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II
t has happened several times in recent history that a
mathematical discovery of great beauty and importance
was originally published in a journal that would not

likely be read by many a working mathematician.
One famous example is the Penrose tilings [15]. Surely,

Penrose tilings and the theory of quasicrystals are now major
areas of research (see, e.g., [17]), and not only in mathematics
but also in physics and chemistry, as witnessed by the 2011
Nobel Prize awarded to D. Shechtman for ‘‘the discovery of
quasicrystals’’ in 1982. It is a pleasure to mention that this
magazine played a role in popularizing Penrose tilings [16].

The topic of this column is another mathematical object of
comparable beauty, the Dragon curves, whose theory was
created by Chandler Davis and Donald Knuth [4]. The origi-
nal articles are not easily available (they are reprinted in [10],
along with previously unpublished addenda).1

The Mathematical Intelligencer included Dragon curves
in its pages more than 30 years ago [5, 6, 7]. In spite of the
existence of a Wikipedia article on the subject and in spite of
their appearance in M. Crichton’s popular novel Jurassic
Park, Dragon curves are not sufficiently well known to
contemporary mathematicians, especially the younger ones
who missed the original excitement 40+ years ago.

The goal of this article is to bring Dragon curves into the
spotlight again and to pay tribute to Chandler Davis, a
coauthor of an elegant theory that explains the striking
features of these curves. This article is merely an invitation to
the subject; the reader should not expect a thorough survey
of the results or proofs.

The Dragon curve was discovered (or shall one say,
invented) by a NASA physicist John Heighway in 1966 and
named by his colleague William Harter. Here is the story as
told by Harter, reproduced from [10]:

The dragon curve was born in June 1966. Jack [Heighway]
came into my office (actually cubicle) and said that if you
folded a $1 bill repeatedly he thought it would make a
random walk or something like that. (We’d been arguing
about something in Feller’s book on return chances.) I
was dubious but said ‘‘Let’s check it out with a big piece of
paper.’’ (Those were the days when NASA could easily
afford more than $1’s worth of paper.) Well, it made a
funny pattern alright, but we couldn’t really see it too
clearly.2 So one of us thought to use tracing paper and
‘‘unfold’’ it indefinitely so we could record (tediously) as
big a pattern as we wanted. But each time we made the
next order, it just begged us to make one more!

1It is worth mentioning that neither [15] nor [4] can be found on MathSciNet. Not surprisingly, it was Martin Gardner who popularized Penrose tilings and Dragon curves in his

Scientific American column, in 1977 and 1967, respectively.
2It is a common belief that the maximal number of times any piece of paper could be folded in half is seven. This is not so: apparently, the current world record belongs to

Britney Gallivan who, when a high school student in 2002, managed to fold a single 4000-ft-long piece of toilet paper in half twelve times [9].
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So, take a strip of paper and fold it in half, then in half
again, several times. Now unfold the paper: you see a
sequence of creases that are labeled D and U, for down and
up, see Figure 1.

The result of n foldings is a sequence Sn of letters D and
U of length 2n - 1. There are two inductive rules describing
Sn+1 via Sn. Given a sequence S, let �S be the same sequence,
but read from right to left and with the letters D and
U swapped. For example, DDU ¼ DUU . Then one has

Snþ1 ¼ SnDSn: ð1Þ
The reason is that folding n + 1 times is achieved by
folding once (letter D in the middle of Sn+1), followed by
folding n times (the string Sn at the beginning of Sn+1 and

its reverse at the end). Since Sn+1 starts with Sn, the limiting
infinite sequence S1 is well defined.

The other way to obtain Sn+1 from Sn is as follows. Let
Sn ¼ a1a2. . .am where m = 2n - 1 and each ai is either D or
U. Then

Snþ1 ¼ Da1Ua2Da3U . . .DamU : ð2Þ

The reason is that folding n + 1 times is also achieved by
folding n times, and then once. Therefore the 2nd, 4th,
etc., creases of Sn+1 are the same as those of Sn, whereas
the 1st, 3rd, 5th, etc., creases are D;U ;D;U ; . . . in alter-
nating order.

Now open the strip of paper so that every crease makes the
right angle, and round the angles slightly. One obtains a
Dragon curve, see Figure 2. Letter D is interpreted as the left
turn and letter U as the right one.

One may use other angles when opening the strip, see
Figure 3.

The two recursion rules (1) and (2) have geometric
interpretations.

Let Cn be the Dragon curve of nth generation and let O be
its end point. Turn Cn about O through 90� and attach this
new curve to Cn to obtain Cnþ1. The reader will convince
herself that this is a reformulation of rule (1).

The geometric interpretation of rule (2) consists of con-
sidering each segment of Cn as the hypotenuse of a right
isosceles triangle and replacing it by the two catheti, alter-
nating between right and left side, see Figure 4. The resulting

D D U D D U U

Figure 1. Folding a strip of paper three times.

Figure 2. Dragon curves of 8th, 12th and 16th generations.

Figure 3. Dragon curve with the opening angle 17p/32.

Figure 4. Geometric interpretation of rule (2): Cn is in solid

line, and Cnþ1 is in dashed one.

14 THE MATHEMATICAL INTELLIGENCER



curve has twice as many segments and is encoded by the
word Sn+1 as in (2).

Figure 4 suggests rescaling of each next generation by the
factor 1=

ffiffiffi

2
p

: this rescaling keeps the size of the curves Cn

fixed. There is a natural limit (in the Hausdorff metric), as
n!1, of the curves Cn. We call this limiting curve the
Dragon and denote it by C1.

The Davis-Knuth theory makes it possible to analyze the
Dragon curve in detail. Denote by g(n) the excess of Ds over
Us among the first n - 1 letters of the infinite word S1. The
sequence g(n) starts as follows:

0; 1; 2; 1; 2; 3; 2; 1; 2; 3; 2; 1; 2; 3; 4; 3; 2; 3; 2; 1; . . .

This is sequence A005811 in Sloan’s OEIS. It has the
property that g(2k) = 1 and satisfies the recurrence

gð2kþ1 þ 1�mÞ ¼ 1þ gðmÞ

for 1 B m B 2k. In particular, all terms are positive.
One can compute the coordinates of the vertices of a

Dragon curve in terms of this sequence. Let x = eih and
suppose that the opening angle of the strip of paper is p - h.
Assume that the segments of the Dragon curve are of unit
length and the first one goes from 0 to 1. Then the complex
number representing the nth vertex is

Vn ¼ xgð1Þ þ xgð2Þ þ . . .þ xgðnÞ:

In fact, one can compute this complex number explicitly
using a special number representation.

THEOREM 1 Let

n ¼ 2k0 � 2k1 þ . . .þ ð�1Þt2kt with
k0 [ k1 [ . . . [ kt � 0:

Then

Vn ¼ ð1þ xÞk0 � xð1þ xÞk1 þ . . .þ ð�xÞtð1þ xÞkt :

For example, if x = 1 then Vn = n, as it should be: the
strip of paper is laid out straight. The most interesting right
angle turn corresponds to x ¼

ffiffiffiffiffiffiffi

�1
p

.
Assume that the turning angle is 90�. Perhaps the most

striking property of the Dragon curve is the next result of the
Davis-Knuth theory.

THEOREM 2 The Dragon curve does not cross itself (so its

rounded version is embedded). Four copies of the Dragon

curve, starting at the same point and rotated 90�, fill the

plane: each segment of the standard grid is traversed exactly

once; see Figure 5.

Theorem 2 implies that the dimension of C1 is 2, as indeed
suggested by Figure 2. This figure also reveals self-similarity
of the Dragon. It is proved in [14] that the Dragon consists of a
countable union of geometrically similar disklike sets that
intersect each other at single points in linear order. The
Hausdorff dimension of the boundary of the Dragon is

Figure 5. Four copies of the Dragon curve fit together tightly.

Image from S. Lew, Wikimedia Commons.

Figure 6. Dragon curves corresponding to the alternating

folding: opening angles p/2 and 33p/64.
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computed in [3]: its numerical value is approximately
1.523627.

It is worth mentioning that when the opening angle h
reaches 60�, a kind of phase transition occurs. If the angle is
less than 60� then the respective Dragon curves of all gen-
erations are bounded. If h = 60� then the Dragon curve
‘‘lives’’ on the hexagonal grid and expands linearly with the
number of generations n.3

Of course, there is more than one way to fold a strip of
paper. Previously all folds were in the same direction but, in
fact, one has two choices for each new fold, so there are 2n

combinatorial patterns of n folds leading to a wide variety of
such generalized Dragon curves. For example, one can
change the direction every time, leading to the sequence

Figure 7. Various generalized Dragon curves.

S1 ¼ D; S2 ¼ DUU ; S3 ¼ DUUDDDU ;

S4 ¼ DUUDDDUUDUUUDDU ; . . .

The respective Dragon curve fills a quarter of the
plane, see Figure 6. The boundary of this Dragon curve
is not very interesting, but its fine structure is quite
intricate.

Appropriate versions of recurrences (1) and (2) hold for
generalized Dragon curves. For the first rule, one has a
choice of whether to insert letter D or U in the middle at nth
step. For the second, one has a choice of whether to start
attaching the right isosceles triangles on the right or on the
left of the first segment of Cn in Figure 4 (after the choice is
made, the sides alternate).

3The reader interested in the relation of Dragon curves with statistical mechanics, in particular, the Ising model, is referred to [11, 12].
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The first statement of Theorem 2 also holds for all gen-
eralized Dragon curves: they never cross themselves. Figure 7
shows some specimens from the zoo of generalized Dragons.

The topic of Dragon curves is wide and deep. Here are
some pointers to the literature. The reader interested in
paper-folding sequences as automated sequences is referred
to the book [1]. The relation of Dragon curves with the Rudin-
Shapiro sequences is discussed in [5]–[7] and [12]. A con-
nection to the binaryGray code ismade in [2]. For a version of
3-dimensional paper folding (wire bending), see [13]. Many
new kinds of Dragon-like curves and their self-avoiding and
plane-filling properties are described in [8]; this recent paper
is based on the results obtained by its author in 1975.

Openproblems abound, andwefinish bymentioningone.
The following is another quotation fromthe addendum in [10]:

While preparing the figure which opens up the dragon-
sequence folds to angles of 100� at each bend, I noticed in
1969 that 95�-angle folds would lead to paths that cross
themselves. For example, the path obtained from S10 will
interfere with itself just before points 447 and 703; and if
we look further, 95� bends applied to S12 will yield a party
that crosses itself quite dramatically before and after
points 1787 and 2807.

This phenomenon, illustrated in Figure 8, needs an expla-
nation. In particular, what is the value of the critical angle
for which the curve starts to cross itself, and where does
this self-crossing occur?
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Figure 8. Self-intersection—in the middle—of the 10th gen-

eration Dragon curve with the opening angle of about 94�. The

non self-intersecting curve has the opening angle of about

100�.
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