
Journal Pre-proof

Equilibrium optimizer: A novel optimization algorithm

Afshin Faramarzi, Mohammad Heidarinejad, Brent Stephens,
Seyedali Mirjalili

PII: S0950-7051(19)30529-5
DOI: https://doi.org/10.1016/j.knosys.2019.105190
Reference: KNOSYS 105190

To appear in: Knowledge-Based Systems

Received date : 14 June 2019
Revised date : 28 October 2019
Accepted date : 3 November 2019

Please cite this article as: A. Faramarzi, M. Heidarinejad, B. Stephens et al., Equilibrium optimizer:
A novel optimization algorithm, Knowledge-Based Systems (2019), doi:
https://doi.org/10.1016/j.knosys.2019.105190.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2019 Published by Elsevier B.V.

https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.knosys.2019.105190


 
 

Equilibrium Optimizer: A Novel Optimization Algorithm 

Afshin Faramarzi 
a,*1

, Mohammad Heidarinejad 
a
, Brent Stephens 

a
, Seyedali Mirjalili 

b
 

a 
Department of Civil, Architectural, and Environmental Engineering, Illinois Institute of Technology, Chicago, IL, USA 

b Torrens University Australia, Fortitude Valley, Brisbane, QLD 4006, Australia 

 

Abstract 

This paper presents a novel, optimization algorithm called Equilibrium Optimizer (EO), inspired 

by control volume mass balance models used to estimate both dynamic and equilibrium states. In 

EO, each particle (solution) with its concentration (position) acts as a search agent. The search 

agents randomly update their concentration with respect to best-so-far solutions, namely 

equilibrium candidates, to finally reach to the equilibrium state (optimal result). A well-defined 

“generation rate” term is proved to invigorate EO’s ability in exploration, exploitation, and local 

minima avoidance. The proposed algorithm is benchmarked with 58 unimodal, multimodal, and 

composition functions and three engineering application problems. Results of EO are compared 

to three categories of existing optimization methods, including: (i) the most well-known meta-

heuristics, including Genetic Algorithm (GA), Particle Swarm Optimization (PSO); (ii) recently 

developed algorithms, including Grey Wolf Optimizer (GWO), Gravitational Search Algorithm 

(GSA), and Salp Swarm Algorithm (SSA); and (iii) high performance optimizers, including 

CMA-ES, SHADE, and LSHADE-SPACMA. Using average rank of Friedman test, for all 58 

mathematical functions EO is able to outperform PSO, GWO, GA, GSA, SSA, and CMA-ES by 

60%, 69%, 94%, 96%, 77%, and 64%, respectively, while it is outperformed by SHADE and 

LSHADE-SPACMA by 24% and 27%, respectively. The Bonferroni-Dunn and Holm’s tests for 

all functions showed that EO is significantly a better algorithm than PSO, GWO, GA, GSA, SSA 

and CMA-ES while its performance is statistically similar to SHADE and LSHADE-SPACMA. 

 

Keywords: Optimization; Metaheuristic; Genetic Algorithm; Particle Swarm Optimization; 

Physics-based 

 

Highlights 

 Developed a novel optimization algorithm inspired by mass balance models 

 Tested EO against well-studied mathematical and engineering benchmarks 

 Compared the algorithm to other well-known meta-heuristics 

 Demonstrated effectiveness and superiority of the proposed method 

 

1. Introduction 
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There are two major categories for mathematical optimization methods: (1) deterministic and (2) 

stochastic. Linear and non-linear programming [1,2] are some of the most commonly used 

deterministic methods, characterized by using the gradient information of the problem to search 

the space and find the solution. Although these methods are efficient for problems with linear 

search spaces (unimodal), they are prone to local optima entrapment when applying to problems 

with non-linear search spaces, including real-world non-convex problems [3,4]. To combat this 

issue one might start from a different initial design, modify, or hybridize the algorithm [5]. 

Another alternative to these conventional methods is stochastic methods, which, similar to the 

meta-heuristic algorithms, generate and use random variables. These algorithms are used to 

globally search the domain to find the global or near global optimal results. Advantages of meta-

heuristics include their simplicity, independency to the problem, flexibility, and gradient-free 

nature [6]. Common sources of inspiration in the development of meta-heuristics are from 

physical phenomena, animal behavior, or evolutionary concepts. In addition, meta-heuristics are 

independent of the nature of the problem, meaning they do not need derivative information of the 

problem since they use a stochastic approach. This is in contrast to mathematical programming 

that typically requires detailed knowledge about the mathematical problem [5]. This 

independency to the nature of the problem renders them a suitable tool for finding optimal 

solutions for a given optimization problem without being concerned about the nonlinearity types 

of the problem’s search space and its constraints. Another bonus is their flexibility, which allows 

them to solve any kind of optimization problem without major changes in the algorithms’ 

structure. They treat the problem as a black box with input and output states, and this feature 

empowers them as a potential candidate for a user-friendly optimizer. In addition, in contrast to 

the deterministic nature of mathematical methods, they mostly benefit from stochastic operators. 

Consequently, the probability of entrapment in local optima is reduced compared to conventional 

deterministic methods. This characteristic also renders them independent to the initial guess of 

solutions. Due to their ability to globally explore the search space in a reasonable amount of time 

as well as independency to the problem’s nature, these methods become more popular and 

received significant attention in recent years.  

Genetic Algorithms (GA) [7], Particle Swarm Optimization (PSO) [8], Simulated Annealing 

(SA) [9], and Ant Colony Optimization (ACO) [10] are among some of the most conventional 

meta-heuristics approaches. Although each of them belongs to different classes of meta-

heuristics, many researchers in different areas have evaluated their performance. A common 

approach to assessing novel optimization algorithms is to demonstrate their competitiveness 

against conventional methods in solving optimization problems. It is worth mentioning that it is 

impossible to find an algorithm to reach to the global optimum for all class of problems. If an 

algorithm is tuned for an elevated performance over one class of problems, it is offset by the 

performance over another class.  

 

2. Meta-heuristics Algorithms 
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There are two important features in meta-heuristic optimization algorithms: (1) exploration and 

(2) exploitation. Exploration is the ability to globally search the space. This ability is associated 

with escaping from local optima and preventing local optima stagnation. Conversely, 

exploitation is the ability to locally search around promising solutions in an effort to increase 

their quality. Good performance is achieved by a suitable tradeoff between these two features. 

All population-based algorithms use these features but with different operators and mechanisms. 

Based on the source of inspiration, meta-heuristics are mainly divided into four classes of: (i) 

evolutionary algorithms, (ii) swarm intelligence, and (iii) physics-based, and (iv) human-based 

methods. Evolutionary algorithms mimic rules in natural evolution. They use operators inspired 

by biology, such as cross-over and mutation. The most widely used evolutionary algorithm is 

GA, which is inspired by Darwinian evolutionary theory. GA uses the cross-over concept to 

produce improved solutions, called offspring, based on some fitted solutions, defined as parents. 

Cross-over, which naturally occurs in nature and helps maintain diversity in ecosystems; or in 

this sense, to explore the domain. Mutations cause the offspring to have characteristics different 

from their parents. This operator in GA is aimed at local search and exploitation of results. Some 

solutions and their dimensions experience mutation, defined by a function, and selected by a 

parameter such as mutation probability and percentage. Differential evolution [11], evolutionary 

programming [12] and evolution strategy [13] are other examples of this class. 

Swarm intelligence is another class of meta-heuristics, which imitates the social behavior of 

animals in groups (i.e., flocks, herds, or schools). The main feature of this class is sharing of 

collective information of all individuals during the optimization process. The most widely used 

algorithm in this class is PSO, developed by Kennedy and Eberhart [8]. PSO simulates the 

behavior of birds flying together in flocks. PSO considers some candidates (particles) that fly 

over the search space in an effort to find improved solutions. During the search, they all follow 

the best solutions in their paths. The particles trace this path by considering their own position of 

best solutions, known as ‘pbest,’ along with the best solution obtained so far, called ‘gbest.’ 

Other methods of this class include: Ant Colony Optimization [10], Cuckoo Search [14], Grey 

Wolf Optimizer [6], Salp Swarm Algorithm [15], and Dolphin Echolocation [16]. 

The third class of optimization algorithms are physics-based. These algorithms originate from 

physical laws in nature, and typically characterize the interaction of search agents according to 

governing rules rooted in physical processes. One of the most widely used algorithms in this 

class is Simulated Annealing [9], which uses thermodynamics laws applied to heating and then 

controlled cooling of a material to increase the size of its crystals. Gravitational Search 

Algorithm [17] employs Newton’s gravitational laws between masses and their interactions to 

update the position toward the optimum point. Charged System Search [18] takes advantage of 

combining rules of physics (Coulomb’s law of electrostatics) and mechanics (Newtonian laws of 

mechanics) to perform the optimization.  

The final class of optimization is human-based algorithm, which is inspired by human 

interactions and human behavior in societies. For example, Imperialist Competitive Algorithm 

(ICA) [19] is based on the human socio-political evolution process. The populations (countries) 

in ICA are divided into two groups: colonies and imperialists states. The core of this algorithm is 
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based on the competition among imperialists to take control of the colonies. In the competition, 

weak empires collapse and there will be only one imperialist that takes possession of all colonies. 

Another human-based algorithm is the Teaching-Learning-Based Optimization (TLBO), which is 

inspired by the influence of a teacher on learners [20]. The population in this method is divided 

into two parts: the “teacher phase,” meaning learning from the teacher, and the “learner phase,” 

meaning learning by interacting with other learners. These phases are consequently iterated to 

produce better results until convergence is achieved. 

This paper develops a novel algorithm named Equilibrium Optimizer (EO), inspired by physics-

based dynamic source and sink models used to estimate equilibrium states. EO falls into the third 

class of optimization algorithms, as it originates from physical laws in nature. 

 

3. Equilibrium Optimizer 

This section presents the inspiration, mathematical model, and algorithm of the Equilibrium 

Optimizer (EO). 

 3.1. Inspiration  

The inspiration for the EO approach is a simple well-mixed dynamic mass balance on a control 

volume, in which a mass balance equation is used to describe the concentration of a nonreactive 

constituent in a control volume as a function of its various source and sink mechanisms. The 

mass balance equation provides the underlying physics for the conservation of mass entering, 

leaving, and generated in a control volume. A first-order ordinary differential equation 

expressing the generic mass-balance equation [21], in which the change in mass in time is equal 

to the amount of mass that enters the system plus the amount being generated inside minus the 

amount that leaves the system, is described as: 

 
  

  
               

 

C is the concentration inside the control volume ( ),  
  

  
 is the rate of change of mass in the 

control volume,   is the volumetric flow rate into and out of the control volume,     represents 

the concentration at an equilibrium state in which there is no generation inside the control 

volume, and   is the mass generation rate inside the control volume. When  
  

  
 reaches to zero, 

a steady equilibrium state is reached. A rearrangement of Eq (1) allows to solve for 
  

  
 as a 

function of 
 

 
; where 

 

 
 represents the inverse of the residence time, referred to here as  , or the 

turnover rate (i.e.,    
 

 
 ). Subsequently, Eq (1) can also be rearranged to solve for the 

concentration in the control volume (C) as a function of time (t): 
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Eq (3) shows the integration of Eq (2) over time: 

   
  

        
 
 

 

  

    
 

  

     

 

This results in:  

                 
 

  
          

 

In the Eq (4), F is calculated as follows:  

                      
 

Where    and    are the initial start time and concentration, dependent on the integration 

interval. Eq (4) can be used to either estimate the concentration in the control volume with a 

known turnover rate or to calculate the average turnover rate using a simple linear regression 

with a known generation rate and other conditions.  

EO is designed in this sub-section using the above equations as the overall framework. In EO, a 

particle is analogous to a solution and a concentration is analogous to a particle’s position in the 

PSO algorithm. As Eq (4) shows, there are three terms presenting the updating rules for a 

particle, and each particle updates its concentration via three separate terms. The first term is the 

equilibrium concentration, defined as one of the best-so-far solutions randomly selected from a 

pool, called the equilibrium pool. The second term is associated with a concentration difference 

between a particle and the equilibrium state, which acts as a direct search mechanism. This term 

encourages particles to globally search the domain, acting as explorers. The third term is 

associated with the generation rate, which mostly plays the role of an exploiter, or solution 

refiner, particularly with small steps, although it sometimes contributes as an explorer as well. 

Each term and the way they affect the search pattern is defined in the following.  

3.2.1 Initialization and function evaluation 

Similar to most meta-heuristic algorithms, EO uses the initial population to start the optimization 

process. The initial concentrations are constructed based on the number of particles and 

dimensions with uniform random initialization in the search space as follows: 
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        is the initial concentration vector of the i-th particle,      and      denote the minimum 

and maximum values for the dimensions, Randi is a random vector in the interval of [0,1], and n 

is the number of particles as the population. Particles are evaluated for their fitness function and 

then are sorted to determine the equilibrium candidates. 

3.2.2. Equilibrium pool and candidates       

The equilibrium state is the final convergence state of the algorithm, which is desired to be the 

global optimum. At the beginning of the optimization process, there is no knowledge about the 

equilibrium state and only equilibrium candidates are determined to provide a search pattern for 

the particles. Based on different experiments under different type of case problems, these 

candidates are the four best-so-far particles identified during the whole optimization process plus 

another particle, whose concentration is the arithmetic mean of the mentioned four particles. 

These four candidates help EO to have a better exploration capability, while the average helps in 

exploitation. The number of candidates is arbitrary and based on type of the optimization 

problem. One might use other numbers of candidates (e.g. 3 or 5), which is consistent with the 

literature [6]. For example, GWO uses three best-so-far candidates (alpha, beta, and gamma 

wolves) to update the positions of the other wolves. However, using less than four candidates 

degrades the performance of the method in multimodal and composition functions but will 

improve the results in unimodal functions. More than four candidates will have the opposite 

effect. These five particles are nominated as equilibrium candidates and are used to construct a 

vector called the equilibrium pool:   

                                                             

 

Each particle in each iteration updates its concentration with random selection among candidates 

chosen with the same probability. For instance, in the first iteration, the first particle updates all 

of its concentrations based on        ; then, in the second iteration, it may update its 

concentrations based on          . Until the end of the optimization process, each particle will 

experience the updating process with all of the candidate solutions receive approximately the 

same number of updates for each particle.  

3.2.3. Exponential term ( ) 

The next term contributing to the main concentration updating rule is the exponential term (F). 

An accurate definition of this term will assist EO in having a reasonable balance between 

exploration and exploitation. Since the turnover rate can vary with time in a real control volume, 

  is assumed to be a random vector in the interval of [0,1]. 

                    

 

Where time,  , is defined as a function of iteration (Iter) and thus decreases with the number of 

iterations: 
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Where      and          present the current and the maximum number of iterations, 

respectively, and    is a constant value used to manage exploitation ability. In order to guarantee 

convergence by slowing down the search speed along with improving the exploration and 

exploitation ability of the algorithm, this study also considers: 

    
 

  
                                        

 

Where    is a constant value that controls exploration ability. The higher the   , the better the 

exploration ability and consequently the lower exploitation performance. Similarly, the higher 

the   , the better the exploitation ability and the lower the exploration ability. The third 

component,            , effects on the direction of exploration and exploitation. r is a random 

vector between 0 and 1. For all of the problems subsequently solved in this paper,    and    are 

equal to 2 and 1, respectively. These constants are selected through empirical testing of a subset 

of test functions. However, these parameters can be tuned for other problems as needed.  

Eq. (11) shows the revised version of Eq. (8) with the substitution of Eq. (10) into Eq. (8): 

                                  

  
3.2.4. Generation rate (G) 

The generation rate is one of the most important terms in the proposed algorithm to provide the 

exact solution by improving the exploitation phase. In many engineering applications, there are 

many models that can be used to express the generation rate as a function of time [22]. For 

example, one multipurpose model that describes generation rates as a first order exponential 

decay process is defined as: 

        
                

 

Where G0 is the initial value and k indicates a decay constant. In order to have a more controlled 

and systematic search pattern and to limit the number of random variables, this study assumes 

    and uses the previously derived exponential term. Thus, the final set of generation rate 

equations are as follows: 

       
                       

 

Where: 
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Where    and    are random numbers in [0,1] and GCP vector is constructed by the repetition of 

the same value resulted from Eq. (15). In this equation, GCP is defined as the Generation rate 

Control Parameter, which includes the possibility of generation term’s contribution to the 

updating process. The probability of this contribution which specifies how many particles use 

generation term to update their states is determined by another term called Generation 

Probability (GP). The mechanism of this contribution is determined by Eqs. (14) and (15). Eq. 

(15) occurs at the level of each particle. For example, if GCP is zero, G is equal to zero and all 

the dimensions of that specific particle are updated without a generation rate term. A good 

balance between exploration and exploitation is achieved with GP = 0.5. Finally, the updating 

rule of EO will be as follows:  

                        
  

    
            

Where F is defined in Eq. (11), and V is considered as unit. 

The first term in Eq. 16 is an equilibrium concentration, where the second and third terms 

represent the variations in concentration. The second term is responsible for globally searching 

the space to find an optimum point. This term contributes more to exploration, thereby taking 

advantage of large variations in concentration (i.e., a direct difference between an equilibrium 

and a sample particle). As it finds a point, the third term contributes to making the solution more 

accurate. This term thus contributes more to exploitation and benefits from small variations in 

concentration, which are governed by the generation rate term (Eq. 13). Depending on 

parameters such as the concentrations of particles and equilibrium candidates, as well as the 

turnover rate ( ), the second and third terms might have the same or opposite signs. The same 

sign makes the variation large, which helps to better search the full domain, and the opposite sign 

makes the variation small, aiding in local searches.  

Although the second term attempts to find solutions relatively far from equilibrium candidates 

and the third term attempts to refine the solutions closer to the candidates, this is not always 

happening. Small turnover rates (e.g., 0.05) in the denominator of the third term increase its 

variation and helps the exploration in some dimensions as well. Fig (1) demonstrates a 1-D 

version of how these terms contribute to exploration and exploitation.        is representative of 

the second term in Eq. 16 while         represents the third term (G is the function of G0). The 

generation rate terms (Eqs. 13-15) control these variations. Because   changes with each 

dimension’s change, this large variation only happens to those dimensions with small values of 

 . It is worth mentioning that this feature works similar to a mutation operator in evolutionary 

algorithms and greatly helps EO to exploit the solutions.  
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Fig. 2 shows a conceptual sketch of the collaboration of all equilibrium candidates on a sample 

particle and how they affect concentration updating, one after another, in the proposed algorithm. 

Since the topological positions of equilibrium candidates are diverse in initial iterations, and the 

exponential term generates large random numbers, this step by step updating process helps the 

particles to cover the entire domain in their search. An opposite scenario happens in the last 

iterations, when the candidates surround the optimum point by similar configurations. At these 

times, the exponential term generates small random numbers, which helps in refining the 

solutions by providing smaller step sizes. This concept can also be extended to higher 

dimensions as a hyperspace whereby the concentration will be updated with the particle’s 

movement in n-dimensional space. 

    
      

        
        

   

       

   

       

       
       

Sample particles around an equilibrium candidate (C
1
, C

2
) 

An equilibrium candidate (C
eq

) 

Probable positions of particles with       

Probable positions of particles with        

Figure 1.   1-D presentation of concentrations updating aid in exploration and exploitation 
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Figure 2. Equilibrium candidates’ collaboration in updating a particles’ concentration in 2D dimensions 

3.2.5. Particle’s memory saving 

Adding memory saving procedures assists each particle in keeping track of its coordinates in the 

space, which also informs its fitness value. This mechanism resembles the pbest concept in PSO. 

The fitness value of each particle in the current iteration is compared to that of the previous 

iteration and will be overwritten if it achieves a better fit. This mechanism aids in exploitation 

capability but can increase the chance of getting trapped in local minima if the method does not 

benefit from global exploration ability [23]. The pseudo code of the proposed EO algorithm 

along with a memory saving function is presented in Fig 3. 

 

3.2.6. Exploration ability of EO 

To summarize these terms, there are several parameters and mechanisms in EO that lead to 

exploration, as follows:  

   :  controls the exploration quantity (magnitude) of the algorithm. It determines how far 

the new position would be to the equilibrium candidate. The higher the    value, the 

higher the exploration ability. Note that numbers greater than three would considerably 

degrade the exploration performance. Since    can magnify the concentration variation, it 

should be large enough to expand the exploration ability. However, based on empirical 

testing, it was found that values greater than three push the agents to search on 

boundaries. This recommendation is similar to the recommendation for free parameters in 

other algorithms. For example, in PSO, it is recommended that the sum of social and 

cognitive parameter should be less than or equal to four [24].   
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            : controls the exploration direction. Since r is in [0,1] with uniform 

distribution, there is equal probability of negative and positive signs. 

 Generation probability (GP): controls the participation probability of concentration 

updating by the generation rate. GP = 1 means that there will be no generation rate term 

participating in the optimization process. This state emphasizes high exploration 

capability, and often leads to non-accurate solutions. GP = 0 means that the generation 

rate term will always be participating in the process, which increases the stagnation 

probability in local optima. Based on empirical testing, GP = 0.5 provides a good balance 

between exploration and exploitation phases. 

 Equilibrium pool: This vector consists of five particles. The selection of five particles is 

somewhat arbitrary but was chosen based on empirical testing. In the initial iterations, the 

candidates are all far away from each other in distance. Updating the concentrations 

based on these candidates improves the algorithm’s ability to globally search the space. 

The average particle also helps to discover unknown search spaces at initial iterations 

when particles are far away from each other. 

 

 
Figure 3.  Detailed pseudo code of EO 

Initialize the particle’s populations   i=1,…,n 

Assign equilibrium candidates’ fitness a large number 

Assign free parameters a1=2; a2=1; GP=0.5; 

While Iter < Max_iter 

 For i=1: number of particles (n) 

 Calculate fitness of ith particle  

         If                         

                 Replace        with     and fit (      ) with          

        Elseif                         &                          

  Replace        with     and fit (      ) with          

        Elseif                         &                         &                       

  Replace        with     and fit (      ) with          

       Elseif                         &                        &                        &                         

  Replace        with     and fit (      ) with           

       End (If) 

                End (For)   

                                                

         Construct the equilibrium pool                                                            

         Accomplish memory saving (if Iter > 1) 

         Assign       
    

        
 
    

    

        
 
                                                Eq (9) 

              For i=1: number of particles (n) 

                       Randomly choose one candidate from the equilibrium pool (vector) 

        Generate random vectors of    ,                                 from   Eq (11) 

                       Construct                                                     Eq (11)   

       Construct               
                  

                           
                             Eq (15)  

       Construct   
                       

                                      Eq (14)  

       Construct       
               Eq (13) 

                       Update concentrations                      
  

     
             Eq (16) 

              End (For) 

        Iter=Iter+1 

End while 
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3.2.7. Exploitation ability of EO 

The main parameters and mechanisms to perform exploitation and local search in EO are as 

follows:  

   : this parameter is similar to   , but controls the exploitation feature. It determines the 

quantity (magnitude) of exploitation by digging around the best solution. 

            : controls the exploitation quality (direction) as well. It specifies the 

direction of a local search. 

 Memory saving: memory saving, saves a number of best-so-far particles and substitutes 

them for worse particles. This feature directly improves the EO’s ability for exploitation. 

 Equilibrium pool: by lapse of iteration, exploration fades out and exploitation fades in. 

Thus, in the last iterations, where the equilibrium candidates are close to each other, the 

concentration updating process will aid in local search around the candidates, leading to 

exploitation.  

3.2.8. Computational Complexity analysis 

Computational complexity of an optimization algorithm is presented by a function relating the 

running time of the algorithm to the input size of problem. For this purpose, Big-O notation is 

used here as a common terminology. Complexity is dependent upon the number of particles (n), 

the number of dimensions (d), and the number of iterations    , and     is the cost of function 

evaluation. 

                                                                          
                                             ) 

     

Therefore, the overall computational complexity is defined as: 

                                         

 

As it is shown, the complexity is of the polynomial order. Thus, EO can be considered as an 

efficient algorithm. The complexity of EO with that of PSO and GA (as two of the most well-

known meta-heuristics) is compared in Appendix A.   

 

4. Results on Benchmark Functions 

This section demonstrates the effectiveness of the proposed algorithm on a set of 58 benchmark 

test functions, including 29 commonly used unimodal, multimodal, and composition functions, 

as well as another 29 functions from the CEC-BC-2017 test suite [25]. This study utilizes both 

quantitative and qualitative validation metrics. Quantitative metrics include the average and 

standard deviation values for different test functions and qualitative metrics include trajectory, 

search, optimization, and average fitness history. 

4.1 Mathematical optimization test problems  

Fig (4) shows a two-dimensional version of the three categories of mathematical functions that 

this study uses to evaluate EO. The first category includes unimodal functions (F1-F7) that have 

a single optimum solution, which purposefully challenges the exploitation ability of the 
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algorithm. The second category includes multi-modal functions (F8-F13) that have more than 

one optimal solution. Local optimal solutions in these functions evaluate the exploration 

performance of the algorithm, while an algorithm needs to be able to globally search the space 

and avoid being trapped in local optima in order to find the global optima. The third category 

includes fixed-dimensional multi-modal functions (F14-F23), which are similar to multi-modal 

functions but in low and fixed dimensions. These functions along with their dimensions 

employed in this study and constant coefficients are available in [6,17,25].  

To further challenge the performance of EO, this study uses composite test functions (CF1-CF6) 

that mimic the complexity of a real search domain by having a large number of local optima and 

different shapes of the functions in different regions. Also, these functions are composed by 

shifting, rotating, expanding, and hybridizing unimodal and multimodal functions. Consequently, 

these functions represent more challenging optimization problems. More details about the 

composition function can be found in CEC 2005 technical report [26].  

For all test categories, EO uses 30 particles along with 500 iterations (15,000 maximum function 

evaluations). Similarly, to provide a fair comparison, the other methods also use 15,000 

maximum function evaluations. For example, GA used 30 populations along with 500 

generations. The analogous terminology of this configuration for GWO is stated by 30 search 

agents associated with 500 iterations. In LSHADE-SPACMA, we used 18D (D is dimension) 

number of initial populations, but since the population linearly decreases over the iteration, we 

used 15,000 maximum function evaluations for a fair comparison. Table 1 shows the setting of 

parameters for each algorithm.  

Table 1. parameter settings for algorithms 

Algorithm Parameter Value 

PSO Topology Fully connected 

 Cognitive and social constant (C1, C2) 2, 2 

Inertia weight Linear reduction from 0.9 to 0.1 

 Velocity limit 10% of dimension range 

GWO Convergence parameter (a) Linear reduction from 2 to 0 

GA Type Real coded 

 Selection Roulette wheel (Proportionate) 

Crossover Whole Arithmetic 

 (Probability=0.8, α= [-0.5,1.5]) 

Mutation Gaussian (Probability=0.05) 

GSA Alpha, G0, Rnorm, Rpower 20, 100, 2, 1 

SSA Leader position update probability 0.5 

SHADE Pbest, Arc rate 0.1, 2 

LSHADE-SPACMA Learning rate (c), threshold 0.8, max_nfes/2 

NP, H, Pbest, Arc rate,  18D, 5, 0.11, 1.4, (D=dimension size) 

 Probability variable (Fcp) 0.5 
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Figure 4. A two-dimensional perspective view for couple of the mathematical benchmark functions 

The comparative methods for this section include three categories of optimization methods: i) 

Genetic Algorithm (GA) [7] and Particle Swarm Optimization (PSO) [8] as the most well-known 

and well-studied evolutionary and swarm intelligence algorithms; ii) Gravitational Search 

Algorithm (GSA) [17], Grey Wolf Optimizer (GWO) [6], and Salp Swarm Algorithm (SSA) [15] 

as recent and effective meta-heuristics; and iii) Evolution Strategy with Covariance Matrix 

Adaptation (CMA-ES) [13], Success-History Based Parameter Adaptation Differential Evolution 

(SHADE) (one of the CEC 2013 competitors) [27], and SHADE with linear population size 

reduction hybridized with semi-parameter adaptation of CMA-ES (LSHADE-SPACMA) (one of 

the CEC 2017 winners) as high performance optimizers. It is noted that the comparison for all 

algorithms is done with equal floating-point precision, so the difference between results are due 

to the performance of the method. 

4.2. EO’s performance on unimodal test functions 

Unimodal functions are designed to test the exploitation ability of a method. From the results on 

unimodal functions in Table 2 (F1-F7), it is evident that EO outperformed almost all methods on 

the majority of functions. As it is seen, EO was able to achieve the first rank in unimodal test 

functions. This superior performance is also seen on both average and standard deviation in 

functions of F1, F2, F3, F4, and F7. In F5, EO received the second rank after SHADE with only 

a slight difference in the average outcome. For the other function (F6), the results of EO were 

competitive to the other methods. Based on the characteristics of unimodal functions, it can be 

stated that EO benefits from high exploitation ability.  
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Table 2. Optimization results and comparison for functions 
 

Function  EO PSO GWO GA GSA SSA CMA-ES SHADE 
LSHADE-

SPACMA 

U
n

im
o
d

al
 

F1 Ave 3.32E-40 9.59E-06 6.59E-28 0.55492 2.53E-16 1.58E-07 1.42E-18 1.42E-09 0.2237 

Std 6.78E-40 3.35E-05 1.58E-28 1.23010 9.67E-17 1.71E-07 3.13E-18 3.09E-09 0.1480 

F2 Ave 7.12E-23 0.02560 7.18E-17 0.00566 0.05565 2.66293 2.98E-07 0.0087 21.1133 

Std 6.36E-23 0.04595 7.28E-17 0.01443 0.19404 1.66802 1.7889 0.0213 9.5781 

F3 Ave 8.06E-09 82.2687 3.29E-06 846.344 896.534 1709.94 1.59E-05 15.4352 88.7746 

Std 1.60E-08 97.2105 1.61E-05 161.499 318.955 11242.3 2.21E-05 9.9489 47.2300 

F4 Ave 5.39E-10 4.26128 5.61E-07 4.55538 7.35487 11.6741 2.01E-06 0.9796 2.1170 

Std 1.38E-09 0.67730 1.04E-06 0.59153 1.74145 4.1792 1.25e-06 0.7995 0.4928 

F5 Ave 25.32331 92.4310 26.81258 268.248 67.5430 296.125 36.7946 24.4743 28.8255 

Std 0.169578 74.4794 0.793246 337.693 62.2253 508.863 33.4614 11.2080 0.8242 

F6 Ave 8.29E-06 8.89E-06 0.816579 0.56250 2.5E-16 1.80E-07 6.83E-19 5.31E-10 0.2489 

Std 5.02E-06 9.91E-06 0.482126 1.71977 1.74E-16 3.00E-07 6.71E-19 6.35E-10 0.1131 

F7 Ave 0.001171 0.02724 0.002213 0.04293 0.08944 0.1757 0.0275 0.0235 0.0047 

Std 6.54E-04 0.00804 0.001996 0.00594 0.04339 0.0629 0.0079 0.0088 0.0019 

M
u

lt
im

o
d
al

 (
H

ig
h

 

d
im

en
si

o
n

al
) 

F8 Ave -9016.34 -6075.85 -6123.1 -10546.1 -2821.1 -7455.8 -7007.1 -11713.1 -3154.4 

Std 595.1113 754.632 909.865 353.158 493.037 772.811 773.94 230.49 317.921 

F9 Ave 0 52.8322 0.31052 30.8229 25.9684 58.3708 25.338 8.5332 67.542 

Std 0 16.7068 0.35214 7.57295 7.47006 20.016 8.5539 2.1959 10.016 

F10 Ave 8.34E-14 0.00501 1.06E-13 1.63551 0.06208 2.6796 15.587 0.3957 0.0393 

Std 2.53E-14 0.01257 2.24E-13 0.46224 0.23628 0.8275 7.9273 0.5868 0.0151 

F11 Ave 0 0.02381 0.00448 0.56112 27.7015 0.0160 5.76E-15 0.0048 0.8948 

Std 0 0.02870 0.00665 0.26942 5.04034 0.0112 6.18E-15 0.0077 0.1078 

F12 Ave 7.97E-07 0.02764 0.05343 0.03088 1.79961 6.9915 2.87E-16 0.0346 8.18E-04 

Std 7.69E-07 0.05399 0.02073 0.04092 0.95114 4.4175 5.64E-16 0.0875 0.0010 

F13 Ave 0.029295 0.00732 0.65446 0.36222 8.89908 15.8757 3.66E-04 7.32E-04 0.0102 

Std 0.035271 0.01050 0.00447 0.30975 7.12624 16.1462 0.0020 0.0028 0.0103 

M
u

lt
im

o
d
al

 (
F

ix
ed

-d
im

en
si

o
n

al
) 

F14 Ave 0.998004 3.84902 4.042493 0.998004 5.859838 1.1965 10.237 0.998004 1.9416 

Std 1.54E-16 3.24864 4.252799 4.23E-12 3.831299 0.5467 7.5445 5.83E-17 2.9633 

F15 Ave 0.002398 0.002434 0.00337 0.005206 0.003673 0.000886 0.0057 0.002374 3.00E-04 

Std 0.006097 0.006081 0.00625 0.007028 0.001647 0.000257 0.0121 0.0061 1.93E-19 

F16 Ave -1.03162 -1.03162 -1.03163 -1.03162 -1.03163 -1.03163 -1.03162 -1.03162 -1.03162 

Std 6.04E-16 6.51E-16 2.13E-08 1.34E-06 4.88E-16 6.13E-14 6.77E-16 6.51E-16 1.00E-15 

F17 Ave 0.397887 0.397887 0.397889 0.397890 0.397887 0.397887 0.397887 0.397887 0.397887 

Std 0 0 2.13E-04 1.08E-05 0 3.41E-14 0 3.24E-16 0 

F18 Ave 3 3 3.000028 3.000002 3 3 8.4000 3 3 

Std 1.56E-15 1.97E-15 4.24E-04 4.06E-06 4.17E-15 2.20E-13 20.550 1.87E-15 1.25E-15 

F19 Ave -3.86278 -3.86278 -3.86263 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 

Std 2.59E-15 2.65E-15 0.00273 1.63E-07 2.29E-15 1.47E-10 2.7E-15 2.69E-15 2.7E-15 

F20 Ave -3.2687 -3.26651 -3.28654 -3.27443 -3.31778 -3.2304 -3.2903 -3.27047 -3.28234 

Std 0.05701 0.06032 0.10556 0.05924 0.023081 0.0616 0.0535 0.0599 0.0570 

F21 Ave -8.55481 -5.9092 -8.7214 -5.72536 -5.95512 -9.6334 -5.6642 -9.2343 -9.4735 

Std 2.76377 3.59559 2.6914 3.32622 3.73707 1.8104 3.3543 2.4153 1.7626 

F22 Ave -9.3353 -7.3360 -9.2415 -6.94349 -10.4015 -9.0295 -8.4434 -10.1479 -10.2258 

Std 2.43834 3.47381 1.61254 3.56118 2.01408 2.3911 3.3388 1.3969 0.9704 

F23 Ave -9.63655 -8.7482 -10.5343 -7.0208 -10.5364 -9.0333 -8.0750 -10.2809 -10.5364 

Std 2.38811 2.55743 0.00125 3.85233 2.6E-15 2.9645 3.5964 1.3995 1.77E-15 

C
o

m
p

o
si

ti
o

n
 

F24 

(CF1) 

Ave 66.666 151.18 90.229 86.671 20.000 43.333 209.48 63.333 3.3333 

Std 95.893 123.49 105.51 97.324 48.423 67.891 215.06 80.872 18.254 

F25 
(CF2) 

Ave 89.837 204.92 163.56 142.72 186.77 31.133 189.83 40.508 0.0000 

Std 56.366 118.89 89.476 119.58 62.726 52.149 170.79 61.462 0.0000 

F26 

(CF3) 

Ave 161.73 273.73 210.61 214.67 218.55 235.11 274.20 139.48 104.29 

Std 33.227 110.87 95.214 73.470 117.02 80.839 213.89 33.366 14.266 

F27 

(CF4) 

Ave 356.44 487.45 418.63 447.01 492.33 232.44 372.99 316.62 278.63 

Std 115.66 151.15 156.16 112.34 99.549 43.643 152.12 96.752 7.0670 

F28 
(CF5) 

Ave 52.309 214.56 143.81 91.831 232.32 27.538 224.85 39.515 2.02E-17 

Std 95.565 180.03 149.12 73.898 75.405 41.598 286.23 51.233 7.69E-17 

F29 

(CF6) 

Ave 768.48 794.50 837.47 811.21 845.47 628.69 845.26 684.51 540.23 

Std 192.94 175.94 136.45 173.11 80.524 184.48 139.52 201.22 122.75 

Friedman mean rank 2.86 5.95 5.14 6.59 5.62 6.00 5.47 3.47 3.91 

Rank 1 7 4 9 6 8 5 2 3 
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4.3. EO’s performance on multimodal test functions 

Multimodal functions can evaluate the exploration ability of an algorithm because of their high 

number of local optima. The number of locally optimal solutions in these types of functions 

exponentially increases in proportion to the number of dimensions. The results of EO on 

multimodal functions are given in Table 2 for high dimensional (F8-F13) and for fixed 

dimensional functions (F14-F23). The table shows that EO outperformed other methods on F9, 

F10, and F11 high dimensional problems. It is worth noting that on F9 and F11, EO was able to 

obtain the global optimum while most other methods did not. For F8, which is the most difficult 

function in this class, EO obtained the second rank after SHADE, which reached almost to the 

global optimum. For F12 and F13, CMA-ES showed better performance than other methods, 

while still EO showed competitive results especially for F12. It is important to note that in these 

functions, EO achieved the second-best performance after CMA-ES and actually ranked first in 

this class overall. In fixed dimensional problems, the performance of all methods was similar, 

and the results for EO are very competitive with the others. In functions F14, F16, F17, F18, and 

F19 in this class, EO reached the global optimum. For the remaining functions, EO’s results were 

very close to the global optimum.  

4.4. EO’s performance on composition functions 

Composite test cases are the most challenging test beds. These functions are designed to evaluate 

local minima avoidance performance as well as the exploration ability of a method. Table 2 

(F24-F29) shows the performance of EO on composition functions compared to other methods. 

Overall, LSHADE-SPACMA showed better performance compared to other methods and ranked 

first in this category. In most functions, EO ranked fourth among these methods after LSHADE-

SPACMA, SHADE, and SSA which are among the high-performance and recent optimizers. 

Although EO gained the fourth rank in this class, its results are competitive to SHADE and SSA 

in most functions. Since this class of functions are associated with too many local minima, in 

order to have a better understanding of distribution of results, the boxplot of results for each 

algorithm and function are shown in Figure 5. As an example, the local minima stagnation in all 

algorithms is evident in CF6 of Figure 5. Based on its boxplot, the results are clustered in two 

groups around 500 and 900. This is due to the complex topology of this function which makes 

the algorithms get stuck in local minima. This behavior is more or less observable in CF4 as 

well. 

To summarize, based on the results of Tables 2, EO showed excellent performance, on unimodal 

and multimodal functions and very good performance in fixed-dimensional multimodal functions 

among the other methods compared. The performance of EO in the composition class of 

functions was lower compared to previous classes. However, it is important to note that SHADE 

and LSHADE-SPACMA utilize a complex strategy and they are among the strongest 

competitors and winners of CEC 2013 and 2017, respectively. Based on the Friedman mean rank 

and overall rank, EO placed as the best performing method (ranked first) among methods 

considering all types of functions. The mean rank shows that the performance of SHADE and 

LSHADE-SPACMA is close to EO while performance of these three algorithms is by far better 

than all other algorithms. EO’s overall satisfying performance in this challenging class of 
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functions is attributable to the intermittent contribution of the generation rate term for 

concentration updating. Therefore, the results of this testing indicate that EO is a powerful and 

robust optimizer designed to conduct well-tuned exploration and exploitation. 

 

   

   
Figure 5. Boxplot of composition functions results for different algorithms 

4.5. Sensitivity analysis of EO’s parameters 

This section analyzes the sensitivity of three control parameters of EO, which are      , and   . 

This analysis indicates which parameters are robust and which parameters are sensitive to 

different inputs, and which parameters affect the performance of the algorithm. During the 

development of EO, this study performed a full factorial design with these parameters on one 

function from each category of unimodal, multimodal, and fixed-dimensional multimodal 

functions. The first function was picked from each category (i.e., F1, F8, and F14). The values of 

each parameter for the factorial design are defined as                     

                    ,                           . Since each of the 3 parameters have 5 

values, the full factorial will have 5*5*5=125 combinations of design. Each design is the fitness 

average of functions with maximum of 15,000 function evaluations and 30 independent runs. 

Figure 6 shows this sensitivity analysis for the 3 different functions. The x-axis shows the three 

control parameters and their associated values while the y-axis shows the average fitness for the 

functions. In F1 (Fig. 6a),    shows sensitivity to its left boundary while    and GP have the 

similar sensitivity to their right boundary, but all parameters showing robust behavior for their 

three middle values. In F8 (Fig. 6b),    shows a sensitive behavior to all values and having the 

best performance on its middle value (      while other parameters of    and GP acted robust 

on their different range. As showed in F1, the sensitivity is the lowest in their middle range. In 

F14 (Fig. 6c),    showed a high sensitivity in its left boundary while showing steady behavior 

for its right boundary.    and GP showed robust behavior for different values. The overall 
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behavior indicates that    is more sensitive than    and GP. Based on this analysis, the best 

value for    can be suggested as its middle value (i.e.,     ). For    and GP, which are more 

robust than   , any values other than their left and right boundaries can be selected. Being more 

conservative, the middle values are selected for these parameters (i.e.,      and       ) 

since the neighboring (left and right) boundaries to the middle value shows less sensitivity 

compared to other selections. This experiment also suggests that the design of EO accounted for 

the best value of EO’s control parameters in previous sections.  

 

   
(a) (b) (c) 

Figure 6. Sensitivity analysis of EO’s control parameters with different functions for (a) F1, (b) F8, and (c) F14 
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Figure 7. Qualitative metrics: search history, optimization history, average fitness history and trajectory in 1st dimension 
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4.6. Convergence Analysis of EO 

Fig. 7 illustrates the five qualitative metrics used to evaluate efficiency and effectiveness of EO 

when solving real problems: trajectory, search, optimization, and average fitness history. These 

metrics are evaluated by solving mathematical functions with an intentionally reduced number of 

particles/iterations (10/100) to show a clear pattern of search and how particles in EO contribute 

to finding optimum points. The dimension of the problems did not change and remained intact. 

Although these functions have high dimensions, the presented 2D views of the functions in Fig. 

7 provide insights on the domain’s topology. The first qualitative metric discussed here is the 

search history, which includes the concentration (position) of particles from the first iteration to 

the last iteration. The concentration is shown on the counter lines of the search space for better 

understanding of how particles are able to explore and exploit the domain. Search history can 

also reveal the pattern that the particles used to search the space. The search history results show 

that the particles tend to aggregate around the optimum point in unimodal functions more 

effectively than in multimodal and composite functions. This behavior of EO demonstrates its 

exploitation ability, while the appropriate scattering of particles in the search space of 

multimodal and composition functions shows the promising capability of EO’s exploration 

methods.  

The second metric employed here is the optimization history (convergence curve). This metric is 

the fitness of the best-so-far particle (      ) from the first to the last iteration. It shows how the 

global optimum is approximated by the algorithm with the lapse of iteration. There are various 

behaviors of optimization history for different types of functions. For unimodal functions, the 

curve is relatively smooth; for multimodal functions with high numbers of local optima, the 

behavior changes from smooth to step-like manner. This means that the algorithm has no 

improvement on that specified course of iterations due to the complexity of the domain, which 

can be seen in F8, F14, and CF2.  

Although the history shows how the global optimum is estimated by exploration and 

exploitation, it does not provide insight on the total behavior of particles participating in the 

optimization process to improve the result. This trend is shown by the average fitness history in 

the fourth column of Fig. 7. The descending trend of all history curves shows that all the 

particles are collaborating to improve the results by updating their concentrations to better ones 

as the iteration number increases. The stability of the curves is due to the memory saving 

process, which does not allow particles to move toward the regions with lower fitness. Omitting 

the memory saving feature will lead to fluctuating behavior of average fitness curves. For all of 

the test functions there is a close similarity between the average fitness and optimization history 

curves. This similarity reveals a search pattern that all the particles are following, a pattern which 

emphasizes collaborative searching rules rather than independent acting, led by equilibrium 

candidates.  

Another qualitative metric is the trajectory of particles, shown in column 5 of Fig. 7, which 

shows the variation of concentration (position) in the first dimension of the first particle. In all of 

the test functions, there is a sudden and abrupt oscillation in the first iterations, followed by a 

fade out in the last iterations. These sudden changes demonstrate exploration behavior by 
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globally searching the domain at the initial iterations, while subsequently stabilizing by local 

searching as the iteration number increases. According to Berg et al. [28], this trend can 

guarantee that an algorithm will finally converge to a global/local optimum point. Following the 

trajectory curves, one can notice that the fluctuations are related to the domain complexity. The 

more complex the domain, the more fluctuations occur. In unimodal functions, there are no 

fluctuations after a number of iterations. In multimodal functions, fluctuations are greater in 

magnitude and frequency and persist for greater numbers of iterations. This behavior 

demonstrates that EO benefits from well-tuned exploitation and exploration. 

 

   

   

   
Figure 8. Diversity history for unimodal, multimodal and composition functions 

Although there are some direct and explicit methods such as ancestry tree-based approach [29] 

for measuring exploration and exploitation, most researcher use indirect approaches such as 

diversity to measure these features [30]. From exploration-exploitation viewpoint, an increase in 

diversity means that solutions are very different, which indicates that an algorithm is in 

exploration phase, while a decrease means solutions are within a certain neighborhood, thus 

showing exploitation behavior [30].  In order to depict a balanced exploration and exploitation in 

EO, the diversity histories are presented as the final qualitative metric in Fig 7. The horizontal 

axis shows the number of iterations and the vertical axis indicates the average distance between 

particles (defined as the difference between concentrations). There is a decreasing distance trend 
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in all curves in Fig 8, again demonstrating a transient shift from exploration in initial iterations to 

exploitation in the final iterations. In unimodal functions (F1, F2, F3), this shift occurred very 

rapidly since EO is able to recognize the global optimum and tries to exploit it further. In 

multimodal and composite functions, EO showed an oscillating behavior but still kept the overall 

trend. This behavior is due to a large number of extrema in these functions. This metric can be 

used as further evidence for a well-defined balance between exploration-exploitation of the 

proposed EO algorithm. 

4.7. Comparative convergence analysis 

The previous section analyzed the convergence behavior of EO using defined qualitative metrics. 

This section compares the convergence behavior of other methods along with the EO algorithm. 

In order to have a concise and efficient comparison between algorithms, this study picked the 

best performing algorithm in each method category, including PSO in the category of most well-

studied algorithms, GWO in the recent methods category, and SHADE in the high-performance 

optimizers category. This selection is based on the lowest obtained mean ranked among all 29 

functions. For the functions, the first function of each category was used: F1 from unimodal, F8 

from multimodal, F1 from fix dimensional, and CF1 from composition functions. Figs 9 and 10 

show qualitative metrics for the mentioned methods and functions. Since trajectory and diversity 

have fluctuating behaviors, they are depicted in a separate figure for each algorithm for easy 

following of the readers.  

In F1, which is a unimodal function, EO and GWO were more successful than PSO and SHADE 

in recognizing the optimum point and reached better results with fewer iterations. The trajectory 

and diversity of EO and GWO are similar to each other and have more stable behavior than PSO 

and SHADE. In the multimodal function (F8), although SHADE has better results than other 

methods, as shown in the optimization history, the average fitness history of EO has better 

performance than other methods. It is due to the memory saving feature of EO, which does not 

allow particles to move toward less fitted regions. The trajectory and diversity of EO and 

SHADE in this function has more aggressive behavior than PSO and GWO, meaning that they 

were more successful in exploring the domain. Based on the optimization history of F14 depicted 

in Fig 10, EO and SHADE estimated the optimum point in fewer iterations compared to PSO and 

GWO. One can notice a sudden decrease of fitness for algorithms in the last iterations shown in 

average fitness history. This decrease is due to the deep and narrow optimum points shaping the 

topology of F14, which is observable in Fig 7. In the last iterations where algorithms try to 

search the neighborhood, gathering the search agents in these regions considerably improve the 

fitness of search agents. 

 Finally, for CF1, the optimization and average fitness history show that EO and SHADE 

performed better than PSO and GWO. The high magnitude and frequency of oscillation in 

trajectories of EO and SHADE also demonstrate key differences. The diversity plot of PSO and 

GWO in this function fades out more rapidly than EO and SHADE. Overall, based on behavioral 

analysis of Figs 8-10, SHADE has the best exploration ability among the compared methods. 

However, some diversity plots of SHADE show that it cannot show low diversity in last 

iterations compared to other methods, which is why SHADE does not perform well in unimodal 
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functions. Among the compared methods, PSO has the lowest exploration ability, showing fewer 

fluctuations in trajectory and damping sooner in diversity compared to the other methods. The 

analyses also indicate that EO showed more balanced behavior, having high fluctuations in initial 

iterations and low fluctuations in the last iterations in trajectory, and a well-balanced transient 

from high diversity to low diversity during the course of iterations. While the EO’s exploration 

ability is not comparable to SHADE, the SHADE’s exploitation ability is not as good as EO. 

However, EO’s combined exploration and exploitation ability is better than GWO and PSO. The 

more detailed comparative behavioral analysis with all methods and functions can be considered 

as independent study.   
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Figure 9. Comparative qualitative metrics for F1 and F8 
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Figure 10. Comparative qualitative metrics for F14 and CF1 

4.8. Scalability analysis of EO 

This section evaluates the performance of the EO algorithm for low- and high-dimensional 

problems using a scalability analysis. Since real-world optimization problems often involve a 

large number of variables, the algorithm starts from 10 to 200 dimensions with a step size of 10. 

To further challenge the performance and demonstrate the efficiency of the proposed algorithm, 

the test is carried out with a fixed number of iterations (500) and particles (30) as the dimension 

increases. This test shows how efficiently the algorithm will perform proportional to the 

dimension increase, while the number of iterations and particles both remain fixed.  

The test is conducted on two samples of unimodal and multimodal functions to assess the 

exploration and exploitation ability. The results are compared with those of most well-known 

algorithms like GA, PSO and GWO as well. Fig. 11 shows the results for two unimodal (F1, F7) 

and multimodal (F8, F9) functions in logarithmic scale. Clearly, the performance of EO is 

reduced as the dimension increases. Since the iteration and particles are fixed, this trend is 

expected. In F1, all algorithms reach close to a steady state as the dimension increases. This 

shows that the performance of all algorithms is not substantially reduced when dealing with large 

numbers of variables, while EO has the best trend compared to the others. In another unimodal 

function, F7, EO performance is similar to GWO at low dimensions, while EO outperforms 

GWO at higher dimensions (and both are better than PSO and GA). In F8, a multimodal 

function, EO outperformed GWO and PSO, but had slightly worse performance than GA in low 

dimensions yet surpassed GA by dimension 50. Since this function has a negative global 

optimum and the magnitude of the optimum point increases linearly with dimension (        
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  , the steady behavior with increased dimensionality is not desired here. In other words, as the 

dimension increases, the expectation is to observe a decrease in fitness with linear behavior. 

Although all of the tested algorithms in this case have a similar overall behavior, EO again 

showed a better performance than the others.  In the last function, F9, EO demonstrates a very 

interesting behavior.  In all dimensions, EO was able to reach the global optimum point (zero) 

with perfect performance (and thus it is not shown in Fig. 11). The scalability test of EO for 

some samples of unimodal and multimodal functions boast its robustness in exploitation and 

exploration. 

To summarize these comparisons, the convergence and scalability analysis along with the prior 

results comparison demonstrates EO as a potential candidate to face and solve mathematical 

optimization problems. The convergence analysis shows the capability of EO in finding optimum 

results from a completely random set of solutions, while the scalability analysis demonstrates its 

robustness with a reliable behavior in finding promising solutions toward the global optimum, 

even in very high dimensional problems. 

  

  
Figure 11. Robustness comparison of different algorithms in low, high and very high dimensional test cases 

4.9. EO’s performance on CEC-BC-2017 test functions 
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In order to further challenge the EO algorithm, a more recent and challenging test suite, CEC-

BC-2017, which includes shifted and rotated unimodal, multimodal, hybrid, and composition 

functions [31], was employed. It is also worth noting that due to unstable behavior, the f2 

function has been removed from this test suite [32]. The search domain for all functions are [-

100,100] considering 10 dimensions. EO’s performance was tested against this test suite and the 

results are compared with the same metaheuristics algorithms used previously. The majority of 

functions presented in this test suite are among more challenging hybrid and compostion 

functions. The results for all algorithms are provided based on 50 search agents (populations) 

along with 1000 iterations associated with 30 independent runs. The parameter setting for each 

method was the same as mentioned in Table 1. Table 3 shows the optimization results of 

different methods in this test suite.  

The overall rank that was achieved by EO in this test bed was third, following LSHADE-

SPACMA and SHADE. This achievement is another demonstration of EO’s ability to outperfom 

well-studied and recent optimizers while also having very competitive results with high 

performance methods in standard functions.  

 

Table 3. Optimization results and comparison for CEC-BC-2017 test functions 

Function  EO PSO GWO GA GSA SSA CMA-ES SHADE 
LSHADE-

SPACMA 

CEC-

2017-f1 

Ave 2465.3 3959.6 325132 9799.7 296.0 3396.25 100.00 100.00 100.00 

Std 2206.2 4456.6 107351 5942.54 275.1 3673.08 0.000 0.000 0.000 

CEC-
2017-f3 

Ave 300.00 300.00 1538.0 8721.4 10829.2 300.00 300.00 300.00 300.00 
Std 2.4E-08 1.9E-10 1886.02 5900.30 1620.74 0.00 0.000 0.000 0.000 

CEC-

2017-f4 

Ave 404.48 405.94 409.5 410.71 406.6 406.27 400.00 400.00 400.00 

Std 0.7911 3.28 7.55 18.512 2.92 10.07 0.000 0.000 0.000 

CEC-

2017-f5 

Ave 510.73 513.06 513.5 516.32 556.7 521.82 530.18 503.76 502.3 

Std 3.6707 6.54 6.10 6.926 8.40 10.50 58.32 1.006 0.87 

CEC-
2017-f6 

Ave 600.00 600.24 600.6 600.04 621.6 609.77 682.1 600.00 600.00 
Std 1.5E-04 0.98 0.88 0.0668 9.015 8.26 35.43 2.6E-07 2.59E-07 

CEC-

2017-f7 

Ave 720.93 718.98 729.8 728.32 714.6 740.88 713.4 713.90 711.32 

Std 5.7425 5.10 8.60 7.290 1.55 16.62 1.63 1.23 0.37 
CEC-

2017-f8 

Ave 809.51 811.39 814.3 820.72 820.5 823.45 828.9 803.80 801.34 

Std 2.9176 5.47 8.26 8.961 4.69 9.95 52.98 1.27 1.03 

CEC-
2017-f9 

Ave 900.00 900.00 911.3 910.28 900.0 944.07 4667.3 900.00 900.00 
Std 0.0227 5.9E-14 19.53 15.154 6.9E-14 104.66 2062.8 0 0 

CEC-

2017-f10 

Ave 1418.7 1473.3 1530.5 1723.3 2694.6 1858.85 2588.1 1193.6 1047.2 

Std 261.63 214.97 286.67 252.34 297.62 294.50 414.47 84.7 56.55 
CEC-

2017-f11 

Ave 1105.2 1110.5 1140.2 1125.6 1134.7 1180.5 1111.3 1100.8 1100.0 

Std 5.0218 6.28 54.13 23.80 10.45 59.80 25.44 1.36 4.2E-14 

CEC-
2017-f12 

Ave 10340 14532 625182 37255 702723 1983166 1629.6 1324.5 1341.7 
Std 9790.6 11260 1126443 34792.7 42075.4 1909901 198.11 102.6 86.25 

CEC-

2017-f13 

Ave 8023.0 8601.1 9842.3 10828 11053 16098.6 1323.6 1304.7 1303.7 

Std 6720.8 5123.6 5633.43 8928.94 2110.55 10537.2 78.32 0.71 3.25 

CEC-

2017-f14 

Ave 1463.3 1482.1 3403.53 7048.9 7147.5 1508.94 1452.1 1410.8 1400.2 

Std 32.498 42.46 1953.33 8160.08 1489.52 51.05 55.98 9.21 0.44 

CEC-
2017-f15 

Ave 1585.6 1714.3 3806.60 9296.2 18001 2236.69 1509.6 1500.3 1500.3 
Std 48.012 282.89 3860.66 8978.18 5498.67 571.19 16.43 0.36 0.20 

CEC-

2017-f16 

Ave 1649.0 1860.0 1725.78 1786.3 2149.7 1726.26 1815.3 1602.5 1600.9 

Std 50.915 127.65 123.85 129.07 105.8 126.97 230.1 2.19 0.36 
CEC-

2017-f17 

Ave 1731.6 1761.6 1759.61 1746.5 1857.7 1774.57 1830.1 1716.4 1700.4 

Std 18.071 47.50 31.29 39.78 108.32 34.23 175.8 5.96 0.35 

CEC-
2017-f18 

Ave 12450 14599 25806.1 15721 8720.5 23429.1 1825.9 1809.9 1801.1 
Std 11405 11852.2 15766.9 12828 5060.1 14045.7 13.53 9.46 3.67 

CEC-

2017-f19 

Ave 1951.5 2602.8 9866.1 9686.5 13670 2916.1 1920.5 1900.5 1900.3 

Std 47.108 2185.02 6371.09 6766.3 19168 1871.2 28.68 0.28 0.39 
CEC-

2017-f20 

Ave 2020.6 2085.1 2075.6 2056.5 2272.3 2089.3 2494.8 2020.0 2000.2 

Std 22.283 62.25 52.04 60.01 81.72 49.28 242.65 0.0093 0.14 
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CEC-

2017-f21 

Ave 2307.5 2281.7 2317.1 2303.8 2357.7 2249.8 2324.7 2282.5 2202.1 

Std 20.961 54.02 7.00 43.75 28.20 60.44 67.76 42.6 4.02 
CEC-

2017-f22 

Ave 2297.4 2314.8 2310.1 2304.6 2300.0 2301.5 3532.4 2297.3 2300.1 

Std 18.402 66.10 16.75 2.38 0.072 11.80 847.6 16.18 0.17 

CEC-
2017-f23 

Ave 2615.8 2620.8 2616.4 2632.9 2736.5 2621.7 2728.8 2608.1 2603.3 
Std 5.5298 9.23 8.47 13.42 39.14 8.69 243.1 1.71 1.41 

CEC-

2017-f24 

Ave 2743.8 2692.2 2741.7 2758.3 2742.2 2733.2 2704.4 2728.9 2677.9 

Std 6.904 108.20 8.73 14.92 5.52 64.43 73.42 31.7 91.6 
CEC-

2017-f25 

Ave 2934.3 2924.0 2938.0 2947.9 2937.5 2923.5 2932.01 2916.4 2930.0 

Std 19.76 25.02 23.61 19.25 15.36 23.86 20.87 22.9 21.3 

CEC-
2017-f26 

Ave 2967.8 2952.1 3222.5 3112.1 34407.5 2900.9 3457.7 2909.2 2900.0 
Std 164.98 249.66 427.02 334.65 628.73 36.56 598.9 34.9 0 

CEC-

2017-f27 

Ave 3091.3 3116.2 3104.1 3115.1 3259.5 3092.6 3137.5 3071.5 3089.5 

Std 2.2414 24.99 21.81 19.18 41.66 2.78 21.37 0.78 0.15 
CEC-

2017-f28 

Ave 3302.7 3315.9 3391.2 3320.7 3459.4 3210.5 3397.6 3266.7 3125.0 

Std 133.92 121.83 101.5 126.34 33.84 113.17 131.3 22.2 63.2 

CEC-
2017-f29 

Ave 3169.9 3203.8 3190.5 3253.5 3449.5 3214.1 3213.5 3142.8 3134.9 
Std 24.65 52.26 42.9 81.99 171.33 51.69 109.79 12.9 3.87 

CEC-

2017-f30 

Ave 297113 350650 297688 537277 1303361 421120 304569 3201.1 3430.6 

Std 458560 504857 527757 637410 363843 568085 444815 0.31 33.45 
Friedman mean rank 3.97 4.97 6.38 6.69 7.69 6.10 5.72 2.03 1.45 

Rank 3 4 7 8 9 6 5 2 1 

 

 

 

4.10. Statistical analysis of EO 

This section performed multiple statistical analysis tests to first understand if the differences in 

performance of all algorithms in the benchmark functions are statistically significant using the 

non-parametric Friedman test. In order to have a reliable comparison, there is a need to compare 

more than 10 benchmark functions with more than 5 different algorithms [33]. In terms of the 

number of algorithms, this study has already considered 9 algorithms. Regarding benchmark 

functions, this study totally tested 3 groups. The first group consists of unimodal, multimodal, 

fixed-dimensional, and composition functions with 29 functions. The second group is the CEC-

2017 test functions, including 29 functions. Finally, the third group which is the combination of 

first and second groups include 58 functions. The Friedman statistic requires calculating the 

mean ranked value. Then, a comparison is needed to review the critical values obtained for the 

considered significance level               with Friedman statistics to see whether the null 

hypothesis is rejected or not. The formula and explanations can be found in [34] and the critical 

values are available in appendix B of [35]. For all three groups of benchmarks, the null 

hypothesis was rejected, showing that there is a significant difference among the performance of 

the methods in each group.  

Further steps are needed to see which algorithms’ performance are significantly different than 

EO and which ones are similar. To this end, we run a post hoc statistical analysis of Bonferroni-

Dunn [35], which demonstrates that the performance of two algorithms are significantly different 

if the difference in average ranking of methods is larger than the critical distance (CD) [34]. 

Since this study plans to compare the performance of EO with respect to the other algorithms, 

the control algorithm is chosen to be EO. Fig 12 shows the average rank of all algorithms in the 3 

function groups. In this figure, the horizontal line represents the threshold for the control 

algorithm (EO). The control algorithm (EO) is able to outperform those algorithms for which 
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their average rank is above the threshold line (i.e., the height of the bars exceeds its 

corresponding line). For two prevalent significance levels of 0.1 and 0.05, two thresholds are 

defined and depicted in this figure with dotted and dashed lines, respectively. The threshold line 

of each group is identified by its color (Group 1 is red, Group 2 is blue, and Group 3 is green). In 

Group 1, EO outperformed all algorithms, with the lowest average rank of 2.86, and performance 

was significantly better than PSO, GWO, GA, GSA, SSA, and CMA-ES at both significance 

levels. In Group 2, EO ranked third after LSHADE-SPACMA and SHADE, and EO significantly 

outperformed GWO, GA and GSA, SSA, and CMA-ES at both levels of significance. Finally, in 

Group 3, which compares the performance of each method in all benchmark functions, EO 

placed third with an average rank of 3.41 and significantly outperformed PSO, GWO, GA, GSA, 

SSA, and CMA-ES.  

One of the weaknesses of Bonferroni-Dunn test is that it is not able to distinguish significant 

differences of those algorithms that are below the critical line and/or those for which their ranks 

are close to threshold line (e.g., CMA-ES in Group 2 for       ). Thus, this study also 

considered another statistical procedure of Holm’s [36] to detect which algorithms are 

better/worse than EO and at which level of significance. Holm’s method is a simple and widely 

applicable multiple test procedure based on the sequential rejective manner. It sorts all 

algorithms based on their p value and compares them with      , where   is the significance 

level,   is the degree of freedom, and   is the algorithm number. The method starts with the most 

significant p value and sequentially rejects null hypothesis as long as         . As soon as 

the method cannot reject the hypothesis, it stops and considers all the remaining hypotheses as 

accepted. The results for Group 1, shown in Table 4, show that EO significantly outperformed all 

the algorithms at both significance levels except for SHADE and LSHADE-SPACMA (in other 

words, the performance of EO, SHADE, and LSHADE-SPACMA are statistically similar to each 

other in this group). This conclusion is in agreement with previous applications of the Bonferoni-

Dunn’s test. The results for Group 2, shown in Table 5, show that EO’s performance is 

significantly different from all algorithms except PSO and that it is significantly better than 

GSA, GA, GWO, SSA, and CMA-ES at both levels and worse than LSHADE-SPACMA and 

SHADE at both levels. Finally, in Group 3, shown in Table 6, EO’s performance is significantly 

better than all algorithms at both levels except for SHADE and LSHADE-SPACMA, for which 

their performance is again similar. As the main conclusion drawn from all functions’ statistical 

analysis in this study, overall, EO performs significantly better than PSO, GWO, GA, GSA, 

SSA, CMA-ES and performs similar to SHADE and LSHADE-SPACMA. 
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Figure 12. Bonferroni–Dunn test for different algorithms and benchmark groups with        and       

 

Table 4. Holm’s test for group 1 functions (EO is the control algorithm) 
EO vs. rank  -value p-value     (0.05)     (0.1) 

GA 6.5862 5.1782 2.40E-06 0.00625 0.0125 

GSA 5.6206 3.8357 1.26E-05 0.00714 0.0142 
SSA 6.0000 4.3631 1.62E-05 0.00833 0.0166 

PSO 5.9482 4.2911 2.22E-05 0.01 0.02 
CMA-ES 5.4655 3.6199 2.94E-04 0.0125 0.025 

GWO 5.1379 3.1644 0.0016 0.0166 0.0333 

LSHADE-SPACMA 3.9137 1.4623 0.1437 0.025 0.05 
SHADE 3.4655 0.8390 0.4015 0.05 0.1 

 

Table 5. Holm’s test for group 2 functions (EO is the control algorithm) 
EO vs. rank  -value p-value     (0.05)     (0.1) 

GSA 7.6896 5.1782 2.40E-06 0.00625 0.0125 

GA 6.6896 3.7877 1.52E-04 0.00714 0.0142 

LSHADE-SPACMA 1.4482 -3.5000 4.65E-04 0.00833 0.0166 
GWO 6.3793 3.3562 7.90E-04 0.01 0.02 

SSA 6.1034 2.9726 0.003 0.0125 0.025 

SHADE 2.0344 -2.6849 0.0073 0.0166 0.0333 
CMA-ES 5.7241 2.4452 0.0145 0.025 0.05 

PSO 4.9655 1.3904 0.1644 0.05 0.1 

 

Table 6. Holm’s test for group 3 functions (EO is the control algorithm) 
EO vs. rank  -value p-value     (0.05)     (0.1) 

GSA 6.655172 6.373797 2.38E-09 0.00625 0.0125 
GA 6.637931 6.339894 2.95E-09 0.00714 0.0142 

SSA 6.051724 5.187186 2.29E-06 0.00833 0.0166 

GWO 5.758621 4.610832 1.94E-05 0.01 0.02 
CMA-ES 5.594828 4.288752 2.25E-05 0.0125 0.025 

PSO 5.456897 4.017526 5.95E-05 0.0166 0.0333 

LSHADE-SPACMA 2.681034 -1.44088 0.1496 0.025 0.05 
SHADE 2.75 -1.30527 0.1918 0.05 0.1 
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5. Engineering Optimization Test Problems  

This section tests the EO algorithm on three well-known engineering design problems. A simple 

constraint handling method, static penalty, is applied here to penalize the objective function with 

a large value if any constraints at any level are violated from its defined bounds. The penalty 

coefficient should be large enough to properly penalize the objective function in 

equality/inequality constraints. It is noted that all the engineering test problems are conducted 

using the same number of iterations (500) and particles (30) as the mathematical functions 

described previously. All figures and equations of engineering problems are available in the 

supplementary material. 

5.1 Pressure vessel design 

This problem is one of the most well-known benchmark design tests with a mixed type of 

variables (continuous/discrete). A cylindrical pressure vessel capped at both ends with 

hemispherical heads should work under the pressure of 3,000 psi (2.110
7
 Pa) and a minimum 

volume of 750 ft
3
 (21.24 m

3
) according to the ASME boiler code requirement. The total cost of 

welding, material, and forming define an objective function to be minimized. Variables include 

the thickness of the shell (Ts), thickness of the head (Th), the inner radius (R), and the length of 

the cylindrical section of the vessel (L). Both thickness variables (Ts, Th) must be integer multiple 

values of 0.0625 inch, which is the available thickness of rolled steel plates.  

Table 7 shows the optimum results obtained by EO and other methods in the literature. Since 

some researchers considered this case as a continuous problem, the results are presented for EO 

in both mixed variable and continuous forms and compared only to mixed variable solutions. As 

Tables 7 and 8 indicate, EO outperformed other methods. The statistical results are presented in 

Table 8.  

Table 7. Optimum results and comparison for the pressure vessel design problem 
Algorithm                                 

HGA(2) [37] 1.1250 0.5625 58.1267 44.5941 6832.583 

T-Cell [38] 0.8125 0.4375 42.098429 190.787695 6390.554 

HGA(1) [37] 0.8125 0.4375 42.0492 177.2522 6065.821 
CPSO [39] 0.8125 0.4375 42.091266 176.746500 6061.0777 

BFOA [40] 0.8125 0.4375 42.096394 176.683231 6060.460 

HAIS-GA [41] 0.8125 0.4375 42.0931 176.7031 6060.367 
DTS-GA [42] 0.8125 0.4375 42.097398 176.654047 6059.9463 

ES [43] 0.8125 0.4375 42.098087 176.640518 6059.745 

CDE [44] 0.8125 0.4375 42.098411 176.637690 6059.7340 
EO (Mixed variable) 0.8125 0.4375 42.0984456 176.6365958 6059.7143 

EO (Continuous) 0.7781686507 0.3846491672 40.31961921 199.9999933 5885.3279 

 

Table 8. Statistical results and comparison for the pressure vessel design problem (N.A = not available) 
Algorithm Best Mean Worst Std Eval, No 

HGA(2) [37] 6832.584 7187.314 8012.615 276 80,000 
T-Cell [38] 6390.554 6737.065 7694.066 357 80,000 

HGA(1) [37] 6065.821 6632.376 8248.003 515 80,000 

CPSO [39] 6061.0777 6147.1332 6363.8041 86.4545 200,000 
BFOA [40] 6060.460 6074.625 N.A 156 48,000 

HAIS-GA [41] 6061.1229 6743.0848 7368.0602 457.99 150,000 

DTS-GA [42] 6059.9463 6177.2532 6469.322 130.92 80,000 
ES [43] 6059.746 6850.00 7332.87 426 25,000 

CDE [44] 6059.7340 6085.2303 6371.0455 43.0130 240,000 

EO 6059.7143 6668.114 7544.4925 566.24 15,000 
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5.2 Welded beam design 

The welded beam design is another practical example which has often served as a benchmark 

case to test different optimization algorithms. It is a cantilever beam welded at one end and 

subjected to a point load (P) at the other end. The objective is to minimize fabricating cost 

subjected to shear stress    , bending stress    , buckling load     , deflection    , and other 

constraints. The variables shown in Fig 14 are thickness of the weld    , length of welded part of 

the beam    , height of the beam    , and width of the beam    .  

Others that have studied this problem with different algorithms. Table 9 summarizes the optimal 

results for different algorithms while Table 10 provides the statistical summary of results. The 

results of the tables indicate that EO outperformed other algorithms with less cost compared to 

others. EO also obtained the results in a low number of function evaluations and with lower 

values for standard deviation, mean, and worst solutions compared to most other algorithms. 

Table 9. Optimum results and comparison for the welded beam design problem 

Algorithm                               

SBM [45] 0.2407 6.4851 8.2399 0.2497 2.4426 

BFOA [40] 0.2057 3.4711 9.0367 0.2057 2.3868 
SCA [46] 0.2444 6.2380 8.2886 0.2446 2.3854 

EA [47] 0.2443 6.2201 8.2940 0.2444 2.3816 

T-Cell [38] 0.2444 6.1286 8.2915 0.2444 2.3811 
FSA [48] 0.2444 6.1258 8.2939 0.2444 2.3811 

IPSO [49] 0.2444 6.2175 8.2915 0.2444 2.3810 

DSS-DE [50] 0.2444 6.1275 8.2915 0.2444 2.3810 
HSA-GA [51] 0.2231 1.5815 12.8468 0.2245 2.2500 

CDE [44] 0.2031 3.5430 9.03350 0.2062 1.7335 

CPSO [39] 0.2024 3.5442 9.04821 0.2057 1.7280 
TEO [52] 0.2057 3.4723 9.03513 0.2058 1.7253 

EO 0.2057 3.4705 9.03664 0.2057 1.7249 

 

Table 10. Statistical results and comparison for the welded beam design problem (N.A = not available) 

Algorithm Best Mean Worst Std Eval, No 

SBM [45] 2.4426 2.5215 2.6315 N.A 19,259 

BFOA [40] 2.3868 2.4040 N.A 0.016 48,000 
SCA [46] 2.3854 3.2551 6.3996 0.9590 33,095 

EA [47] 2.3816 N.A 2.38297 0.00034 28,897 

T-Cell [38] 2.3811 2.4398 2.7104 0.09314 320,000 
FSA [48] 2.3811 2.4041 2.4889 N.A 56,243 

IPSO [49] 2.3810 2.3819 N.A 0.00523 30,000 

HSA-GA [51] 2.2500 2.26 2.28 0.0078 26,466 
CDE [44] 1.7335 1.768158 1.824105 0.022194 240,000 

CPSO [39] 1.7280 1.748831 1.782143 0.012926 200,000 

TEO [52] 1.725284 1.768040 1.931161 0.058166 N.A 
EO 1.724853 1.726482 1.736725 0.003257 15,000 

 

5.3 Tension/compression spring design 

Another well-known benchmark problem is the design of a tension/compression spring with the 

objective of weight minimization subject to constraints on minimum deflection, shear stress, 

surge frequency, and some box constraints. The design variables include wire diameter    , 

mean coil diameter     and number of active coils    .  

Meta-heuristic algorithms [38,40,44,53,54] have been used to solve this problem. Tables 11 and 

12 present the optimum and statistical summary results. EO obtained better results compared to 
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the other algorithms except T-cell, which accomplished the problem in 36,000 function 

evaluations, which is roughly 2.4 times computationally more expensive than EO with 15,000 

function evaluations. The statistical results show that even with a smaller number of function 

evaluations, EO had very competitive statistical results compared to the other algorithms such as 

PSO, GA, and DE. 

Table 11. Optimum results and comparison for the spring design problem 

Algorithm                         

SI [53] 0.050417 0.321532 13.97991 0.013060 
GA(1) [55] 0.051480 0.351661 11.632201 0.012704 

CA [54] 0.050000 0.317395 14.031795 0.012721 

GSA 0.050276 0.323680 13.525410 0.012702 
GA(2) [56] 0.051989 0.363965 10.890522 0.012681 

CPSO [39] 0.051728 0.357644 11.244543 0.012674 

BFOA [40] 0.051825 0.359935 11.107103 0.012671 
CDE [44] 0.051609 0.354714 11.410831 0.012670 

SCA [46] 0.052160 0.368159 10.648442 0.012669 

HGA [57] 0.051302 0.347475 11.852177 0.012668 
T-Cell [38] 0.051622 0.355105 11.384534 0.012665 

EO 0.0516199100 0.355054381 11.38796759 0.012666 

 

Table 12. Statistical results and comparison for the spring design problem (N.A = not available) 
Algorithm Best Mean Worst Std Eval, No 

SI [53] 0.013060 0.015526 0.018992 N.A 20,000 
GA(1) [55] 0.012704 0.012769 0.012822 3.93E-05 N.A. 

CA [54] 0.012721 0.013568 0.0151156 8.4E-04 50,000 

GA(2) [56] 0.012681 0.012742 0.012973 9.5E-05 80,000 
CPSO [39] 0.012674 0.012730 0.012924 5.19E-05 200,000 

BFOA [40] 0.012671 0.012759 N.A 1.36E-04 48,000 

CDE [44] 0.012670 0.012703 0.012790 2.07E-05 240,000 
SCA [46] 0.012669 0.012922 0.016717 5.92E-04 25,167 

HGA [57] 0.012668 0.013481 0.016155 N.A. 36,000 

T-Cell [38] 0.012665 0.013309 0.012732 9.4E-05 36,000 

EO 0.012666 0.013017 0.013997 3.91E-04 15,000 

 

 6. Conclusion 

This paper proposed a novel physics-based optimization algorithm called Equilibrium Optimizer 

(EO) which was inspired by a generic mass balance equation for a control volume. The design of 

the EO algorithm includes high exploratory and exploitative search mechanisms to randomly 

change solutions. Particles with their concentrations are considered as search agents, equivalent 

to particles and positions in Particle Swarm Optimization (PSO). Concentrations are randomly 

updated with respect to fit solutions called equilibrium candidates. This random updating along 

with a properly defined Generation rate term improves EO’s exploratory behavior in initial 

iterations and exploitative search in the final iterations, aiding in local minima avoidance 

throughout the whole optimization process. Balancing exploration and exploitation provide 

adaptive values for the controlling parameter and reduces the magnitude of movement for the 

particles. The efficiency and effectiveness of EO using quantitative and qualitative metrics were 

validated by testing it on a total of 58 mathematical benchmark functions along with three 

engineering problems. Comparisons with several well-studied, recent, and high-performance 

optimization algorithms showed a high effectiveness of the proposed EO algorithm in obtaining 

optimal or near-optimal solutions with typically higher efficiency (i.e., less computational time 

or fewer iterations) for the majority of problems investigated. Future studies should work toward 

developing binary and multi-objective versions of the EO algorithm to further improve 

performance.  
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Appendix A 

t: iteration, n: Population, d: dimension, c: number of offsprings, m: number of mutated 

populations, α=coefficient that shows the percentage of sum of offsprings and mutated 

population to the total number of populations.   

PSO complexity 

      =                     +                 +                         + 

                   + (                  )  

 

    +     +      +     +      =O ( cn+   +  +t      ( cn +   ) 

                  
 

GA complexity 

     =                     +                 +                         + 

                 +               +                

 

     is equal to   ; therefore,   
 

 
. Using this equation, the updated GA complexity 

equation is: 

 

    +     +      +    +      +         (               
 

We consider        Thus T=t   and   c+m=n 
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