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Abstract Many engineering problems require the optimization of expensive, black-box
functions involving multiple conflicting criteria, such that commonly used methods like
multiobjective genetic algorithms are inadequate. To tackle this problem several algorithms
have been developed using surrogates. However, these often have disadvantages such as the
requirement of a priori knowledge of the output functions or exponentially scaling computa-
tional cost with respect to the number of objectives. In this paper a new algorithm is proposed,
TSEMO, which uses Gaussian processes as surrogates. The Gaussian processes are sampled
using spectral sampling techniques to make use of Thompson sampling in conjunction with
the hypervolume quality indicator and NSGA-II to choose a new evaluation point at each
iteration. The reference point required for the hypervolume calculation is estimated within
TSEMO. Further, a simple extension was proposed to carry out batch-sequential design.
TSEMO was compared to ParEGO, an expected hypervolume implementation, and NSGA-
II on nine test problems with a budget of 150 function evaluations. Overall, TSEMO shows
promising performance, while giving a simple algorithm without the requirement of a priori
knowledge, reduced hypervolume calculations to approach linear scaling with respect to the
number of objectives, the capacity to handle noise and lastly the ability for batch-sequential
usage.
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1 Introduction

1.1 Expensive black-box optimization

Engineering design problems commonly require the optimization of multiple conflicting
criteria. For example in water distribution networks capital, operational, life-cycle and main-
tenance costs, as well as system reliability and quality of water are the typical goals [1]. It
is rarely possible to find a solution that is optimal for all objectives. Instead, the aim is to
find a set of points for which, to improve one objective of any set member, the value of at
least one other objective needs to be worsened. This set is referred to as Pareto set [2]. The
Pareto set is often infinite and cannot be found analytically, such that most algorithms aim
to approximate it with a finite number of points [3].

In many applications, the objective functions are black boxes and the derivative informa-
tion is unavailable. For these problems, deterministic methods cannot be applied. Generally,
there are two ways to find points to construct Pareto sets. Either the multiobjective problem is
transformed to a single-objective optimization problem known as scalarization or population-
based procedures are applied, which work concurrently on all objectives with a set of inputs.
One popular scalarization approach uses weighting functions to combine the multiple objec-
tives to a single objective. These single-objective problems are then iteratively solved, while
the weights are varied after each iteration to obtain an approximate Pareto set. This is known
as weighting sum method. In a similar fashion one can optimize a single objective at a time,
while constraining the other objectives by different amounts iteratively. This is known as
the ε-constrained method [4]. It is, however, difficult to choose appropriate weightings or
constraint values to be able to find points of the Pareto set. It is often impossible to find cer-
tain points on a non-convex Pareto front. Therefore, stochastic, population-based methods
are commonly applied, such as simulated annealing [5], genetic algorithms [6] and particle
swarm algorithms [7]. These improve an initial set of points to approximate the Pareto set
by stochastic perturbations.

However, for many problems the evaluations of the objectives are computationally expen-
sive, while the computational time budget is limited. A common instance of expensive
problems are high-fidelity computer simulations, which have found extensive use in all areas
of engineering [8]. For example a car-crash simulation at Ford took between 36 and 160 h
of computer time for a single run [9]. Modern methodologies for approximating the Pareto
set using scalarization or multiobjective stochastic algorithms often require a large number
of function evaluations and are therefore highly time-consuming for expensive problems.

For this reason, surrogate-based optimization algorithms have been proposed. These fit a
cheap surrogate model to a finite number of points of the expensive objective. The idea is to
substitute the objective with this simple model. Extensive research has been carried out to
develop sequential sampling strategies, which do not suffer from the curse of dimensionality
like space-filling approaches do [10]. At each instance these approaches use the surrogate
to determine the next sampling point(s) and subsequently update the surrogate. Surrogate-
based optimization utilizing Gaussian process models (GPs) has shown good performance.
This is because GPs provide a predictive distribution of unknown points, which can be
used to develop efficient sampling methods. In these, the sampling point is chosen to lie at
the maximum of a utility function (a.k.a. acquisition function), which trades off between
exploring unknown regions and exploiting regions in which good values have been observed
[11]. A prominent single-objective optimization algorithm based on GPs is the “Efficient
GlobalOptimization” (EGO) algorithm [12]. EGOselects the next query point bymaximizing
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the expected improvement (EI) acquisition function [13]. In Łaniewski-Wołłk [14] the EI
acquisition function is extended to the relative EI to include observations other than function
evaluations, such as derivatives. A review of surrogate-based optimization methods can be
found in Jones [15] and Forrester and Keane [16].

1.2 Related work

Several algorithms have been proposed that employ surrogates for multiobjective optimiza-
tion. A simple idea is to improve existing evolutionary algorithms by inclusion of surrogate
models. For example, Voutchkov and Keane [17] have applied GP models in the NSGA-II
[18] algorithm instead of the expensive objective function. After running full computations,
the surrogates are refined, and the method is continued. Although this approach often works
well, it suffers from the fact that it only relies on the prediction provided by the GP and does
not actively search in unexplored regions [16].

ParEGO is one of the earliest and simplest extensions of the EGO algorithm to multiple
objectives [19]. ParEGO sequentially scalarizes the multiobjective problemwith weights that
are updated iteratively to explore the Pareto front. The GP is fitted to the transformed data
and EI is used to find the next sampling point. There are, however, several disadvantages to
the ParEGO algorithm. The scalarization requires accurate knowledge of the limits of the
outputs. In addition, the use of uniformly random scalarizing weights does not guarantee
a good distribution of non-dominated points, since some Pareto points may be easier to
find than others [19]. Lastly, ParEGO uses an augmented Tchebycheff function, which is a
discontinuous function due to a max operator and hence violates the continuity assumption of
the GP surrogate. ParEGO has been shown to be outperformed by more advanced algorithms
on several test problems, which model each objective function individually [20].

Commonly used acquisition functions for single-objective optimization such as the proba-
bility of improvement [21] have since been extended for the multiobjective case. For example
by considering the probability that a point augments the Pareto set using GPs for each objec-
tive gives a probability of improvement acquisition function for multiobjective problems,
which was first proposed by Keane [22]. Weighting the probability of improvement for
multiobjective problems with the hypervolume metric, an expected hypervolume (EHV)
acquisition function can be obtained [23], which is an extension of EI. The EHV was first
proposed in the P.h.D. thesis by Emmerich [24]. Monotonicity properties and formulas for
exact computation of EHV have been outlined in Emmerich et al. [25]. A disadvantage of
this approach is that the calculation of the EHV is expensive. The output space needs to be
divided into several cells, which grow exponentially with the number of objectives. There
have been propositions to speed up this process [26]. In particular, the fastest knownmethods
to calculate EHV have been proposed in Emmerich et al. [27] for two objectives and in Yang
et al. [28] for three objectives. Another disadvantage of the EHV is the selection of the ref-
erence point, which is non-trivial and greatly affects the performance of the method. Apart
from EHV, Keane [22] has proposed an acquisition function based on the expected Euclidian
distance between Pareto points. This method, however, suffers from similar drawbacks.

1.3 Outline of the paper

This paper proposes an algorithm to approximate Pareto sets in a small number of function
evaluations. The algorithm extends the well-known Thompson sampling (TS) method from
themulti-armed bandit community [29] to continuousmultiobjective optimization. The algo-
rithm was named “Thompson sampling efficient multiobjective optimization” (TSEMO).
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The algorithm’s main idea will be commented on using the book by Zhigljavsky and
Zilinskas [30] and the paper by Žilinskas [31], which give an overview of the use of different
statistical models for global optimization and propose the so-called P-algorithm that chooses
points based on a probability of improvement for single- and multiobjective problems. In
our algorithm each objective function is modelled by an independent GP, which is the same
choice as made in Žilinskas [31]. GPs allow to easily incorporate a priori knowledge on the
objective function by the choice of the covariance function, such as continuity or smoothness.
The parameters are adjusted using the data available by maximum likelihood estimation.
Given the fitted GPs, a rule is required to choose the next point to evaluate the vector of
objectives. In our work we use TS for this decision, which can be reasoned to adhere to the
methodology of rational decision making under uncertainty. This methodology states that the
method should trade-off the reduction in uncertainty of the objective functions with obtaining
a non-dominated point to augment our existing dataset. In TS we determine the Pareto points
of the random GP samples, which are taken as possible candidate set for evaluating the
expensive functions. The sampled functions will either exploit current knowledge by lying
close to the mean functions of the GPs or be considerably different from the mean function
particularly in regions with high variance, which may then leads to a reduction in uncertainty.
Lastly, we use the hypervolume criterion to choose the sampling point from the candidate
set. Spectral sampling is utilised to efficiently sample the independent GPs to obtain a linear
predictor for each objective, which is required for using TS. These linear predictors then
allow us to apply a sophisticated multiobjective algorithm, such as NSGA-II to propose the
next sampling point. An advantage to this approach is that the linear predictors are cheap
to evaluate in the NSGA-II algorithm and only need to be sampled once for each iteration
of the algorithm. This contrasts with using a simple linear predictor and variance, given for
example by a posterior GP prediction, which can be used in a single-objective problem with
a more expensive objective function, such as EHV.

Both spectral sampling of independent GPs and the incorporatedNSGA-II algorithm scale
linearly, while the hypervolume calculation scales exponentially with respect to the number
of objectives. A difference between this algorithm compared to EHV is that the hypervolume
calculation is restricted to the output of the NSGA-II algorithm, i.e. the calculation only
needs to be carried out once on the output population of the NSGA-II algorithm. In EHV
the hypervolume makes up the objective function and hence needs to be calculated for each
iteration of the optimization problem, which nearly always necessitates considerably more
hypervolume evaluations. In contrast to ParEGO, each objective function is emulated by an
independent GP. No prior knowledge is required about the function for this algorithm. In
particular, the reference point is estimated within the algorithm, such that no information is
neededon the limits of the objective functions. Further, TSEMOcandealwith noisy functions.
Lastly, a simple heuristic was proposed to add more than one point at each iteration without
increasing the computational complexity.

The algorithm proposed in this work has been successfully applied in the development
of a decision support tool for chemical manufacturing to trade-off (1) environmental impact
measured by a life-cycle assessment and (2) process costs, both of which are estimated by
expensive process models [32].

The remainder of the paper is organised as follows. In Sect. 2, GPs are introduced. In
Sect. 3, spectral sampling is outlined as a technique to approximately sample functions
from GPs. Thereafter, in Sect. 4 the TS method is given for continuous single-objective
optimization. In Sect. 5, the proposed algorithm, TSEMO, is outlined. In Sect. 6, the specific
implementation of the algorithm is given. Section 7 gives an illustration on how the algorithm
works on a simple bi-objective problem. Section 8 presents the performance of TSEMO
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for both normal and batch-sequential usage with 4 points sampled at each iteration on 9
diverse test problems and compares it to the performance of ParEGO, NSGA-II and EHV.
Subsequently, in Sect. 9 a conclusion is given on the proposed algorithm.

2 Gaussian processes

This section summarizes the basics about GPs. Further details can be found in [33–35].

2.1 Prior

GPs are an infinite dimensional generalization of a multivariate Gaussian distribution and
define a distribution over functions. The GP is fully specified by a mean function m(·) and
a covariance function k(·,·). We write y is distributed as a GP with mean function m(·) and
covariance function k(·,·), where y is the observation of an underlying function f (·) perturbed
by Gaussian distributed noise with variance σ 2

n [36]:

y (x) ∼ GP
(
m (x) , k

(
x, x′)) (1)

with

m (x) := E f [ f (x)] (2)

k
(
x, x′) := E f

[
(y(x) − m(x))

(
y(x′) − m(x′)

)]
(3)

where x, x′ ∈ R
d are arbitrary input vectors and E f (·) is the expectation over the function

space. The mean function can be interpreted as the ’average’ shape of the function, while the
covariance function specifies the covariance between any two function values computed at
the corresponding inputs [37].

Without loss of generalization, the mean function is set to zero:

m (x) = 0 (4)

For GP regression, the covariance function determines the properties of the fitted functions.
In this paper, we will focus on stationary covariance functions of the Matérn class. The
smoothness of Matérn covariance functions can be adjusted by the parameter ν, such that
the corresponding surrogate is [ν/2 − 1] times differentiable [38]. The squared exponential
(SQ-EXP) is the limiting covariance function when ν → ∞. The following are the most
commonly used covariance functions of the Matérn class [33]:

kν=1(x, x′) = σ 2
f exp(−r) + σ 2

n δ(x, x′) (5)

kν=3(x, x′) = σ 2
f

(
1 + √

3r
)
exp

(
−√

3r
)

+ σ 2
n δ(x, x′) (6)

kν=5(x, x′) = σ 2
f

(
1 + √

5r + 5

3
r2

)
exp(−√

5r) + σ 2
n δ(x, x′) (7)

kSQ−EXP(x, x′) = σ 2
f exp

(
−1

2
r2

)
+ σ 2

n δ(x, x′) (8)

where r=√
(x − x′) � (x − x′), δ

(
x, x′) is the Kronecker delta function and � = diag(

λ−2
1 , . . . , λ−2

d

)
.

The parameter σ 2
f describes the output variance. The parameters λi define the length

scales of the input variables. Covariance functions with different length scales for each input
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dimension are called anisotropic. If an input dimension is not relevant, the corresponding
length scale λi is large. The hyperparameters which define the GP are jointly denoted by ξ =[
log (λ1) , . . . , log(λd), log(σ f ), log (σn)

]
, where the hyperparameters are log-transformed

for convenience to prevent negative values of the length-scales for the maximum likelihood
estimation in Eq. 16.

2.2 Posterior

The prior of the GP is defined in Eq. 1, which does not depend on observations. However, it
postulates the properties of the functions to be inferred. The next step is to refine the prior by
incorporating information from a training data set of n points X = {x1, . . . xn}, where each xi
is a d-dimensional vector xi = [xi1, . . . , xid ]T, and denoting the corresponding observations
at xi by yi to obtain the set Y = {y1, . . . , yn} and the vector y = [y1, . . . , yn]T. The posterior
process can be easily found using Bayes’ rule and is given by the following equation:

f (x) ∼ GP
(
m (x) , k

(
x, x′)|X, Y

)
(9)

with

m (x)| X, Y = � (x, X) �−1y (10)

k
(
x, x′)∣∣ X, Y = k

(
x, x′) − �(x, X)�−1�(x, X)T (11)

where

� = [
k

(
xi , x j

)]
n×n ∈ R

n×n (12)

� (x, X) = [k (x, x1) , . . . , k (x, xn)] ∈ R
1×n (13)

In Eq. 11 we can see that the posterior always has a lower variance than the prior, which
is expected since more information is available about the function. In Fig. 1 two Gaussian
processes are shown: on the left the prior and on the right the posterior.

Fig. 1 Illustration of a GP of a 1-dimensional function perturbed by noise. On the left the prior of the GP is
shown, while on the right the Gaussian process was fitted to several observations to obtain the posterior. The
continuous black-line shows the mean function and the dashed black lines show samples drawn from the GP
distribution. The grey area is a 95% confidence area. The black crosses on the right indicate the data used to
update the GP

123



J Glob Optim

2.3 Hyperparameter training

Generally, appropriate hyperparameters for a given problem are unknown a priori. Therefore,
we use the maximum a posteriori estimate (MAP) to infer these from data, which has been
shown to outperform maximum likelihood estimate for small training sets [39]. In this work,
we assume independent Gaussian distributions as prior distributions on the log-transformed
hyperparameters:

ξi ∼ N
(
μi , σ

2
i

)
(14)

where μi and σ 2
i denote the mean and the variance of the normal distribution of the prior.

The MAP likelihood is then given as follows:

LMAP (ξ) = −1

2
log (|�|) − 1

2
yT�−1y − n

2
log (2π)

+
∑

i

(

−1

2
log (2π) − 1

2
log

(
σ 2
i

) − 1

2σ 2
i

(ξi − μi )
2

)

(15)

The MAP hyperparameter estimate is then given by the following optimization problem:

ξMAP ∈ argmaxξ LMAP (ξ) (16)

3 Gaussian process spectral sampling

There are no knownmethods that allow to sample an exact function from a GP. In this section
a method is briefly outlined to create an approximate analytical sample of a GP, first proposed
by Hernández-Lobato et al. [40]. Given a stationary kernel k, a theorem by Bochner [41]
guarantees the existence of its Fourier dual s (ω), which is known as the spectral density of
k. We can write k

(
x, x′) = k

(
x − x′, 0

)
as:

k
(
x, x′) =

∫

Rd
e− jωT(x−x′)s(ω)dω (17)

s (ω) = 1

(2π)d

∫

Rd
e jω

T
δk (δ, 0) dδ (18)

The associated normalized probability density can then be expressed as p (ω) = s (ω) /α,
where α = ∫ s (ω) dω is a proportionality constant. The integral in Eq. 17 can be expressed
as an expectation:

k
(
x, x′) = α

∫

Rd
e− jωT(x−x′) p(ω)dω = αEω

[
ζ(x)ζ(x′)

]
(19)

where ζ (x) = e− jωTx.
Since both probability distribution p (ω) and covariance function k

(
x, x′) are real, the

integral in Eq. 19 converges if the complex exponentials are substituted by cosine expressions
[42]. Using the sum of angles formula it can be shown that ζ (x) = √

2α cos
(
ωTx + b

)

satisfies Eq. 19 [40], where b ∼ U (0, 2π).
According to Eq. 19, k

(
x, x′) can be estimated by a Monte-Carlo approach by defining

the vector:
ζ (x) = √

2α/M cos (Wx + b) (20)
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where M denotes the number of Monte Carlo samples, [W]i ∼ p (ω) and [b]i ∼ U (0, 2π)

are stacked versions of ω and b respectively.
k

(
x, x′) can then be approximated by the following inner product:

k
(
x, x′) ≈ ζ (x)Tζ (x′) (21)

ζ allows us to approximate the Gaussian process prior given in Eq. 1 with a linear model
[40]:

f (x) = ζ (x)T θ (22)

where θ ∼ N (0, I).
In the light of data, θ ∼ N (m,V), with

m = (
ZTZ + σ 2

n I
)−1

ZTy (23)

V = (
ZTZ + σ 2

n I
)−1

σ 2
n (24)

where [Z]i = ζ (xi ) consists of stacked random vectors of ζ evaluated at the inputs of the
data.

Let ζ(i) (x) and θ(i) be random vectors corresponding to the probability densities given
above, then an approximate posterior sample from Eq. 9 is given by:

f (i) (x) = ζ(i) (x)T θ
(i) (25)

This sample can be evaluated at any x. It can be shown that following this procedure the
function samples have mean and covariance as given by the Gaussian posterior in Eq. 9
[40]. To use the procedure above we need to establish the proportionality constant and the
probability density for the covariance functions in question. For the covariance functions
introduced in Sect. 2, the proportionality constant is given by [43]:

α = σ 2
f (26)

The probability density, p (ω), associated with the Matérn covariance functions can be
obtained from the Fourier transform in Eq. 18 divided by the proportionality constant and
takes the form of a multivariate t-distribution with degrees of freedom ν. For the squared
exponential kernel, as ν → ∞, the multivariate t-distribution reduces to the multivariate
normal distribution.

pMatérn (ω) = T (0,�, ν) (27)

pSQ−EXP (ω) = N (0,�) (28)

The algorithm to sample a posterior function f (i) (x) using spectral sampling is summarized
in Table 1.

4 Single-objective Thompson Sampling

TS for single-objective optimization is outlined in this section. The problem is to find the
true global minimizer x∗ of a black-box objective function g:

x∗ ∈ argminx∈X⊆Rd g (x) (29)

where X is the design space and x is the decision variable.
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Table 1 Algorithm to draw an approximate sample from the posterior distribution of a GP using spectral
sampling

Algorithm 1 
Input:      Optimal hyperparameters and type of covariance function of GP  

Training data set of  points
Corresponding set of observations

1. Draw  i.i.d. samples ,…, from  and  i.i.d. samples 
 from the uniform distribution on  to build  and

2. Let ⁄ cos

3. Draw  i.i.d. samples of ,…, from  and  i.i.d. 
samples  from the uniform distribution on  to build 

4. Let and 

5. Draw from the multivariate Gaussian distribution 
Output: Approximate parametric sample of posterior GP: 

Table 2 Algorithm for single-objective optimization using TS

Algorithm 2
Input:     Black-box func�on ( )

Type of covariance func�on of GP
Ini�al training data set of points 0 = { 1, … , }

Corresponding set of observa�ons 0 = { 1, … }

1. for ≔ 0,… ,

2. Train GP from current dataset and 
3. Approximately sample ( )( ) from ( , | , )

4. Determine +1 = argmin ∈
( )( )

5. Evaluate +1 = ( +1)

6. Update dataset +1 = { 1, … , , +1}, +1 = { 1, … , +1}

7. Update ≔ + 1

8. end for
Output: , 

TS was introduced in 1933 [29] and is one of the oldest heuristics in the multi-armed
bandit community, producing both empirical results [44–46] and theoretical results [47,48].
TS achieves its exploration/exploitation through randomness. The basic idea of TS is to
choose an action that is matched with the probability that the action leads to the optimum
reward. For Bayesian optimization of continuous functions considering minimization, this
refers to sampling a function f (i) from the posterior distribution defined by the GP at each
iteration i and then minimizing this function to obtain x(i)∗ = argminx∈X f (i) (x). Following
this process, x(i)∗ is distributed as p (x∗|Y, X), which is taken as the sampling point at each
iteration. The algorithm is given in Table 2 and was first suggested by Shahriari et al. [46] to
be used for continuous search spaces directly.

Empirically, TS has been shown to perform well, for example outperforming the famous
EI acquisition function on the Branin test function [46].

5 Thompson sampling efficient multiobjective optimization

5.1 Objective

In this section the TSEMO algorithm is outlined. The algorithm is designed to solve multi-
objective optimization problems which can be defined as follows:
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minimizex∈X⊆Rd G (x) = [g1 (x) , g2 (x) , . . . , gm (x)] (30)

where X is the design space, x is the decision vector andG is a vector of m scalar objectives
gi (x) to be minimized. It is assumed that each black-box function gi (x) is continuous and
can be evaluated at an arbitrary query point x in the domain X and that this process produces
noisy outputs such that the noise is unbiased.

The single-objective procedure of TS in Bayesian optimization can be extended to the
multiobjective case. For discrete search spaces, TS has been employed for multiobjective
problems by applying scalarization and a method based on finding the Pareto set at each
iteration. An empirical comparison showed that the method based on the full Pareto set
outperformed the scalarization approach [49]. In this paper, we therefore focus on using
TS by finding points to approximate the Pareto front of the objective functions. At each
instance the algorithm determines a number of sampling inputs by trading-off exploration
and exploitation to improve the current Pareto front in the light of previous observations of
the objective functions. The final output is a set of inputs which should contain points close
to the true Pareto set.

5.2 Algorithm outline

The algorithm is first outlined for the case where one sampling point is proposed at each
iteration. In Fig. 2, a flowchart of the overall TSEMO algorithm is given for this case. The
extension to batch-sequential operation is then given in the next section.

5.2.1 Initialization

To initialize the algorithm an initial dataset needs to be first provided to build the initial GPs,
for example using a Latin hypercube design [50]. Let n equal the size of the initial dataset.

5.2.2 Determine candidate set for sampling

Assume we are at iteration i , such that TSEMO has been employed i-times to find i sampling
points. Let X (i) := {x1, . . . , xn, xn+1, . . . , xn+i } be the inputs of the data collected and

Y (i)
j :=

{
y(1)
j , . . . y(n)

j , y(n+1)
j , . . . , y(n+i)

j

}
the corresponding responses for each objective

function g j (x), with j = 1, . . . ,m. For eachY (i)
j , a corresponding independentGP is trained,

that is we find GP(i)
j

(
m(i), k(i)|X (i), Y (i)

j

)
for j = 1, . . . ,m from the procedure outlined

in Sect. 2. Following a similar procedure as for the single-objective TS, we draw m distinct
functions from thesem independent GPs using spectral sampling, which is outlined in Sect. 3.

From this, we obtain a collection of m functions
{
f (i)
1 (x) , . . . , f (i)

m (x)
}
. We now want to

match the probability that the next sample leads to a Pareto optimal point. To accomplish

this, we find the approximate Pareto set of the sampled functions
{
f (i)
1 (x) , . . . , f (i)

m (x)
}

at each iteration. Since the GP samples are cheap-to-evaluate functions, a multiobjective
algorithm of choice can be used to accomplish this. Common choices would be a genetic
algorithm, such as the NSGA-II algorithm [18]. Let C (i) refer to the current candidate set

given by the approximate Pareto set of the GP samples
{
f (i)
1 (x) , . . . , f (i)

m (x)
}
. In the case of

amultiobjective genetic algorithm such as NSGA-II, the size of the candidate setC (i) is equal
to the population size. The number of generations is fixed to allow sufficient convergence of

this set to the true Pareto set of the GP samples
{
f (i)
1 (x) , . . . , f (i)

m (x)
}
.
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Build initial data set from space-filling design

Start

Maximum number of function 
evaluations reached?

Build Gaussian process models for each
 objective using current data set

Sample functions from Gaussian processes
for each objective using spectral sampling

Find Pareto front of sampled functions

Evaluate objective functions at the point that 
is estimated to give the largest improvement 

in hypervolume and add the new point
 to the current data set

Yes

No

Terminate

Fig. 2 Algorithm flowchart for TSEMO algorithm

5.2.3 Select point from candidate set

In theory, one could pick a random point from the approximate Pareto set C (i) to match
probabilities. One can see that this is a valid approach by noting that once enough data has
been sampled the Pareto set of the m independent posterior GPs converges to the true Pareto
set of the objective functions, i.e. following this approach eventually a good approximation
of the Pareto set is found. Nonetheless, this is not particularly efficient, since the resulting
approximate Pareto front might not be well spaced-out due to the randomness involved.
Instead, we propose to use the hypervolume criterion to choose the next sampling point.

The hypervolume indicator is the m-dimensional Lebesgue measure λm of a dominated
subspace limited above by a reference point and can be defined as [27]:
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HV (P,R) = λm

⎛

⎝
⋃

p∈P

[
p,R

]
⎞

⎠ (31)

where HV (P,R) is equal to the hypervolume indicator corresponding to the non-dominated
Pareto front P and the reference point R.

Define P(i) as the Pareto front of the current output data set
{
Y (i)
1 , . . . , Y (i)

m

}
and r(i) as

the current reference point for the hypervolume calculation. We then want to sample at the
point that gives the largest hypervolume improvement (
HV) once it is added to the current
Pareto front P(i), that is:

xn+i+1 ∈ argmax
x∈C(i)


HV
(
yC ,P(i), r(i)

)
(32)

where yC =
(
f (i)
1 (x) , . . . , f (i)

m (x)
)
and


HV
(
yC ,P(i), r(i)

)
= HV

(
P(i) ∪ {yC } , r(i)

)
− HV

(
P(i), r(i)

)

A fast algorithm to calculate 
HV is important, since it needs to be carried out for each
candidate point in C (i). The efficient computation of 
HV has been the subject of several
papers due to its importance in different indicator-based multi-objective metaheuristics, such
as EHV. For two objectives we used an algorithm that was first proposed in Emmerich et
al. [27]. The approach could be shown to have asymptotically optimal time complexity of
O (�log (�)), where � refers to the number of data-points in the Pareto front approximation. In
the case that the Pareto front approximation is sorted by a coordinate, the complexity can be
reduced to O (�), which can be easily achieved in Bayesian optimization. In Yang et al. [28]
the approach is extended to three objectives with a time complexity of O (�log (�)), which
we consequently implemented. A summary for the efficient computation of 
HV is given in
Emmerich and Fonseca [51]. Lastly, for more than three objectives 
HV is approximated by
using a Monte-Carlo approximation [52].

The reference point r(i) is assumed to be unknown and is instead approximated by the

anti-ideal point of the approximate Pareto front of the GP samples
{
f (i)
1 (x) , . . . , f (i)

m (x)
}

from the candidate set C (i):

r(i) =
(
max
x∈C(i)

(
f (i)
1 (x)

)
, . . . , max

x∈C(i)

(
f (i)
m (x)

))
(33)

This choice is made since it gives us a reference point that encloses the extreme values of
the candidate set C (i) for the hypervolume calculation in Eq. 31. In addition, if the function
is well-known, this reference point converges to the value of the anti-ideal point of the true
function.

In Fig. 3 the Pareto front of the current data set is given by P(i) = {a, b, c, d}. We assume
that the candidate approximate Pareto set C (i) of the GP samples consists of 6 points with a

corresponding Pareto front
{
C j =

(
f (i)
1

(
x j

)
, f (i)

2

(
x j

))}

x j∈C(i)
, where each C j represents

a separate point on this Pareto front. The reference point r(i) = r is subsequently equal to
the anti-ideal point of this Pareto front, in this case the f1-value of C6 and the f2-value of C1.
In the example, the hypervolume of the current hypervolume shown in red is improved by
the blue area if the point C3 were added. Carrying out this calculation for every combination
of C j , the corresponding sampling point of C (i) is then chosen that yields the largest overall
hypervolume improvement.
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Fig. 3 Illustration of the use of the hypervolume criterion to pick a point to sample. The hypervolume of
the Pareto front P(i) = {a, b, c, d} is shown in light red. r is the reference point in this figure picked as the
anti-ideal point of the approximate Pareto front of the GP samples. The blue area shows the contribution that
adding the point C3 would make to form the new Pareto front

5.2.4 Evaluate expensive functions and update data-sets

Lastly, the data sets are updated with the proposed data point: X (i+1) := {x1, . . . , xn, xn+1,

. . . , xn+i , xn+i+1} and Y (i)
j :=

{
y(1)
j , . . . y(n)

j , y(n+1)
j , . . . , y(n+i)

j , g j (xn+i+1)
}
for j =

1, . . . ,m and the procedure is repeated with i := i + 1 until a specified maximum num-
ber of function evaluations has been reached.

5.3 Batch-sequential sampling

It is often advantageous to propose multiple sampling points at each iteration known as
batch-sequential design. This has become particularly relevant due to the advent of par-
allel computing. Let b denote the number of sampling points added each iteration and
i the current iteration. TSEMO has then been employed i-times to add i × b number
of points. Let X (i) = {x1, . . . , xn, xn+1, . . . , xn+i×b} be the inputs of the data collected

and Y (i)
j =

{
y(1)
j , . . . y(n)

j , y(n+1)
j , . . . , y(n+i×b)

j

}
the corresponding responses for each

objective function g j (x), with j = 1, . . . ,m. The procedure is precisely the same as

in Sect. 5.2 using the data X (i) and Y (i)
j except that Eq. 32 is replaced with Equations

proposing multiple sampling points. A simple heuristic that works well in practice is to
pick multiple points from the candidate set C (i) which are predicted to give the highest
hypervolume improvement. To accomplish this optimization, we use a greedy approxi-
mation. The multiple sampling points at each iteration are then found by the following
equations:

xn+i×b+1 ∈ argmax
x∈C(i)


HV
(
yC ,P(i), r(i)

)
(34)

xn+i×b+2 ∈
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argmax
x∈C(i)


HV
(
yC ,P(i)

⋃ {(
f (i)
1 (xn+i×b+1) , . . . , f (i)

m (xn+i×b+1)
)}

, r(i)
)

(35)

...

xn+i×b+b ∈ argmax
x∈C(i)


HV
(
yC ,P(i) ∪

{(
f (i)
1 (xn+i×b+1) , . . . , f (i)

m (xn+i×b+1)
)}

∪
{(

f (i)
1 (xn+i×b+2) , . . . , f (i)

m (xn+i×b+2)
)}

∪ . . .
{(

f (i)
1 (xn+i×b+b−1) , . . . , f (i)

m (xn+i×b+b−1)
)}

, r(i)
)

(36)

where yC =
(
f (i)
1 (x) , . . . , f (i)

m (x)
)

The optimizations are carried out by exhaustively calculating the hypervolume for all
points in C (i). Lastly, the data sets are updated with the proposed data points: X (i+1) :=
{x1, . . . , xn, xn+1, . . . , xn+i×b, xn+i×b+1, . . . , xn+i×b+b} andY (i)

j :=
{
y(1)
j , . . . y(n)

j , y(n+1)
j ,

. . . , y(n+i×b)
j , g j (xn+i×b+1) , . . . , g j (xn+i×b+b)

}
for j = 1, . . . ,m and the procedure is

repeated with i := i + 1 until a specified maximum number of function evaluations are
reached, similar to Sect. 5.2.

6 Implementation of the TSEMO algorithm

This section outlines the implementation of the TSEMO algorithm used. All covariance
functions given in Sect. 2.1 can be used. To build the GP model the hyperparameters need to
be optimized. This is done by determining the MAP estimate given in Eq. 16 with Gaussian
priors on the hyperparameters. For this optimization problem the DIRECT search algorithm
[53] was used, followed by a local search using MATLAB’s fmincon function. The various
samples from normal distributions and t-distributions were carried out using MATLAB’s
Machine Learning ToolboxTM. The approximate Pareto front of the sampled function was
found by employing a NSGA-II [18] implementation in MATLAB [54]. For several GP
calculations the Gaussian Process for Machine Learning (GPML) toolbox by Rasmussen
and Nickisch [55] was utilised. To determine if a Pareto set point augments the current
Pareto front for the hypervolume calculation the function paretoset.m was employed [56].
The hypervolume improvement (
HV) for the two dimensional and three dimensional case
was calculated analytically using implementations that are made available under http://moda.
liacs.nl as C++ and Matlab source-code corresponding to the state-of-the-art described in
Sect. 5.2 [27,28,51], while for more than three objectives the hypervolume was estimated
using a Monte-Carlo approach by utilising the MATLAB function hypervolume.m [57]. The
default specifications of TSEMO are given in Table 3. Options not given were kept at default
for the respective algorithm. The algorithm TSEMO as described here can be found on
Bradford, Schweidtmann [58].

7 Illustration of the algorithm

Here we show with the aid of a simple one-dimensional test problem how TSEMO works.
For this purpose, the bi-objective Schaffer function No. 1 [59] was chosen, which consists
of the following optimization problem:
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Table 3 Default options of TSEMO algorithm

Option Value

Number of points added each iteration 1

Type of Matérn, ν 1

Prior variance of log λ1 . . . , log λd , log σ f , log σn 10

Prior mean of log λ1 . . . , log λd , log σ f 0

Prior mean of log σn −6

Number of direct-algorithm iterations 200/number of variables

Relative tolerance of local search 10−12

Number of Monte-Carlo points for spectral sampling 4000

NSGA-II population size 100

NSGA-II number of generations 100

Number of Monte-Carlo points for hypervolume 3000

Fig. 4 An example of TSEMO
algorithm using Schaffer function
No. 1, which is a multiobjective
test function of one dimension
(solid line), with an initial design
consisting of three points
(represented by open circles in
the first two graphs). The Pareto
set corresponds to all x ∈ [0, 2]
shown in grey. The graphs on the
left correspond to the first
objective, while the graphs on the
right represent the second
objective. Three successive
iterations are shown progressing
from top to bottom. The dashed
lines correspond to the samples
drawn by the respective GPs of
each objective. Suggested
sampling points corresponding to
certain values of the GP samples
are shown as filled black circles,
while the current data set is
shown as open circles

minimizex∈[−10,10]
[
x2, (x − 2)2

]
(37)

The Pareto set in the problem above is equal to [0, 2]. The Matérn 5 covariance function
was used for both GPs from which the functions were sampled. The options were otherwise
kept at default. The progress of the algorithm is highlighted in Fig. 4. Initially, the samples
deviate substantially from the function in the first two iterations, which leads to a sampling
point outside of the Pareto set. This is expected and corresponds to the exploration action
of the algorithm when uncertainty is high due to limited data. After two iterations, however,
the uncertainty is reduced to the point that the function is well identified and the Pareto set
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found by the multiobjective optimization of the sampled functions is close to the true Pareto
set. Consequently, the next sampling point is chosen to exactly lie in the Pareto set to give
the highest improvement in hypervolume. Thereafter, all iterations lead to sampling points
inside the Pareto set.

8 Numerical experiments

Numerical experiments were carried out to show the relevance of the algorithm for both
simple and batch-sequential usage. These are presented and discussed in this section. Only
noiseless cases are treated here, however the algorithm can identify noise through the noise-
term implemented in the GPs and could be used for cases with noise as well.

8.1 Optimization test problems

The algorithm’s performance is tested on several diverse optimization test problems and
compared to NSGA-II [18] implemented by Lin [54] in MATLAB, ParEGO [19] for which
the data is available on GitHub [60], and lastly to an expected hypervolume implementation
in the SUMO [61] toolbox in MATLAB. NSGA-II was chosen to compare to a genetic algo-
rithm,which is commonly used to solve derivative-freemultiobjective optimization problems.
ParEGO is the most sophisticated approach for multiobjective optimization employing GPs.
We compare to EHV since it employs multiple GPs without scalarization like the algorithm
proposed in this paper. In addition, the TSEMO algorithmwas run for the case where a single
point is added at each iteration and where 4 points were added at each iteration according to
the heuristic given in Sect. 5.3 to get a feel for the performance of the batch-sequential case.
The batch-sequential case is referred to as “BS-TSEMO”. The initial datasets for TSEMO,
ParEGO, EHV and BS-TSEMO were generated using a Latin hypercube design with an
initial dataset size of 11d-1. Overall the algorithms were tested on 9 test problems taken
from Knowles [19] ranging from 2 to 8 input dimensions and 2 to 3 output dimensions. A
summary of the test problems with descriptions of the Pareto fronts is given in Table 4. The
exact equations for the test problems can be found in Knowles [19]. A budget of 150 total
function evaluations was set including the initial dataset. 20 independent runs were carried
out for each constellation of algorithm and test problem to compare the average performance.
The overall results can be found in Sect. 8.3. The algorithm options for ParEGO, NSGA-II
and EHV were kept mostly at default with a few notable exceptions: NSGA-II population
size was changed to 20 and the total number of generations to 8 to match the small num-
ber of function evaluations allowed, for EHV the sampling criterion was optimized using
an implemented particle-swarm algorithm with a population size of 100 and the number of
iterations set to 100 to match the NSGA-II algorithm used within TSEMO, since otherwise
only a local optimizer would be run.

8.2 Performance assessment

In this workwe compare the performance of themultiobjective algorithms using two different
methods. Firstly, we compare the algorithms using three different unary quality indicators.
These return a single scalar value, which allows us to judge the goodness of the approximate
Pareto fronts. The secondmethod involves the plotting of so-called empiricalworst attainment
summary surfaces, which visualize the performance and weaknesses of the algorithms over
the different runs.
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Table 4 Multiobjective optimization test functions and descriptions from Cristescu and Knowles [62]

Test functions Number of inputs Number of objectives Description of Pareto front [62]

KNO1 2 2 “True Pareto front lies just beyond a
locally optimum Pareto front with a
much larger basin of attraction”

VLMOP2 2 2 “Pareto front is concave”

VLMOP3 2 3 “Pareto optimal set is disconnected
and Pareto front is a curve
following a convoluted path
through objective space”

OKA1 2 2 “The density of the solutions fall
away near to the Pareto front”

OKA2 3 2 “Pareto optima lie on a spiral shapes
curve and the density of the
solutions falls away steeply near to
the Pareto front”

DTLZ1a 6 2 “Increased level of function
ruggedness”

DTLZ2a 8 3 “Pareto front is a sphere”

DTLZ4a 8 3 “Pareto front is a sphere and the
density of solution is biased”

DTLZ7a 8 3 “Pareto front consists of four
disconnected regions”

The quality of the approximate Pareto front is dependent on both the closeness to the true
Pareto front referred to as the “convergence”, the distribution as well as the spread of points
on the approximate Pareto front known as the “diversity” and lastly the number of solutions.
These aspects have been used to define various multiobjective performance metrics [65].
Various studies such as Zitzler et al. [63] and Knowles et al. [64] have analysed the various
tools available. It could be shown thatmany commonly usedmeasures givemisleading results.
For the unary quality indicators, we chose to compare the hypervolume, themodified inverted
generational distance [66] and the generalized spread [67].

8.2.1 Hypervolume

The hypervolume indicator defines the volume of the objective space dominated by the
respective solution set, which consequently considers both convergence and diversity. For
an exact definition and for properties of the hypervolume indicator please refer to Zitzler
[68]. The hypervolume can be shown to be dominance compliant [64]. The higher the
hypervolume, the better the performance of the respective algorithm. The reference point
was chosen by following a procedure in Knowles [19]. First, all sets of non-dominated
points after 150 function evaluations from all runs of all algorithms were collected and
combined to a single superset. From this superset, the ideal and anti-ideal points were
found for each objective. The reference point was simply the anti-ideal point shifted by
0.01 of the difference of the ideal and anti-ideal point. The hypervolume was calcu-
lated as described in Sect. 5.2. The results of the hypervolume indicator are shown in
Fig. 5.
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8.2.2 Modified inverted generational distance

The inverted generational distance (IGD) is another popular measure that takes into account
both convergence and diversity. Let P∗ be a set of uniformly distributed points in the objective
space along the true Pareto front of the multiobjective problem and let P be the approximate
Pareto front obtained from finite runs of the algorithms. The IGD is defined as the average
minimum distance from the points in P∗ to P . A small IGD represents an approximate Pareto
front close to the true Pareto front, hence the smaller the IGD the better. In the original IGD the
distance is defined as the Euclidian distance, which is Pareto non-compliant [63]. However,
we instead use a modified distance as proposed in Ishibuchi et al. [66], which makes the
measure weakly Pareto compliant. The modified IGD is then defined as follows:

IGD
(
P, P∗) = 1

|P∗|
∑

v∈P∗ minζ∈P d+ (v, ζ) (38)

where |P∗| describes the cardinality of the set P∗, minζ∈P d+ (v, ζ) is the minimum
modified distance between v and the points in P defined as d+ (v, ζ)

=
√
max (ζ1 − v1, 0)2 + . . . + max (ζm − vm, 0)2. The results of the modified inverted gen-

erational distance indicator are shown in Fig. 6.

8.2.3 Generalized spread

The third measure used is the generalized spread (
∗), which was defined by Zhou et al.
[67] as a generalization of the 
 metric to more than 2-dimensions. The 
∗ metric should be
regarded with caution, since it only measures the diversity of the solutions and is therefore
Pareto non-compliant. This metric considers both distribution and spread of the approximate
Pareto front P with help of a uniformly distributed set of points of the true Pareto front P∗.
Distribution describes how evenly scattered the solutions of P are in the objective space,
while the spread describes how close the solutions in P are to the extreme points in P∗. The
smaller 
∗, the better since this indicates a solution set that is close to the extrema in P∗ and
well-distributed. The 
∗ indicator can be defined as follows [69]:


∗ (
P, P∗) =

∑m
i=1 d (ei , P) + ∑|P|

i=1

∣∣di − d̄
∣∣

∑m
i=1 d (ei , P) + (|P|) d̄ (39)

where d (ei , P) = minv∈P ‖ei −v‖ is the minimum distance from P to the extreme solutions
in P∗, ei ∈ P∗ is the extreme solution of the ith objective in P∗, di = minv j∈P,vi �=v j ‖vi −v j‖
defines the closest pairwise distances in P and d̄ = 1

|P|
∑|P|

i=1 di is the average of di . The
results of the generalized spread indicator are shown in Fig. 7.

8.2.4 Worst attainment summary surfaces

Empirical attainment functions were also plotted, which give detailed information on where
and how the performance of the algorithms differs. We will give a short outline of attainment
surfaces here, for more information please refer to Fonseca and Fleming [70], Knowles [19]
and Knowles [71]. Attainment surfaces are uniquely defined by a set of Pareto points and
divide the objective space into a region dominated by this set and a region not dominated by
it.

An example of an attainment surface is shown on the left-hand side of Fig. 8 defined by a
set of Pareto points. In our case the sets defining the attainment surfaces are the approximate
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Fig. 5 Illustration of an attainment surface on the left-hand side and on the right-hand side a schematic
showing how to plot the worst-attainment summary surface from 5 attainment surfaces
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Pareto fronts from the various algorithm runs. Subsequently, each algorithm run gives us an
attainment surface, hence we have 20 attainment surfaces for each constellation of algorithm
and test-function. The information of these surfaces can be concisely summarised by so-called
“attainment summary surfaces”, which lie on or between attainment surfaces. From this one
can for example define a best, median and worst summary surface. The median summary
attainment surface is defined, such that every point on it is weakly dominated in at least 50%
of the function runs, while the worst summary attainment surface has the interpretation that
every algorithm run weakly dominated the entire surface. Plots of this kind therefore give
more information than a scatter plot of non-dominated points from several runs. In Fig. 8 on
the right-hand side we have schematically plotted 5 attainment surfaces.

The summary surfaces can be defined by imagining a diagonal line in the direction of
increasing objective values cutting through the 5 surfaces. For illustration 6 diagonal lines
are shown. The points on the diagonal lines are part of the worst summary attainment surface,
which are weakly dominated by all the other attainment surfaces. By using many of these
diagonal sampling lines, we could then graph the full worst summary attainment surface,
which concisely represents information of all attainment surfaces. In this paper, the worst
summary attainment surfaces were plotted for each test problem for all algorithms since
these give a good indication on the weaknesses of the algorithms, i.e. the surfaces shown in
Sect. 8.6 are such that all 20 algorithm runs weakly dominated them. For the two-dimensional
test problems, these can be given in a single plot for each test function, while for the three-
dimensional test problems a separate plot is required for each worst summary attainment
surface for visualisation. The worst-attainment surfaces for the two-dimensional test func-
tions are shown in Fig. 9, while for the three-dimensional test functions VLMOP3, DTLZ2a,
DTLZ4a and DTLZ7a they are shown in Figs. 10, 11, 12 and 13 respectively.
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8.3 Results of hypervolume quality indicator
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Fig. 6 Optimization test problem results shown in boxplots using the modified inverted generational distance
performance indicator obtained after 20 runs with 150 function evaluations
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8.4 Results of inverted generational distance indicator
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Fig. 7 Optimization test problem results shown in boxplots using the generalized spread performance indicator
obtained after 20 runs with 150 function evaluations
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8.5 Results of generalized spread indicator
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Fig. 8 Optimization test problem results shown in boxplots using the hypervolume performance indicator
obtained after 20 runs with 150 function evaluations
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8.6 Worst attainment surfaces
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represent the worst-attainment surface
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Fig. 11 Worst-attainment surface plots for the test problem DTLZ2a of algorithms ParEGO, NSGA-II,
TSEMO and BS-TSEMO each in separate graphs. The true Pareto front is shown in red and the black dots
represent the worst-attainment surface
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Fig. 12 Worst-attainment surface plots for the test problem DTLZ4a of algorithms ParEGO, NSGA-II,
TSEMO and BS-TSEMO each in separate graphs. The true Pareto front is shown in red and the black dots
represent the worst-attainment surface
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8.7 Discussion of results

Based on the results given in sections 8.3, 8.4, 8.5 and 8.6 the following observations can be
made:

• Overall, the worst-attainment plots confirm the results of the hypervolume indicator.
• The worst summary attainment surfaces in three dimensions take a box-like structure

if they consist of only a small number of Pareto points, e.g. DTLZ4a for EHV. This
is because by definition the objective space is divided into a space weakly dominated
by these points and a region not weakly dominated by these points. For a single Pareto
point these regions are given by boxes and for a small number of Pareto points box-like
regions. For others the worst summary attainment surface consists of many points and
takes a complex structure as in DTLZ2a.

• TSEMOoutperforms the other 3 algorithmson4of the 9 test problems:KNO1,VLMOP2,
VLMOP3 and DTLZa7 based on both median and mean of the hypervolume. Further,
the standard deviation is also orders of magnitude lower in VLMOP2, VLMOP3 and
DTLZa7 compared to the other algorithms, while for KNO1 it is slightly higher than
EHV.

• TSEMO comes close second on the test functions OKA1, OKA2 and DTLZ2a based on
both median and mean of the hypervolume, while ParEGO attains higher hypervolume
values. This may be in part due to the additional information ParEGO has available
since it needs to be supplied with accurate knowledge of the limits of the outputs, while
TSEMO reference point accuracy is linked to the accuracy of the GPs through Eq. 33.
In OKA1 and OKA2 in Fig. 9 one can see that ParEGO finds Pareto points on the right
side from the scaling of the supplied limits which TSEMO is unaware of.

• The modified IGD indicator agrees with the results of the hypervolume indicator nearly
exactly on the test-functions KNO1, VLMOP2, VLMOP3, OKA1, OKA2 and DTLZ4a.
For DTLZ1a it does allow for further differentiation and shows that EHV and ParEGO
perform the best. For DTLZ2a NSGA-II is now seen to outperform TSEMO, however
it does show larger variation. Lastly, for DTLZ7a the indicators are in agreeance that
TSEMO and EHV are the highest performing algorithms, however EHV is shown to
perform slightly better. Overall according to the median of the modified IGD, TSEMO
performs the best on KNO1, VLMOP2 and VLMOP3 test-functions and comes close
second on OKA1, OKA2 and DTLZ7a.

• The generalized spread indicator gives us further insight into the diversity of the approxi-
mate Pareto fronts returned from the algorithms. For the test-functions KNO1, VLMOP2,
VLMOP3 andDTLZ7, TSEMOhas the highest median for the generalized spread, which
is most likely due to a good identification of the underlying function and hence good
placement of Pareto points according to the hypervolume improvement. These results
agree with the hypervolume performance indicator. For OKA1 and OKA2 the algorithms
seem to have nearly the same diversity of solutions, which may indicate that for these
functions diversity of solutions is not important to obtain a good hypervolume value. For
DTLZ1a the generalized spread is worse for ParEGO, while it is the highest performing
algorithm according to the other indicators. For DTLZ2a and DTLZ4a EHV does par-
ticularly well. Overall the generalized spread more or less agrees with the hypervolume
indicator showing that TSEMO is able to identify the extrema of the true Pareto front
and find a well spread out Pareto front on several test functions.

• TSEMO performs poorly on DTLZ4a. This can be explained by looking at the three
competing functions in Knowles [19], each of which is modelled by an independent GP
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using Matérn-class covariance functions. These covariance functions assume that the
underlying function to be fitted by the GP is stationary. In this case two of the three
functions, f2 and f3, are highly non-stationary and, hence, the GPs yield very poor
predictions. EHV and ParEGO achieve higher hypervolume values due to the reference
points, which limits the sampling area, while TSEMO’s accuracy of the reference is
linked to the accuracy of the GPs by Eq. 33.

• For KNO1 one can see in Fig. 9 that ParEGO struggles to find more than 6 Pareto points,
which is the result of a large drawback from the scalarization carried out, i.e. the limited
number of scalarizations leads to the same Pareto points repeatedly. Similar behaviour
can be observed in VLMOP2.

• NSGA-II often has the worst-attainment surface such as for the test problems KNO1,
OKA1 OKA2, DTLZ1a, VLMOP3, DTLZ4a and DTLZ7a. Therefore, it can be broadly
said that the surrogate-based optimization algorithms are more robust.

• Apart from DTLZ4a, TSEMO’s worst-attainment surfaces show relatively good approx-
imations of Pareto fronts and hence show that the algorithm is robust.

• BS-TSEMO performance is similar to that of TSEMO. It performs well on algorithms
that TSEMO performs well on and performs poorly on algorithms that TSEMO per-
forms poorly on. It gives marginally worse results on the test problems KNO1, OKA1
and DTLZ7a, and slightly better result on DTLZ4a, however still worse than the other
algorithms.

9 Conclusions

In conclusion, a new algorithm, TSEMO, has been proposed based on individual GPs for
each objective, which are then sampled using spectral sampling. This then leads to individual
functions from which an approximate Pareto set, and Pareto front can be found using the
NSGA-II algorithm. According to a TS scheme a point is then selected from the Pareto set
as the next sampling point, which is predicted to give the largest hypervolume. TSEMO was
compared to NSGA-II, ParEGO and an EHV implementation utilizing 9 test problems with
a limited budget of 150 function evaluations. It was found to outperform the aforementioned
algorithms on 4 out of 9 test problems and came close second on 3 out of 9 test problems
being outperformed by ParEGO according to the hypervolume criterion. This is thought to be
because of the additional information available to ParEGO through the scalarization factors.
Further, on 1 test problem all algorithms performed similarly. Based on the modified inverted
generational distance TSEMO was determined to outperform 3 out of 9 test problems and
came close second on 3 out of 9 test problems. In addition, the generalized spread indicator
agreed with the results of the hypervolume criterion and hence showed that TSEMO is able
to find a well-spread out Pareto front and the extrema of the true Pareto front on several
test functions. TSEMO only performed poorly on 1 test problem, which was pointed out
to be highly non-stationary and hence could not be captured by the stationary GPs used in
the algorithm. Lastly, a simple heuristic was proposed for a batch-sequential design scheme.
This heuristic was tested on the same test problems with a budget of 150 function evaluations
adding 4 points each iteration. The comparison showed that this implementation performed
very similarly to the nominal TSEMO algorithm. Overall, TSEMO was shown to compare
competitively to the state-of-the-art algorithms available in the field with the added advantage
that no a priori knowledge is required on the scale of the outputs and further can be used for
batch-sequential design and for noisy functions.
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