a tradeoff 

between control performance and excessive control input; 3) in the proposed PID controller (11), the input gain  /n n la b   always 

appears together with q , which means that the uncertainty of input gain can be well tolerenceted by a small value of q ; 4) in PID 

controller case, c n

qc

P

n l

a

D I b

K

cK K










    is purely dependent on the input gain /n n la b   and q , which provides some potential 

methods to limit D-action; 5) Typically for 1  , a fast (slow) plant with a small (large) c   requirment indicates I DK K  

( )I DK K , which can be well understood by our experience that PI-dominanted controller is good enough for a motion control 

system while D-action is often necessary in PID controller for a process control system; 6) three parameters ( , , )c q    of the 

proposed DR-PID provides a mapping to the parameters ( , , )P I DK K K  of the classical PID. Especially, when c  and q  are 

specified previously, the parameter   can be used to adjust the weight of PK , IK , DK . Therefore, the flexibility of the classical 

PID controller is well retained in the proposed DR-PID. 

Remark 4: In the proposed DR-PID scheme, a low-pass filter can be inserted in the feedback channel to filter the system output 
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when the measurement noise is not neglectable, or to filter the control input when large derivative action generated by PID 

controller. For simplicity, one can set ( ) ( )yF s Q s  or ( ) ( )uF s Q s . 

Remark 5: As a famous ADR scheme, ADRC inherits from PID [34] with a natural connection between ADRC and PID in 

philosophy and methodology. Especially, linear ADRC (LADRC) [48]-[50] is considered as a generalized PD controller under 

feedback linearization via an extended state observer (ESO). A recent study [51] discusses the characteristics of second-order 

LADRC in PID interpretation. Different from these studies [48]-[51], we derive simple and practical tuning rules for DR-PID 

controller based on a modified DOB scheme for low relative order plants. The performance comparisons will be performed in 

experimental studies. 

4 NUMERICAL EXAMPLES 

In this section, we employed the above method to illustrate the proposed DR-PID scheme for several common types of 

process models, such as the plants with relative order 1, plants with relative order 2 and plants with high relative order.  

PID controller is powerful to hand some first-order/second-order plants if system models are available. DS-PID [27] is a typical 

disturbance rejection control method based on sensitivity function synthesis  

( ) ( )
( )

( ) 1 ( )C( )
yd

y s G s
G s

d s G s s
 


.                                                                          (12) 

Table I. DR-PID for plant with relative order 1 

Plant  

DS-PID in [27] 

1
1c d

i

K s
s




 
  

 
 

The proposed DR-PID 

 1 1i
pi pd d

k
k k k s

s

 
  

 
 

1

K

s 
 

2 2

2

( )f

c

f

K
K

  



 
  , 

2 2( )f

i

  




 
 , 0d   

/

1 /

0

c qpi

i

n
pd

n l

d

c

c

k

k

a
k

b

k

 














 

 in  (9)  

K

s
 

2
c

f

K
K

  , 2i f  , 0d   

( 1)

( 1)

aK s

s s








 

3

(3 )( )

( )

f a a

c

f a

K
K

   

 

 



, 3i f a    ,

2 3 23 3

(3 )( )

f f a f a

d

f a a

     


   

  


 
 

1 2

( 1)

( 1)( 1)

aK s

s s



 



 
 

2 3

1 2 1 2

3

3 [ ( ) ](3 )

( )

f a a f a f

c

f a

K
K

         

 

    



 

2 3

1 2 1 2

1 2 1 2

3 [ ( ) ](3 )

( )

f a a f a f

i

a a

         


     

    


  
 

3 2

1 2 1 2 1 2

2 3

1 2 1 2

( ) 3 (3 )

3 [ ( ) ](3 )

a f f a f a

d

f a a f a f

           


         

    


    
 

 

Table II. DR-PID for plant with relative order 2 

Plant  

DS-PID in [27] 

1
1c d

i

K s
s




 
  

 
 

The proposed DR-PID 

 1 1i
pi pd d

k
k k k s

s

 
  

 
 

( 1)

K

s s 
 

3

3 f

c

f

K
K

 


  , 3i f  , 

2 33

3

f f

d

f

  


 


  

/

1 /

pi

i

n
pd

c q

n cl

d

c

k

k

a
k

b

k 

 



 










 

 in (10)  
1 2( 1)( 1)

K

s s  
 

3

1 2

3

3 f f

c

f

K
K

   




 , 

3

1 2

1 2

3 f f

i

   


 


 , 

2 3

1 2 1 2

3

1 2

3 ( )

3

f f

d

f f

     


   

 



 

2 2 1

K

s s  
 

2 3

3

3 f f

c

f

K
K

  




  , 

2 3

2

3 f f

i

  





 , 

2 2 3

2 3

3 2

3

f f

d

f f

  


  





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The formulations of DS-PID for some typical plants are given in Table I and Table II. 

To provide fair comparisons, the DS-PID controller was tuned by different selections of f . Step response and load disturbance 

response are considered in the simulations. Two metrics were used to evaluate controller performance, including the 

integrated-time-absolute-error (ITAE) and integrated-square-error (ISE)  

0
( )ITAE t e t dt



 ,                                                                                 (13) 

2

0
( )ISE e t dt



 ,                                                                                   (14) 

since they are generally accepted as a good measure for tracking performance. These two metrics should be as small as possible. 

We take 1   in (9) and (10) as the defaulted value in the following numerical studies. 

4.1 Plant with relative order 1  

In this section, the proposed DR-PID is utilized to the control of the plant with relative order 1 in examples 1 and 2, including a 

stable first-order plant and an unstable plant.  

Example 1: first-order plant. Consider the following plant 0.8

1.2
( )=

s
G s


 and its normal model 1

1
( )n s

G s


  with a load disturbance 

( ) 1( 10)d t t   acting at the plant input to demonstrate the efficacy and superiority of the proposed DR-PID scheme. A small value 

of 
c  in ( )RH s  will generates a fast response. In this example, the desired closed-loop model is chosen to be 5

5
( )R s

H s


 . 

With the calculating of the stability bound by (8), the stability range is determined [0, )q   . Then, 1/ 50q   is chosen for 

Q-filter 50

50
( )

s
Q s


 . For the first-order plant, the relative order is 1l  . The DR-PID scheme is realized with (9) to have 10pik   , 

5ik  , 5pdk   and  0dk  . We make comparisons with DS-PID scheme [27] with the results in Figs.3, 4 and Table III. 

  

Figure 3. Control performance of Example 1                                           Figure 4. Bode plots of sensitivity function of Example 1 

Fig. 3 shows the simulation results with the set-point response and load disturbance response. As seen in Fig. 3, the proposed 

DR-PID scheme and the best case of DS-PID scheme with 0.3f   both have very small ITAE and ISE values on set-point 

response. However, a close inspection of Fig. 3 shows the two index values of DR-PID scheme being less than 41 10 , which are 

much smaller than the value of DS-PID scheme. In addition, no overshoot or oscillation phenomenon is observed in the tracking 

performance when the proposed DR-PID performed in Fig. 3. Thus, the proposed DR-PID scheme will be much more desirable and 

applicable in practice industry than DS-PID scheme [27].  
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Table III: ITAE and ISE index of Example 1 

Tuning methods 
Set-point disturbance 

ITAE ISE ITAE ISE 

DS-PID 

[27] 

0.3f 

 
0.076 0.1013 0.058 0.0063 

0.8f 

 
1.043 0.4483 1.229 0.1067 

1.2f 

 
4.929 1.0362 4.830 0.3323 

DR-PID 

(new) 

1/ 5

1/ 50

c

q









 

0.0333 0.0961 
-48.24 10

 

-53.884 10  

 

Fig. 4 shows the sensitivity functions for two resultant systems obtained by the proposed DR-PID scheme and DS-PID scheme. 

The time response performance can be well explained by sensitivity functions in the frequency domain. As shown in Fig.4, the 

sensitive function of DR-PID scheme is smaller than the case of DS-PID scheme in the low frequency range with less phase lag. 

The effect of the disturbance to system output can be limited greatly by the proposed DR-PID. Thus, the proposed DR-PID 

guarantees excellent reference tracking and disturbance rejection performance, which coincides with the properties of the DOB 

scheme.  

In sum, the above simulation results have substantiated the efficacy and superiority of the proposed DR-PID in comparison with 

the commonly used DS-PID scheme [27]. 

Example 2: unstable plant. Consider an unstable plant with right-half-plane (RHP) pole. The original plant 1.8( 0.8)

(3 1)( 3 0.9)
( )

s

s s
G s



  
  and 

its normal model 1.5( 1)

(2 1)( 3 1)
( )

s

n s s
G s



  
  are considered with load disturbance ( ) 1( 50)d t t  . This example is used to illustrate the 

effectiveness of the proposed DR-PID scheme to the unstable system. For this plant, the desired closed-loop model is chosen to be 

1

1
( )R s

H s


 , with stability range [0, 2.2222)q  . Clearly, the RHP pole of the plant shows non-ignorable limitations on the upper 

bound of q , such that, such that the Q-filter should be fast enough to make real time dynamic compensation for unstable plant. 

Then, 1/ 50q   is chosen for the Q-filter 50

50
( )

s
Q s


 . Since 1l  , DR-PID is implemented as PI controller and the parameters are 

determined by (9) to have  50pik   , 1ik  , 4pdk    and  0dk  . The comparisons results are given in Figs 5, 6 and Table IV. 
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Figure 5. Control performance of Example 2                                       Figure 6. Bode plots of sensitivity function of Example 2 

As shown in Fig.7, DS-PID controller generates large overshoot in the step response and disturbance response, while the 

proposed DR-PID almost keeps the desired control performance of the reference model ( )H s  even external disturbance occurring. 

These results can also be observed from the ITAE and ISE values in Table V. Fig.8 shows the sensitivity functions of the control 

systems in two schemes. The magnitude of sensitivity function in our case is much smaller than the ones in DS-PID scheme as well 

as less phase lag. In sum, these results verify the effective application of the proposed DR-PID to unstable plants. 

Table IV: ITAE and ISE index of Example 2 

Tuning methods 
Set-point disturbance 

ITAE     ISE ITAE ISE 

DS-PID 

[27] 

3.0f   36.337  1.8456   24.3745 0.5906 

3.5f   64.649 2.9164   57.0948 1.9092 

4.0f 

 
109.93 4.7913  115.6465 4.9315 

DR-PID 

(new) 

1

1/ 50

c

q









 

0.9689 0.4868  0.0050 -51.265 10  

 

4.2 Plant with relative order 2  

In this section, two examples are used to illustrate how the proposed DR-PID scheme works on the plants with relative order 2.   

Example 3: integral plant. Consider an integral plant with relative order 2 with 2

(2 1)
( )

s s
G s


 and its normal 1.8

(2.5 1)
( )n s s

G s


 . Set 

1/ 6c   for ( )H s , and the stable range is determined [0, 2.1739)q   for ( )Q s  and choose 1/ 70q  . Then, the proposed 

DR-PID scheme is realized in (10) to have 11.67pik   , 6ik  , 8.33pdk   and  1dk  . Fig 7 shows the step response with load 

disturbance ( ) 1( 10)d t t   for the proposed DR-PID scheme and DS-PID scheme with 0.3f  , 0.6f   and 0.9f  .  The 

comparisons are also made in Table V to illustrate the ITAE and ISE value of two schemes. The simulation results are confirmed by 

the sensitivity functions depicted in Fig 8. Therefore, the result indicates the effectiveness of the proposed DR-PID for integral 

plants with relative order 2. 
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Figure 7. Control performance of Example 3                                              Figure 8. Bode plots of sensitivity function of Example 3 

Table V: ITAE and ISE index of Example 3 

Tuning methods 
Set-point disturbance 

ITAE     ISE ITAE ISE 

DS-PID 

[27] 

0.3f   0.3414        0.2012   0.0176 
-42.2808 10

 

0.6f   1.3590 0.4021   0.2812 0.0073 

0.9f   3.0413 0.6022  1.4223 0.0555 

DR-PID 

(new) 

1/ 6

1/ 70

c

q









 

0.0338 0.0860  0.0020 
-61.2698 10

 

 

Example 4: unstable plant. Consider an unstable plant and its normal model described by 2.5

(12 1)( 5 0.9)
( )

s s
G s

  
  and 

2

(10 1)( 5 1)
( )n s s

G s
  

 , respectively. Since 2l  , the derivative term is used in DR-PID. The desired closed-loop model is chosen as 

10

10
( )R s

H s


  to achieve a fast system response. The stable range for q  is determined by (8), that is [0,0.9901)q   and 1/ 50q   

is chosen for the Q-filter.  
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Figure 9. Control performance of Example 4                           Figure 10. Bode plots of sensitivity function of Example 4 

Table VI: ITAE and ISE index of Example 4 

Tuning methods 
Set-point disturbance 

ITAE ISE ITAE ISE 

DS-PID 

[27] 

0.2f   0.1544 0.1471 -41.92 10  
-89.5370 10  

0.5f   0.9679 0.3690 0.0075 -69.3170 10  

0.8f   2.4886 0.5911 0.0492 -59.7620 10  

DR-PID 

(new) 

1/10

1/ 50

c

q









 

0.0244 0.0572 -58.8 10  
-92.9590 10

 

 

Fig. 9 presents the simulation results provided by the proposed DR-PID and DS-PID with 0.2f  , 0.5f   and 0.8f  . As 

shown in Fig. 9, the output of DR-PID system effective tracks the set-input even external disturbance ( ) 1( 25)d t t   occurring, in 

which the disturbance ITAE value is less than 
59 10  as shown in Table VI. Fig. 9 also shows that no overshoot phenomenon 

exists in the proposed DR-PID scheme. These results can be also observed by sensitivity functions in Fig. 10, which reflects the 

magnitude of sensitive function of the proposed DR-PID system much smaller than the ones of DS-PID systems in a wide 

low-frequency range.  

A further investigation is to discuss the parameter   in DR-PID. Fig. 11 presents the simulation results with =0.5 , =1  and 

=1.5  for this example. As depicted in (11), a small   increases the weight of proportional gain and integral gain in PID 

controller, and thus it further improves the disturbance rejection performance when c  and q  have been specified.  

In summary, these simulation results indicate the proposed DR-PID scheme can be successfully performed to the plant with 

relative order 2 and obtain perfect control performance. 
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Figure 11. Control performance of Example 4 with different value of  . 

4.3 Plant with relative order large than 2  

The proposed DR-PID can be implemented to the plant with relative order no more than 2. However, it is still desired to extend 

this scheme to high order system. We can employ the standard model reduction technology to solve this problem. 

Example 5: plant with high order. Consider a fourth-order plant with relative order 3 
2

( 3)

( 1)( 2)( 10 8)
( )

s

s s s s
G s



   
 . This plant is 

identified by system identification tool in MATLAB as 
2

0.1344

1.621 0.718
( )n s s

G s
 

 .   

We set 1c   for ( )H s  and 1/ 50q   for ( )Q s  from the stable range [0, )q   . The proposed DR-PID scheme is exploited 

to realize tracking control for such high order system, and the corresponding numerical results are illustrated in Fig. 12 and Table 

VII. As shown in Fig. 12, the step response with load disturbance ( ) 1( 25)d t t   is compared to the DS-PID scheme. No 

oscillation and overshoot are observed in our case because of the small magnitude of sensitivity function depicted in Fig. 13. Table 

VII indicates that the ITAE and ISE values of the proposed DR-PID are much smaller than the ones of DS-PID. 

In summary, the above simulation results indicate the effective and superior performance of the proposed DR-PID for high-order 

plants with relative order large than 2. 

 

 

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

O
u

tp
u

t 
y

 

 

0 5 10 15 20 25 30 35 40 45 50
-4

-2

0

2
x 10

4

Time(s)

C
o

n
tr

o
l 
in

p
u

t 
u

reference

=0.5

=1.0

=1.5

26 28 30
0.9999

0.9999

1

1

 

 

24 26 28
-1

-0.5

0

0.5

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

O
u

tp
u

t 
y

0 5 10 15 20 25 30 35 40 45 50

0

2000

4000

6000

Time（ s）

C
o

n
tr

o
l 
in

p
u

t 
u

 

 

0 1 2
-200

0

200

400

25 30
3

4

5

6

Tf=1.0

Tf=1.3

Tf=1.6

Proposed

-150

-100

-50

0

M
a
g
n
it
u
d
e
 (

d
B

)

 

 

10
-2

10
-1

10
0

10
1

10
2

10
3

-180

-90

0

90

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/s)

Proposed

Tf=1.0

Tf=1.3

Tf=1.6

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



17 

 

Figure 12. Control performance of Example 5                                    Figure 13. Bode plots of sensitivity function of Example 5 

Table VII: ITAE and ISE index of Example 5 

Tuning methods 
Set-point disturbance 

ITAE ISE ITAE ISE 

DS-PID 

[27] 

1.0f   2.3984 0.8381     0.4031 0.0035 

1.3f   2.9701 1.2191 1.1514 0.0131 

1.6f   6.1769 1.9314 2.6439 0.0367 

DR-PID 

(new) 

1

1/ 50

c

q









 

0.9686 0.5092     0.0054 
-61.8208 10

 

 

5 APPLICATION EXAMPLE 

This section presents the application results for the proposed DR-PID scheme and the traditional LADRC [48]-[50] scheme of a 

magnetic levitation system. Note that, the parameter 1/ c  in the desired model (5) plays the same role as the closed-loop 

bandwidth c  in LADRC, and the parameter 1/ q  in the Q-filter (6) is viewed as the bandwidth of disturbance observer is closed 

related to the bandwidth of ESO 
o . To make a fair comparison, we set  1/ c c   and 1/ q o   for two schemes in the following 

simulation and experimental studies.  

5.1 System description 

A laboratory-scale magnetic levitation system (MLS), made by GOOGOLTECH as shown in Fig.14, is used to evaluate the 

performance of the proposed DR-PID controller in MATLAB/SIMULINK environment. The structure of MLS is composed of the 

mechanical unit (an electromagnet, a metallic ball, and a laser sensor) and the control interface. The electromagnet is driven by the 

current to generate the electromagnetic force counteracting the gravitational force of the steel ball. The MLS levitates a metallic 

ball in the desired position by applying the voltage control input, which is converted into current via embedded driver. The position 

of the metallic ball is measured by a laser sensor, that is integrated with the magnetic suspension system, as shown in the schematic 

of Fig.15.  

The real-time control algorithm is implemented on a host PC with MATLAB/SIMULINK software. Real-time windows target 

communicates with the executable control program and interfaces with an advanced PCI-1711 I/O card. It is convenient for the 

designer to realize the controller in the MATLAB/SIMULINK environment. The sampling size is 1ms in the SIMULINK.  
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Figure 14. Experimental platform.                                                 Figure 15. A schematic of the magnetic levitation control system 

 

Table VIII: System parameters 

Parameters Value 

Mass m 94 g 

Coupling coefficient K 2.3142e-4Nm/A 

Equilibrium current i0 0.6105A 

Equilibrium position x0 20.0mm 

Gravitational acceleration g 9.8 m/s
2 

 

  The MLS system model is nonlinear with two states (i-current, x-ball position) 

22

2

d x i
m k mg

xdt

 
  

 
.                                                                           (15) 

where k  is a constant depending on electromagnet parameters, m is the mass of the metallic ball and g is the gravity acceleration. 

The value of these parameters are listed in Table VIII. the nonlinear form of MLS model in (15) is linearized for analysis of the 

system. The linearized is made around the equilibrium point 0 0( , )i x  to have 

2

1x

i As B

 


 
. 

where 
0 / 2A i g  and  

0 0/B i x . The control input and measure output of the system can be converted into voltage signals, to 

have  

( ) ( )

( ) ( )

in i

out x

u s k i s

u s k x s





. 

Then, the linearized transfer function model can be formulated as 

2

( ) 77.8421
( )

( ) 0.0311 30.525

out

in

u s
G s

u s s
 


.                                                               (16) 

5.2 Simulation results 

Comparative simulations based on MLS model in (15) with different value of 
q  ( o ) are performed to demonstrate the 
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efficacy of the proposed DR-PID regarding to LADRC. Set =1 , 1/ 20c   for the desired closed-loop model in DR-PID, 

accordingly with 20c   for LADRC. 

Two schemes are both applied to the above MLS model with four situations (i.e. 1/ 200q  ,  1/ 300q  , 1/ 400q   and 

1/ 500q  ) considered. In the step response, load disturbance ( ) 1( 15)d t t   is assumed to act at the plant input.  

Fig. 16 shows the simulation results that are synthesized by the two schemes with different value of 
q . As seen in Fig.16, 

system outputs of both two schemes track the desired setpoint. Although overshoots exist in our case with relative large settling 

time, a close inspection of Fig.16 shows no oscillations occur in our case and the peak value in the disturbance response of DR-PID 

scheme is smaller than the case of LADRC.  

 

Figure 16． Step response of MLS with four situations. 

5.3 Experiment results 

Experimental studies have been carried out on the MLS system by the proposed DR-PID and the traditional LADRC with the 

same parameters. We assume the high-order gain of the plant in the normal model (16) is known, which is also used in LADRC as 

a key parameter ‘ 0 2499.1b  ’. The real value of 0b  is actually varying with operation condition.  

Based on the previous simulation results, 1/ 20c   ( 20c  ) and 1/ 400q   ( 400o  ) are chosen in the experimental 

studies to adapt the 1ms sampling size. To implement the proposed DR-PID in the real system, an output filter ( ) ( )yF s Q s  is used 

to deal with the measurement noise. The metallic ball started was commanded to follow different desired positions ( ) 0.0084r t m

, ( ) 0.009r t m  and ( ) 0.0096r t m  with input disturbance ( ) 0.4d t   occurring at 15t s  25t s  and 35t s  respectively.   

Fig.17 illustrates the trajectory tracking using the proposed DR-PID controller. The position of the metallic ball tracks the 

desired position well under different operation conditions. When the external disturbance occurring, the ball leaves the set point but 

goes back to the desired position smoothly with no oscillation and very little peaking value. The results indicate the excellent 

performance of the DR-PID controller showing a good system stabilization, smooth disturbance rejection and small tracking error.  
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Figure 17. Experimental results based on DR-PID  
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Figure 18. Experimental results based on traditional LADRC 

Fig.18 depicts the tracking performance of the traditional LADRC under different operation conditions as considered in 

DR-PID. We can see that the external disturbance is rejected faster than our case when MLS operates at  ( ) 0.0084r t m  and 

( ) 0.009r t m . This result can also be observed from the simulation studies in Fig. 16. However, the system oscillation cannot be 

neglected in LADRC when ( ) 0.0096r t m , which shows that the system oscillation exists during the task execution. For such 

unstable nonlinear system, the closed-loop stability can be easily damaged by system oscillation. Clearly, in this experiment, the 

proposed DR-PID provides better robustness than LADRC to let MLS work well in a wide operation conditions. These results 

verify the effectivity of the proposed DR-PID controller on the MLS.  

5.4 Discussion 

The following results are obtained as shown in simulation and experimental studies. 

1) The proposed DR-PID scheme can reach a similar control performance as LADRC (observed from comparisons) and DOB 

scheme (as discussed in Section 2) if the relative order of the plant is not large than 2. It will bring great convenience for engineers 

to implement the PID controller for high-performance requirements.  

2) The proposed DR-PID shares the same bandwidth tuning rules as ADR schemes, that is, when the bandwidth of observer 

increases, the disturbance rejection performance can be improved. It also coincides with the theoretical and numerical results 

presented in [37],[44]. 

3) Comparing the system responses, we observe that the proposed DR-PID controller achieves a similar stabilization performance 

as the traditional LADRC but provides better robustness and less system oscillation.  

Therefore, based on these qualitative and quantitative results, in the same condition, the proposed DR-PID achieves the same or 

even better control performance compared with the traditional LADRC scheme on MLS.  

6 CONCLUSION 

A new DR-PID scheme is proposed on the basis of a modified disturbance observer framework. Such a scheme provides the 

same ADR characteristics in most of disturbance rejection control schemes, but retains the PID structure familiar to practitioners. 

Theoretical results on the internal stability are obtained by investigating the characteristic equation of the closed-loop system and 

provide effective guidelines for the design of DR-PID. A simple yet effective DR-PID tuning rule is obtained, which helps 

engineers overcoming the bottleneck of PID tuning in meeting ever higher performance requirements. 
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Five numerical examples are provided to show the excellent performance of the proposed DR-PID relative to a typical 

disturbance rejection PID scheme. The performance of the proposed DR-PID is tested and compared in a real MLS with a 

traditional LADRC controller. The experiment highlights the outstanding performance of the DR-PID controller with respect to the 

different operating conditions in stabilization and disturbance rejection tasks. 

 

ACKNOWLEDGMENT 

The authors would like to thank the editors and anonymous reviewers for their time and effort in handling this paper, as well as 

for providing constructive comments that enabled them to improve the presentation and quality of this paper. 

 

REFERENCES  

[1] K. J. Åström, and T. Hägglund, “The future of PID control,” Control Engineering Practice, vol. 9, no.11 , pp.1163-1175, Nov. 2001. 

[2] K. Soltesz, A. Cervin, “When is PID a good choice?”  IFAC-PapersOnLine, vol. 51, no. 4, pp. 250-255, 2018 

[3] C. Zhao, and L. Guo, “PID controller design for second order nonlinear uncertain systems,” Science China Information Sciences, vol. 60, no. 2, pp. 

022201:1-022201:13, Feb, 2017. 

[4] M. Zhang, P. Borja, and R. Ortega, “PID Passivity-Based Control of Port-Hamiltonian Systems.” IEEE Transactions on Automatic Control, vol. 63, no.4 , pp. 

1032-1044, Apr. 2018. 

[5] R. L. Cloud, O. Brien, and F. John. “Large feedback control design with limited plant information.” Control Engineering Practice, vol. 72, pp. 219-229, 2018. 

[6] A. Leva, “PID-based controls in computing systems: a brief survey and some research directions,” IFAC-PapersOnLine, vol. 51, no. 4, pp. 805-810, 2018. 

[7] W. Yu  and J. Rosen, “Neural PID Control of Robot Manipulators With Application to an Upper Limb Exoskeleton.” IEEE Transactions on Cybernetics, vol. 

43, no. 2, pp. 673-684, Feb. 2013. 

[8] Q. G. Wang, T. H. Lee, and H. W. Fung, “PID tuning for improved performance.” IEEE Transactions on Control Systems Technology, vol. 7, no. 4, pp. 457-465, 

1999. 

[9] J.G. Ziegler, and N.B. Nichols, “Optimum settings for automatic controllers,” Trans. ASME, vol. 64, pp. 759–768, 1942. 

[10] K. J. Åström, and T. Hägglund “Revisiting the Ziegler–Nichols step response method for PID control.” Journal of Process Control, vol. 14, no.6. pp.635-650, 

Jun. 2004. 

[11] Lucian Ribeiroda Silva, Rodolfo César Costa Flesch, Julio Elias Normey-Rico. “Controlling industrial dead-time systems: When to use a PID or an advanced 

controller.” ISA Transactions, to be published, doi: https://doi.org/10.1016/j.isatra.2019.09.008  

[12] A. Bisoffi, M.D. Lio, A.R. Teel, Z, Luca. “Global Asymptotic Stability of a PID Control System with Coulomb Friction.” IEEE Transactions on Automatic 

Control, vol.63, no.8, pp. 2654-2661, 2018. 

[13] A. G. Brito. “On the Misunderstanding of the Ziegler-Nichols's Formulae Usage” IEEE/CAA Journal of Automatica Sinica, vol. 6, no.1,  pp. 145-150, Jan. 

2019. 

[14] M. Xie, X. Li, Y. Wang, Y. Liu, D. Sun. “Saturated pid control for the optical manipulation of biological cells.” IEEE Transactions on Control Systems 

Technology, vol. 26, no. 5, pp. 1909-1916, 2017. 

[15] D. C. Babu, D. B. S. Kumar, and R. P. Sree, “Tuning of PID Controllers for Unstable Systems Using Direct Synthesis Method.” Isa Transactions, vol. 57, pp. 

211-219, 2015. 

[16] A. S. Rao, V. S. R. Rao, “Direct synthesis-based controller design for integrating processes with time delay.” Journal of the Franklin Institute, vol. 346, no. 1, 

pp. 38-56, Jan. 2009. 

[17] Foley, Julien, and Copeland, “Proportional-integral-derivative λ-tuning for integrating processes with deadtime,” Iet Control Theory & Applications, vol. 4, no. 

3, pp. 425-436, Mar. 2010. 

[18] S. Skogestad, “Simple analytic rules for model reduction and PID controller tuning.” Modeling, Identification and Control, vol. 13, no. 4, pp. 291-309, Apr. 

2003. 

[19] Q. G. Wang, X. Lu, and H. Q. Zhou, “Novel Disturbance Controller Design for a Two-Degrees-of-Freedom Smith Scheme.” Industrial & Engineering 

Chemistry Research, vol. 46, no. 2, pp.540-545, Feb. 2007. 

[20] P. S. Fruehauf, I. L. Chien, and M. D. Lauritsen, “Simplified IMC-PID tuning rules.” Isa Transactions, vol.33, no. 1, pp.43-59, 1994. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



23 

 

[21] W. K. Ho, T. H. Lee, and H. P. Han, “Self-tuning IMC-PID control with interval gain and phase margins assignment.” IEEE Transactions on Control Systems 

Technology, vol. 9, no. 3, pp. 535-541, 2001.  

[22] Q. B, Jin, and Q. Liu. “IMC-PID design based on model matching approach and closed-loop shaping.” Isa Trans, vol. 53, no. 2, pp. 462-473.2014. 

[23] I. Kaya, “IMC based automatic tuning method for PID controllers in a Smith predictor configuration.” Computers & Chemical Engineering, vol. 28, no. 3, pp. 

281-290, 2004. 

[24] P. J. Ko, and M. C. Tsai, “ H ∞ Control Design of PID-like Controller for Speed Drive Systems.” IEEE Access, vol. 6, pp. 36711-36722, Jun. 2018. 

[25] L. Sun, D. H. Li and K. Y. Lee, “Optimal disturbance rejection for PI controller with constraints on relative delay margin.” ISA Transactions, vol. 63, pp. 

103-111, July, 2016. 

[26] Q. Jin, Y. Shi, and Q. Liu, “Graphical robust PID tuning for disturbance rejection satisfying multiple objectives.” Chemical Engineering Communications, vol. 

205, pp.1701-1711, Jun. 2018. 

[27] D. Chen, and D. E. Seborg, “PI/PID controller design based on direct synthesis and disturbance rejection.” Industrial & Engineering Chemistry Research, vol. 

41, no. 19, pp. 4807-4822. 2002. 

[28] J. Moreno-Valenzuela, R. P. Alcocer, and M. G. Medina, “onlinear PID-Type Controller for Quadrotor Trajectory Tracking.” IEEE/ASME Transactions on 

Mechatronics, vol. 23, no. 5, pp. 2436-2447, Oct. 2018. 

[29] M. Shamsuzzoha, and M. Lee, “IMC-PID Controller Design for Improved Disturbance Rejection of Time-Delayed Processes.” Industrial & Engineering 

Chemistry Research, vol. 46, no. 7, pp.2077-2091. 2007. 

[30] Skogestad, and Sigurd, “Tuning for Smooth PID Control with Acceptable Disturbance Rejection.” Industrial & Engineering Chemistry Research, vol. 45, no. 

23, pp. 7817-7822. 2006. 

[31] J. C. Jeng, and G. P. Ge, “Disturbance-rejection-based tuning of proportional–integral–derivative controllers by exploiting closed-loop plant data.” ISA 

Transactions, vol. 62, pp. 312-324, May, 2016. 

[32] R. H. Middleton, and S. F. Graebe, “Slow stable open-loop poles: to cancel or not to cancel.” Automatica. vol. 35, no. 5, pp. 877-886, 1999. 

[33] Y. Lee, S. Park, and M. Lee, “PID controller tuning for desired closed‐loop responses for SI/SO systems.” Aiche Journal, vol. 44, no. 1, pp. 106-115, Jun. 2010. 

[34] J. Han, “From PID to Active Disturbance Rejection Control.”  IEEE Transactions on Industrial Electronics, vol. 56, no. 3, pp. 900-906, Mar. 2009. 

[35] W. Xue, and Y. Huang. “Performance analysis of active disturbance rejection tracking control for a class of uncertain LTI systems .” Isa Transactions, vol. 58, 

pp. 133-154, 2015.  

[36] L. Sun, J. Dong, D. Li D, J.Y. Lee. A practical multivariable control approach based on inverted decoupling and decentralized active disturbance rejection 

control. Industrial & Engineering Chemistry Research, vol. 55, no. 7, pp. 2008-2019, 2016.  

[37] W. H. Chen, J. Yang, and G. Lei, “Disturbance-Observer-Based Control and Related Methods—An Overview.” IEEE Transactions on Industrial Electronics, 

vol. 62, no. 2, pp. 1083-1095, Feb. 2016. 

[38] H. Shim, and N. H. Jo, “An almost necessary and sufficient condition for robust stability of closed-loop systems with disturbance observer.”  Automatica, vol. 

45, no. 1, pp. 296-299, Jun. 2009. 

[39]J. She, M. Fang, and Y. Ohyama, “Improving Disturbance-Rejection Performance Based on an Equivalent-Input-Disturbance Approach.” IEEE Transactions 

on Industrial Electronics, vol. 55, no. 1, pp. 380-389. 2008. 

[40] R. J. Liu, G. P. Liu, and M. Wu, “Disturbance rejection for time-delay systems based on the equivalent-input-disturbance approach.” Journal of the Franklin 

Institute, vol. 351, no. 6, pp. 3364-3377, 2014. 

[41] L. Sun, D. Li, Z. Gao, Z. Yang, S. Zhao “Combined feedforward and model-assisted active disturbance rejection control for non-minimum phase system.” ISA 

Transactions, vol. 64, pp. 24-33, 2016. 

[42] Z.Y. Nie, Q.G. Wang, J. Hua, R. J. Liu, and D.S. Guo. “New results on the robust stability of control systems with a generalized disturbance observer.” Asian 

Journal of Control, 1-13, 2019. https://doi.org/10.1002/asjc.2188 

[43] T. Reis, T. Berger. “Funnel Control via Funnel Pre-Compensator for Minimum Phase Systems with Relative Degree Two.” IEEE Transactions on Automatic 

Control, vol. 63, no.7, pp. 2264-2271, 2018. 

[44] Feliu-Batlle V, Castillo-García F J. “On the robust control of stable minimum phase plants with large uncertainty in a time constant. A fractional-order control 

approach.” Automatica, vol. 50, no. 1, pp. 218-224, 2014. 

[45] B.A. Francis, W. M. Wonham, “The internal model principle of control theory.” Automatica, vol. 12, no. 5, pp.457-465. 1976. 

[46] Q. G. Wang, T. H. Lee, and J. B. He, “Internal stability of interconnected systems.” IEEE Transactions on Automatic Control, vol.44, no. 3,  pp. 593-596, 1999 

[47] Flanigan, F.J. (1983). Complex variable. Dover Publication. 

[48] Zheng. Q, L. Q. Gao, and Z. Gao, “On Validation of Extended State Observer Through Analysis and Experimentation,” J. Dyn. Syst., Meas and Control, vol. 

134, no. 2, pp. 224-240, 2012. 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



24 

 

[49] Z. Gao, “Active Disturbance Rejection Control: A paradigm shift in feedback control system design,” in Proc. American Control Conference , pp. 2399-2405, 

2006. 

[50]L. Sun, Y. Zhang, D. Li, K.Y. Lee. “Tuning of Active Disturbance Rejection Control with application to power plant furnace regulation.” Control Engineering 

Practice, vol.92, pp. 104-122, 2019. 

[51] H. Jin, J. Song, W. Lan, and Z. Gao, “On the characteristic of ADRC: a PID interpretation”. Information Sciences, to be published, doi: 

10.1007/s11432-018-9647-6.  

 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



Conflict of interest 

 

The authors declared that they have no conflicts of interest to this work. 

We declare that we do not have any commercial or associative interest that 

represents a conflict of interest in connection with the work submitted. 

*Conflict of Interest

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof


